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In the last lecture we discussed the challenges of exploration and the UCB-VI algorithm, which uses optimistic
dynamic programming with confidence bonuses to achieve low regret in the tabular markov decision process. This
algorithm addresses two of the three core capabilities for reinforcement learning. Today, we’ll combine UCB-VI
with techniques from linear bandits to address all three capabilities.

Recall the usual definitions: we have an MDP M = (S,A, P,R, µ) with horizon H and we consider the learn-
ing/exploration setting where the agent interacts with the MDP for T episodes. In the tth episode we generate a
trajectory τt := (st0, a
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H−1) where actions are chosen by the agent and we measure

performance via regret:

Reg(T ) := TJ(π?)− E

[
T∑
t=1

H−1∑
h=0

rth

]
.

In exactly this setup we saw that UCB-VI can obtain a regret bound scaling as poly(S,A,H)
√
T . Today, the goal

will be to avoid dependence on S and A through the use of linear function approximation.

1 The linear MDP

To enable linear function approximation, we assume access to a feature map φ : S × A → Rd that we will use
to approximate quantities of interest. We will not precisely specify any assumptions at this point but drawing
inspiration from linear bandits, it seems natural to assume that Q? is linearly realizable by the features. Indeed,
this specializes to the stochastic linear bandits problem if H = 1.

Drawing inspiration from UCB-VI, it may be natural to use the features in the optimistic dynamic programming
procedure we had previously. Recall that for UCB-VI we performed the iteration:

Qt−1
H−1(s, a) = R(s, a), Qt−1

h (s, a) = min{H,R(s, a) + bt−1(s, a) +
∑
s′

P t−1(s′ | s, a) max
a′

Qt−1
h+1(s′, a′)}.

Here, while we did estimate the transition operator P t−1 from samples, we mostly care about the optimistic Q
function itself. So it may be natural to replace the “model-based” nature with a dynamic programming procedure
that directly works with Q functions. Specifically, at episode t we could use all of the previous data to perform the
dynamic programming scheme. Starting with V tH ≡ 0 we compute

∀h ≤ H − 1 : θth ← argmin
θ

t−1∑
i=1

(〈
φ(sih, a

i
h), θ

〉
− rih − V th+1(sih+1)

)2
,

Qth : (s, a) 7→ min{H,
〈
φ(s, a), θth

〉
+ bt−1

h (s, a)}, V th : s 7→ max
a

Qth(s, a)

where bt−1
h is a bonus function that encourages optimism. Then we can simply deploy the greedy policy with respect

to Qt. This is very similar to the UCB-VI procedure, except we use linear regression to approximate the Bellman
backups, instead of a more direct tabular approach.

Today we will analyze essentially this algorithm, but we will need to make fairly strong assumptions on the
MDP to prove that it succeeds. Thinking about this algorithm, we immediately encounter an obstacle in that the
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regression problems we are solving may not be well-specified/realizable. Indeed this will be true even if we assume
that Q? is realizable by our features, since our regression targets are not unbiased estimates of Q?! There are two
sources of error here, one is simply that Q?h(s, a) 6= 〈φ(s, a), θth〉 due to statistical fluctuations, and the other is that
we are adding some bonus to ensure optimism.

While one can obtain linear regression guarantees without realizability, they are not very useful for establishing
optimism. For example, one guarantee you can obtain takes the form L(θ̂) − minθ L(θ) ≤ εstat, where L is the
population square loss and εstat goes to zero with the amount of data. However, under misspecification, the best
parameter may not be the one that realizes the conditional mean of the target (which in this case is T V th+1), so we
may have some irreducible error. It is not clear how to establish optimism in this case and later on we will see that
exploration with linear function approximation is not possible without much stronger assumptions.

On the other hand, if the regression problem were well-specified, we already learned how to guarantee optimism
when we studied stochastic linear bandits. From a technical perspective, this motivates the following linear MDP
assumption, under which we can establish realizability of the regression problems.

Definition 1 (Linear/Low rank MDP). An MDP M = (S,A, P,R) is a linear MDP if there is a known feature
map φ : S ×A → Rd, unknown vector w? : Rd, and unknown signed measures, µ : S → Rd such that:

R(s, a) = 〈φ(s, a), w?〉 , P (s′ | s, a) = 〈φ(s, a), µ(s′)〉 .

The standard regularity/normalization assumptions are: sups,a ‖φ(s, a)‖2 ≤ 1, supf :‖f‖∞≤1 ‖
∫
µ(s)f(s)‖2 ≤

√
d,

‖w?‖2 ≤W , and rewards are in [0, 1].

We can also think of the µ mapping as a matrix µ ∈ RS×d such that P (· | s, a) = µφ(s, a). Then the normalization
condition is that supv:‖v‖∞≤1 ‖v>µ‖2 ≤

√
d. Note that any MDP can be written as a linear MDP with d ≤ SA and

so linear MDP methods generalize tabular ones.
The linear MDP asserts that the reward function is linearly realizable in the features, which we also assumed in

stochastic linear bandits, so this is fairly natural. Here we also assume that the transition operator satisfies some
linearity property. Observe that this is equivalent to writing P = µΦ where µ ∈ RS×d and Φ ∈ Rd×SA, which
reveals the low rank structure in the transition operator. This assumption may seem more unnatural, but it admits
the following favorable property, which addresses the realizability issue above.

Proposition 2. For any function f : S → [0, H], there exists θf ∈ Rd with ‖θf‖2 ≤ H
√
d such that

∀s, a : Es′∼P (s,a) [f(s′)] = 〈φ(s, a), θf 〉

From this proposition, we can immediately see that the regression problems in the optimistic dynamic program-
ming update are now well-specified, which will make it much easier for us to establish optimism.

Proof. Fix (s, a) and observe

Es′∼P (s,a) [f(s′)] =

∫
s′
P (s′ | s, a)f(s′) =

∫
s′
〈φ(s, a), µ(s′)〉 f(s′) =

〈
φ(s, a),

∫
s′
µ(s′)f(s′)

〉
.

The latter vector, which we call θf , has `2 norm at most H
√
d by our regularity assumptions.

2 LSVI-UCB

Now that we have admittedly strong assumptions, we can introduce and analyze the LSVI-UCB algorithm. The
algorithm is almost what we presented above, except we use ridge regularization in the dynamic programming and
we must also specify the bonuses. At the beginning of episode t we compute the Qt function via:

∀h ≤ H − 1 : θth ← argmin
θ

t−1∑
i=1

(〈
φ(sih, a

i
h), θ

〉
− rih − V th+1(sih+1)

)2
+ λ‖θ‖22,

Qth : (s, a) 7→ min{H,
〈
φ(s, a), θth

〉
+ bt−1

h (s, a)}, V th : s 7→ max
a

Qth(s, a),
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starting with V tH ≡ 0 and setting the bonus as bt−1
h (s, a) = β‖φ(s, a)‖Λ−1

h,t−1
where Λh,t =

∑t−1
i=1 φ(sih, a

i
h)φ(sih, a

i
h)>+

λI and β = Õ(Hd) will be specified later.
For intuition, if we take H = 1 this is exactly the LinUCB algorithm we studied earlier in the course. In

particular, we used ridge regularization and set the optimism bonus in terms of the inverse covariance of the
observed features. So these components are identical. The only difference is that we now also perform dynamic
programming, which is how we can scale to longer horizon problems.

Analyzing this algorithm essentially combines the analysis of of UCB-VI and LinUCB. In particular we have three
steps: (a) optimistic regret decomposition (which is exactly the same as for UCB-VI), (b) establishing optimism
(which is close to LinUCB), and (c) bounding the confidence sum (which is exactly the same as LinUCB). Let us
sketch out these three parts.

Optimistic regret decomposition. Last lecture we proved that if we have {Qth, confth}h,t satisfying

∀s, a, h, t : Q?h(s, a) ≤ Qth(s, a) ≤ (T Qth+1)(s, a) + confth(s, a),

and we deploy the greedy policy with respect to Qth, then with probability at least 1− δ we have the regret bound

Reg(T ) ≤
∑
t

∑
h

confth(sth, a
t
h) +O(H

√
T log(1/δ)).

Establishing optimism. Similar to last time we establish optimism inductively. Consider episode t and time
step h and assume that V th+1(s′) ≥ V ?h+1(s′) for all s′. Then observe that our regression targets satisfy

E[r + V th+1(s′) | s, a] = 〈φ(s, a), w?〉+
〈
φ(s, a), θ̄th

〉
=
〈
φ(s, a), θ̃th

〉
where θ̄th is the parameter vector for V th+1 promised by Proposition 2 and θ̃th = w?+θ̄th. Thus, we have a well-specified
regression problem and can deduce

‖θth − θ̃th‖2Λh,t−1
≤ Õ(H2d2) =: β. (1)

In stochastic linear bandits, we stated (but did not prove) a similar inequality, with a right hand side of Õ(
√
d).

Instead here we have a right hand side of Õ(H
√
d). The factor of H arises from the range of the value functions

which influence the scale of the noise.
The additional factor of d arises for a more subtle reason. While the regression problem is well specified, actually

the optimal predictor θ̃th is random since it is determined by V th+1 which itself depends on all of the past episodes.
This couples all of the terms in the square loss regression problem together so that they are no longer independent
which is important in the concentration argument. We resolve this issue by doing a uniform convergence argument,
essentially considering all possible choices for V th+1 and taking a large union bound. This incurs an extra

√
d factor

because V th+1 is determined by coefficients θth+1 and the second moment matrix Λh+1,t−1 ∈ Rd×d so we have to take
a union bound over roughly exp(d2) choices for V th+1.

Taking the bound in (1) as true, we can establish the conditions of the optimistic regret decomposition:

Q?h(s, a) = 〈φ(s, a), w?〉+ (T V ?h+1)(s, a) ≤ 〈φ(s, a), w?〉+
〈
φ(s, a), θ̄th

〉
=
〈
φ(s, a), θ̃th

〉
=
〈
φ(s, a), θth

〉
+
〈
φ(s, a), θ̃th − θth

〉
≤
〈
φ(s, a), θth

〉
+ ‖φ(s, a)‖Λ−1

h,t−1
· β = Qth(s, a).

The first inequality uses our inductive hypothesis that V th+1 is optimistic, since
〈
φ(s, a), θ̃th

〉
= (T V th+1)(s, a) ≥

(T V ?h+1)(s, a). The second uses Cauchy-Schwarz and the regression guarantee. The upper inequality is similar:

Qth(s, a) ≤
〈
φ(s, a), θth

〉
+ β‖φ(s, a)‖Λ−1

h,t−1
≤
〈
φ(s, a), θ̃th

〉
+ 2β‖φ(s, a)‖Λ−1

h,t−1
= (T V th+1)(s, a) + 2β‖φ(s, a)‖Λ−1

h,t−1
,

which shows that we can set confth(s, a) = 2β‖φ(s, a)‖Λ−1
h,t−1

.
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Potential function. Based on the above two steps, we can bound the regret by

Reg(T ) ≤ 2β
∑
t

∑
h

max(H, ‖φ(sth, a
t
h)‖Λ−1

h,t−1
) + Õ(H

√
T ).

Here we can apply the elliptical potential lemma to bound the dominant term as Õ(β ·H
√
dT ). This leads to the

following theorem.

Theorem 3. Assuming M satisfies the linear MDP property, then with probability at least 1 − δ, LSVI-UCB has
Reg(T ) ≤ Õ(H2

√
d3T ).

3 Weaker assumptions and linear Bellman completeness

While the linear MDP subsumes tabular MDPs and admits sample efficient reinforcement learning, the assumption
is quite strong, so it is reasonable to ask if weaker assumptions remain tractable. An immediate observation is
that LSVI-UCB only ever creates regression problems with targets from a specific class of functions, so only these
functions need to have linear Bellman backups. In more detail, if we define G = {s 7→ maxa min{H, 〈φ(s, a), θ〉 +
β‖φ(s, a)‖M−1} : θ ∈ Rd,M � 0, β ≥ 0}, then we only need that T g is a linear function in φ(s, a) for g ∈ G. This is
a strictly weaker than the linear MDP, which requires that all functions admit linear Bellman backups.

Once you move away from explicit assumptions on the transition model, you can also start to move away from
linear function approximation. The main other component required by LSVI-UCB is that we can build pointwise
confidence intervals that shrink rapidly. There are some nonlinear function classes for which this is also true, and
this property is typically captured via the notion of Eluder dimension, which you may see in the literature. One
simple nonlinear example is a generalized linear model where we approximate Q(s, a) = σ(〈φ(s, a), θ〉) for some link
function σ that is continuous and monotone. For example, we could take σ(x) = 1/(1 + exp(x)) to be the sigmoid
function. For generalized linear functions, essentially the same algorithm and analysis apply. (There are some tricks
required for working with more general Eluder classes.)

However, even the weaker property that T G is linearly realizable for the class G defined above is somewhat
strong and precludes some models of interest. For example, it precludes the linear quadratic regulator, which
is the canonical model in control theory. Instead, the most natural assumption is what is known as “Bellman
completeness” or “closure of the bellman operator”:

Assumption 4 (Bellman completeness). A function class F : S × A → R and an MDP M satisfy bellman
completeness if ∀f ∈ F we have T f ∈ F .

If we take F to be the class of linear functions in the features φ then we are asking that all linear functions
in φ admit linear-in-φ Bellman backups. This is a weaker assumption than the linear MDP and is referred to
as the “linear Bellman completeness” setting. Note that LSVI-UCB does not seem to work under these weaker
assumptions, since it creates misspecified regression problems, for which it is difficult to establish optimism. Can
we develop efficient algorithms for this setting?

The answer turns out to be yes on the statistical side, but it currently remains open to obtain a computationally
efficient algorithm. The algorithm also highlights a distinction between local and global optimism, which is the
main technical novelty. In LSVI-UCB we ensured that Qth is pointwise optimistic which lead to the optimistic
regret decomposition. It turns out that this is not necessary and it suffices to have (Qt0, . . . , Q

t
H−1) satisfy a more

global optimism property, simply that Es0∼µ [maxaQ
t
0(s0, a)−maxaQ

?
0(s0, a)] ≥ 0. This leads to a different regret

decomposition:

Lemma 5 (Global optimistic regret decomposition). Suppose we have a Q function (Q0, . . . , QH−1) such that
Es0 maxaQ0(s0, a) ≥ Es0 maxaQ

?
0(s0, a) and we set π to be the greedy policy with respect to Q. Then

J(π?)− J(π) ≤
H−1∑
h=0

E(s,a)∼dπh [Qh(s, a)− (T Qh+1)(s, a)]

Observe that the requirement on the Q-function is significantly milder than the pointwise optimistic property.
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Proof.

J(π?)− J(π) = Es0
[
max
a

Q?0(s0, a)−Qπ0 (s0, π(s0))
]

≤ Es0
[
max
a

Q0(s0, a)−Qπ0 (s0, π(s0))
]

= E(s0,a0)∼dπ0 [Q0(s0, a0)−Qπ0 (s0, a0)]

= E(s0,a0)∼dπ0 [Q0(s0, a0)− (T Q1)(s0, a0)] + Es1∼dπ1

[
max
a

Q1(s1, a)−Qπ1 (s1, π(s1))
]
.

The first inequality uses the global optimism property and from then on we use the fact that π is greedy with
respect to Q and the definition of the Bellman operator. Note that the first term appears on the RHS of the lemma
statement, while the second term is the same as the expression on the second line one time step in the future, so we
can unroll this argument. (Observe that this proof is identical to the proof for the previous regret decomposition
although the statement is different.)

The main challenge now is to ensure global optimism assuming only bellman completeness. This is where the
computational issues arise. The problem is that if we do regression, due to statistical errors, we will not obtain Q?

exactly. If we then use our estimate as the regression target at the previous time the solution may be very different
from Q? and we cannot add bonuses to correct for this discrepancy.

We resolve this by maintaining confidence balls for plausible parameters. Let us define

Rt−1
h (θ, θ̃) :=

t−1∑
i=1

(〈
φ(sih, a

i
h), θ

〉
− rih −max

a

〈
φ(sih+1, a), θ̃

〉)2

+ λ‖θ‖22,

which is the regression error at time step h if we use θ̃ to compute the regression targets. Then we define a feasible
set of parameter tuples:

Ballt :=

{
(θ0, . . . , θH) : θH = 0,∀h : Rt−1

h (θh, θh+1) ≤ min
θ
Rt−1
h (θ, θh+1) + β2

}
Thus, we are asking that each parameter θh is a near-optimizer for the regression problem defined by the subsequent
parameter θh+1. This is a form of “temporal consistency” in our parameters. If we set β to account for statistical
errors, we can see that (θ?0 , . . . , θ

?
H−1, θ

?
H) ∈ Ballt, since θ?H−1 is the population minimizer for regressing onto the

rewards, and since θ?h is the population minimizer when we regress onto θ?h+1. Note also that we are only creating
regression problems where the target is a linear function of the features, so under linear Bellman completeness,
these are all well-specified.

So in this way, we can achieve global optimism by choosing:

~θt ← argmax
(θ0,...,θH)∈Ballt

Es0 max
a
〈φ(s0, a), θ0〉 (2)

For the regret analysis, first let us consider some sequence (θ0, . . . , θH) ∈ Ballt. Let us define θ̃h so that

(T θh+1)(s, a) =
〈
φ(s, a), θ̃h

〉
. Then since θ̃h is the population minimizer for the regression problem, from the

confidence ball property we can derive that ‖θh − θ̃h‖Λh,t−1
≤ O(β). This means that the regret is bounded as

Reg(T ) ≤
∑
t

∑
h

Qth(sth, a
t
h)− (T Qth+1)(sth, a

t
h) + Õ(H

√
T )

=
∑
t

∑
h

〈
φ(sth, a

t
h), θth − θ̃th

〉
+ Õ(H

√
T )

≤
∑
t

∑
h

‖φ(sth, a
t
h)‖Λ−1

h,t−1
· β + Õ(H

√
T ) ≤ Õ(Hβ

√
dT )

One upside of this algorithm is that we can set β = Õ(H
√
d) which save a factor of

√
d when compared with

LSVI-UCB. This arises in the uniform convergence argument because, while we do consider a large class of possible
regression problems, the set is much smaller since we do not have to account for the bonus. The downside is that
it is not clear how to solve the optimization problem in (2), so this algorithm should be viewed as confirmation of
statistical tractability even with these weaker assumptions. However the algorithm is not computationally tractable.
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