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1 Recap

So far, we have been discussing the three capabilities/challenges of generalization, credit assignment, and explo-
ration, and we have seen techniques for addressing each challenge in isolation: empirical risk minimization for
generalization, optimism for exploration, and dynamic programming for credit assignment. In terms of the pairs,
contextual bandits addresses exploration and generalization but not credit assignment, while policy gradient meth-
ods address credit assignment and generalization (via linear function approximation) but not exploration. Today we
will address exploration and credit assignment simultaneously. The methods that can do this fall into the “tabular
reinforcement learning” paradigm.

2 Why is exploration hard?

It is not hard to construct MDP instances where random exploration has an exponentially small probability of
visiting every state. One such MDP is displayed in Figure 1, and MDPs with this structure are broadly referred to
as combination locks. Here the agent starts at g0 deterministically, so if we execute actions uniformly at random,
it takes 2H episodes before we see the reward.

g0 g1 g2 g3

b1 b2 b3

r = 1

r = 0

Figure 1: A combination lock MDP

It is also worthwhile to think about why policy gradient fails to address the exploration issue in the context
of this combination lock. Last time we also saw that NPG’s sample complexity depends on the distribution shift
coefficient ‖dπ̃/µ‖∞ where π̃ is the comparator policy and µ is the starting distribution. Taking π̃ = π?, this
quantity is infinite. If we know some other distribution ρ and use it for estimation of the Q-functions, ρ can replace
µ above, but how do we find some distribution ρ that makes the distribution shift coefficient small? Indeed, finding
such a ρ requires us to learn how to visit the end of the chain, which amounts to solving the exploration problem!
This is another way to see that policy gradient methods do not address the exploration challenge.

3 UCB-VI

Let us first describe the precise learning protocol and objective. We consider an episodic MDP M = (S,A, P,R)
with horizon H. For notational simplicity we assume the starting state is fixed and known, and that the reward
function R is deterministic and known. (Both of these can be easily generalized, but it requires us to track
and estimate a few more objects. However it does not affect the final guarantees at all.) We consider an agent
interacting with this environment for T episodes, where at the onset P is unknown. In episode t, a trajectory τt :=
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are sampled according to the MDP. We measure the performance of the algorithm via regret:

Reg(T ) := TJ(π?)− E

[
T∑
t=1

H−1∑
h=0

rth

]

If the algorithm deploys a policy πt in the tth episode, then we can re-write the regret as Reg(T ) =
∑
t J(π?)−J(πt).

A natural idea. A natural idea is to (1) use the data that we have collected to estimate a transition operator
P̂ , (2) plan in the estimated MDP M̂ = (S,A, P̂ , R) to find a policy π̂, and (3) deploy π̂ in the next episode. This
doesn’t work unfortunately, but it is helpful to understand why, both from a conceptual and a technical level.

We can understand this issue in the simpler stochastic MAB setting. Here this plug-in/greedy approach amounts
to choosing the arm at = argmaxa µ̂t−1(a), and it fails because it may starve the optimal arm a?. If we start by
playing every arm once, there is a good chance that our empirical mean for a? is lower than the true mean for some
other arm. More specifically, we may have µ̂(a?) ≤ µ(ã) ≤ µ̂(ã). From this point, we will play ã, and our estimate
µ̂(ã) will converge to µ(ã), but this will continue to dominate our estimate for a?, so the latter will never improve.

On a technical level, this algorithm admits the per-round regret decomposition:

µ(a?)− µ(at) ≤ |µ(a?)− µ̂t−1(a?)|+ |µ(at)− µ̂t−1(at)|+ µ̂t−1(a?)− µ̂t−1(at) ≤ conft−1(a?) + conft−1(at).

The issue is that we cannot guarantee that conf(a?) is decreasing with t, although we did show that conft−1(at)
decreases with t. This is the technical reason why the greedy algorithm suffers linear regret.

Optimistic regret decomposition. In the stochastic MAB problem, optimism addresses the above issue on a
technical level because it instead admits the regret decomposition

µ(a?)− µ(at) ≤ 2conft−1(at). (1)

Now, our potential function argument guarantees that conft−1(at) cannot remain large forever. Can we instantiate
this idea in the episodic MDP setting? Indeed it is possible, and this is the main idea behind the algorithm UCB-VI.
However, the method is quite a bit more complicated than the UCB algorithm for multi-armed bandits, so let us
break it down into several components.

Perhaps the core lemma is an optimistic regret decomposition, which is quite general. To state the lemma, recall
the Bellman backup operator T defined as

T f : (s, a)→ R(s, a) + Es′∼P (s,a)

[
max
a′

f(s′, a′)
]
.

Additionally recall that we use dπh ∈ ∆(S×A) to denote the state-action occupancy measure of policy π at time step
h. The next lemma states that if we have a Q-function that is (a) optimistic and (b) nearly “Bellman consistent,”
then we can obtain a regret decomposition that is analogous to (1).

Lemma 1 (Optimistic regret decomposition). Suppose that we have Q̄ and a confidence bound conf satisfying:

∀s, a, h : Q?h(s, a) ≤ Q̄h(s, a) ≤ (T Q̄h+1)(s, a) + confh(s, a), (2)

then if π̄h : s 7→ argmaxa Q̄h(s, a) is the greedy policy w.r.t. Q̄, we have

J(π?)− J(π̄) ≤
H−1∑
h=0

E(sh,ah)∼dπ̄h [confh(s, a)]

The key property of this lemma is that there is no dependence on π? on the right hand side. Instead everything
is measured on states and actions that we will visit if we execute π̄. Another important remark is that the upper
bound on Q̄h in (2) is actually more favorable than asking Q̄h to be not-much-larger than Q?h (which may seem like
the more natural pre-condition). This holds because Q̄h+1 is also optimistic!
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Proof. The key step is to translate from Q? to Q̄ and then use the greedy property of π̄:

J(π?)− J(π̄) = Q?0(s0, π
?(s0))−Qπ̄0 (s0, π̄(s0))

≤ Q̄0(s0, π
?(s0))−Qπ̄0 (s0, π̄(s0))

≤ Q̄0(s0, π̄(s0))−Qπ̄0 (s0, π̄(s0))

≤ (T Q̄1)(s0, π̄(s0)) + conf0(s0, π̄(s0))− Es1∼P (s0,π̄(s0))

[
Qπ̄1 (s1, π̄(s1))

]
= E(s1,a1)∼dπ̄1

[
Q̄1(s1, a1)−Qπ̄1 (s1, a1)

]
+ E(s0,a0)∼dπ̄0 [conf0(s0, a0)]

The final equality holds because π̄ is the greedy policy w.r.t. Q̄, so that maxa Q̄1(s, a) = Q̄1(s, π̄1(s)). The first
term in last line has the same for as the third line, except that we are one time step ahead. So we can recursively
apply this argument to prove the lemma.

Optimistic planning via bonuses. The next issue we need to address is the construction of a Q function that
satisfies (2). For this, UCB-VI leverages a form of optimistic value iteration. We need to specify the estimator for
the transition operator and the confidence bonus.

Suppose we are in episode t, and let Nt−1(s, a, s′), Nt−1(s, a) denote the number of times we have seen (s, a, s′)
or (s, a) in the past t− 1 trajectories, that is:

N t−1(s, a) =

t−1∑
i=1

H−2∑
h=0

1{sih = s, aih = a}, N t−1(s, a, s′) =

t−1∑
i=1

H−2∑
h=0

1{sih = s, aih = a, sih+1 = s′}

(We throw away the last step, since we do not see sH , we cannot estimate the transitions from these samples.)

Then, we can estimate the transition model via P t−1(s′ | s, a) = Nt−1(s,a,s′)
Nt−1(s,a) , which is just the empirical estimate.

As discussed above, if we perform value iteration using P t−1 we may not obtain an optimistic Q-function. However,
if we instead consider the optimistic value iteration procedure defined as:

Qt−1
H−1(s, a) = R(s, a), Qt−1

h (s, a) = min{H,R(s, a) + bt−1(s, a)︸ ︷︷ ︸
reward bonus

+
∑
s′

P t−1(s′ | s, a) max
a′

Qt−1
h+1(s′, a′)} (3)

and set bt−1(s, a) = H min{1,
√

S∆
Nt−1(s,a)} with ∆ = c log(SAHT/δ) for some universal constant c, then we can

show that Qt−1 is optimistic with high probability. This is the contents of the next lemma.
Before we state and prove the lemma it is helpful to provide some intutition. The procedure is performing

standard value iteration in a different MDP M̂ = (S,A, P t−1, R + bt−1, µ), which uses the estimated transition
operator and a reward function that includes an exploration bonus. The bonus is high for the (s, a) pairs with low
visitation, which incentivizes the agent to visit those states. Further, because the bonus is tied to the estimation
error of the transition model, a policy that gets large bonus in M̂ will definitely visit some unknown region when
deployed in M . To see this, observe that up until the first time the bonus is “large” the two MDPs behave very
similarly. Thus, the exploration bonus intuitively takes care of the exploration challenge.

Lemma 2. Set bt−1(s, a) = H min{1,
√

S∆
Nt−1(s,a)} and perform the update (3). Then with probability at least 1− δ:

∀t, h, s, a : Q?h(s, a) ≤ Qt−1
h (s, a) ≤ (T Qt−1

h+1)(s, a) + 2bt−1(s, a).

Proof. By a martingale version of Bernstein’s inequality, we can show that for all (s, a, t) we have

|P t−1(s′ | s, a)− P (s′ | s, a)| .

√
P (s′ | s, a) log(SAHT/δ)

N t−1(s, a)
+

log(SAHT/δ)

N t−1(s, a)
,

with probability at least 1− δ. Recall that the total variation distance ‖P −Q‖TV = 1
2

∑
s |P (s)−Q(s)| is 1/2 of

the `1 distance. By an application of Cauchy-Schwarz, this implies that we have a total-variation approximation to
the the transition operator in the sense that

∀t, s, a : ‖P t−1(s, a)− P (s, a)‖TV ≤

√
S∆

N t−1(s, a)
.
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Using this inequality, let us prove the lemma. To establish optimism consider step h and inductively assume that
Qt−1
h+1 is optimistic, that is Qt−1

h+1(s, a) ≥ Q?h+1(s, a) for all s, a. If the update for Qt−1
h (s, a) takes the min(H, ·) then,

since Q?h(s, a) ≤ H, we have already satisfied optimism. So we can assume that Qt−1
h (s, a) is defined by the second

part of the min. Note that in this case, bt−1(s, a) < H and in fact we can see that bt−1(s, a) is 1/H times the right
hand side of the TV bound above. Therefore, in this case,

Qt−1
h (s, a) = R(s, a) + bt−1(s, a) +

∑
s′

P t−1(s′ | s, a) max
a′

Qt−1
h+1(s′, a′)

≥ R(s, a) + bt−1(s, a) +
∑
s′

P t−1(s′ | s, a)V ?h+1(s′)

= R(s, a) + bt−1(s, a) +
∑
s′

P (s′ | s, a)V ?h+1(s′) +
∑
s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

)
V ?h+1(s′)

≥ R(s, a) + bt−1(s, a) +
∑
s′

P (s′ | s, a)V ?h+1(s′)− ‖P t−1(s, a)− P (s, a)‖TV ·H

≥ R(s, a) +
∑
s′

P (s′ | s, a)V ?h+1(s′) = Q?h(s, a).

Here, the first inequality uses the inductive property and the second is precisely Holder’s inequality, since 0 ≤ Q?h ≤
H. Finally we use that the bonus is set to dominate the error term, and the definition of Q?h.

The upper bound is similar:

Qt−1
h (s, a) ≤ R(s, a) + bt−1(s, a) +

∑
s′

P t−1(s′ | s, a) max
a′

Qt−1
h+1(s′, a′)

≤ bt−1 + (T Qt−1
h+1)(s, a) +

∑
s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

) (
max
a′

Qt−1
h+1(s′, a′)

)
≤ 2bt−1 + (T Qt−1

h+1)(s, a)

Potential function. Based on the above two lemmas, we can prove the following corollary.

Corollary 3. If in every iteration we perform optimistic value iteration (3) and set πt to be the greedy policy w.r.t.,
Qt−1 then with probability at least 1− 2δ we have

T∑
t=1

J(π?)− J(πt) ≤ 2

T∑
t=1

H−2∑
h=0

bt−1(sth, a
t
h) +O(H

√
T log(1/δ))

Proof. By Lemma 2 we can instantiate Lemma 1 with the confidence term equal to bt−1(s, a). This reveals that
with probability 1− δ

T∑
t=1

J(π?)− J(πt) ≤ 2

T∑
t=1

H−1∑
h=0

E
s,a∼dπth

[bt−1(s, a)].

We obtain the result by observing that (sth, a
t
h) ∼ dπth , since we deploy policy πt in the tth episode. So we can relate

the “empirical” state visitation to the expected state visitation via a martingale concentration argument.

To finish the proof, we need to show that the bonuses shrink over time. This leverages a potential function
argument similar to the one for the standard UCB algorithm.

Lemma 4 (Potential function). Consider any sequence of T trajectories τ t = {sth, ath}
H−1
h=0 for t = 1, . . . , T . Then

T∑
t=1

H−1∑
h=0

bt−1(sth, a
t
h) ≤ O(H2S

√
AT∆)
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Proof. This proof is very similar to the MAB potential function argument, except now we have SA counters that
are being incremented. There is also one wrinkle which is that we may visit the same (s, a) pair multiple times
within an episode, meaning that we can suffer 1/

√
Nt(s, a) up to H times. On the other hand, if we do then we

increment the counter by H.
To address this wrinkle it is best to break apart each counter into H counters, one per time step. Focusing on one

(s, a) pair we need to bound
∑
t zt
√

1/N t−1(s, a) with the update N t(s, a)← N t−1(s, a)+zt where zt ∈ {0, . . . ,H}
is the number of times we visit (s, a) in the tth episode. The easiest way to control this sum is to instead create a

counter for each time step h, so we define N t−1
h (s, a) =

∑t−1
i=1 1{sih = s, aih = a} and zt,h = 1{sth = s, ath = a}. Then∑

t

zt√
N t−1(s, a)

=
∑
t

∑
h

zt,h√
N t−1(s, a)

≤
∑
t

∑
h

zt,h√
N t−1
h (s, a)

≤ O(
∑
h

√
NT
h (s, a)).

Now let us express the sum in terms of each (s, a) pair:

T∑
t=1

H−1∑
h=0

bt−1(sth, a
t
h) = O(H

√
S∆)

∑
s,a

∑
t

zt(s, a)√
N t−1(s, a)

≤ O(H
√
S∆)

∑
s,a,h

√
NT
h (s, a) ≤ O(H

√
S∆) ·O(H

√
SAT )

Here the final step follows from Cauchy-Schwarz and the fact that
∑
s,a,hN

T
h (s, a) = HT since we make a total

of HT updates over the course of the learning process. So in the final bound, we pay H
√
S due to the size of the

bonuses, we pay
√
HSA for the number of counters we track, and we pay

√
HT for the number of updates.

Putting together the pieces of the above argument, we arrive at the main theorem for today. Before stating the
theorem, we summarize the algorithm. Before each episode t ∈ [T ] the algorithm constructs a estimate P t−1 of the
transition operator of the MDP and performs an optimistic version of value iteration using reward bonuses bt−1(s, a)
that are derived from a concentration argument. Optimistic value iteration computes a Q-function Qt−1, and the
algorithm simply deploys the greedy policy with respect to this Q-function for the next episode. The guarantee is:

Theorem 5 (UCB-VI regret bound). The UCB-VI algorithm guarantees that with probability at least 1− δ

Reg(T ) ≤ O(H2S
√
AT log(SAHT/δ))

3.1 Refinements

The above analysis for UCB-VI is correct, but it is quite loose. In fact the same algorithm, with a sharper definition
of the bonuses bt−1(s, a) achieves Õ(H2

√
SAT + H3S2A log(T )) regret. The key improvement is that the leading√

T term only scales with
√
S rather than with S. In other words if we want to find an ε-suboptimal policy and

ε is small, then we need T = Ω(SAH4/ε2) episodes which is linear in S. This is perhaps surprising since the
transition operator has S2A unknown parameters, and the algorithm is “model-based” in that it tries to estimate
the transition operator. However the optimal Q-function only has SA parameters, and in fact we just need to
estimate the transition operator well-enough to approximate Q?.

To establish this improved bound, there are two observations. The first is that our application of Holder’s
inequality to establish optimism in Lemma 2 is quite loose. We only care that P t−1 is accurate in the sense that∑

s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

)
V ?h (s′),

is small. Since V ?h is just a single function, passing to total-variation distance is quite loose. This reasoning shows

that we can set the bonus a factor of
√
S smaller and still satisfy optimism.

Unfortunately, we cannot use this for the upper bound in Lemma 2 since we care to control the action of P t−1−P
on the estimated value function V t−1, which is data-dependent. The fact that this function is data-dependent means
we cannot avoid the

√
S factor in the concentration argument here, since it could correlated with the deviation in

P t−1 − P (essentially we are doing uniform convergence over all functions). However there is a trick we can use
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here, which is to add and subtract V ?h+1:∑
s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

)
V t−1
h+1 (s′)

=
∑
s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

) (
V t−1
h+1 (s′)− V ?h+1(s′)

)
+
∑
s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

)
V ?h+1(s′)

.
∑
s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

) (
V t−1
h+1 (s′)− V ?h+1(s′)

)
+H

√
∆

N t−1(s, a)

From here, we exploit the optimistic property of V t−1
h+1 to relate the first term to the error at the next time step:∑

s′

(
P t−1(s′ | s, a)− P (s′ | s, a)

) (
V t−1
h+1 (s′)− V ?h+1(s′)

)
.

√
S
∑
s′ P (s′ | s, a)(V t−1

h+1 (s′)− V ?h+1(s′))2∆

N t−1(s, a)
+

HS∆

N t−1(s, a)

.

√
HS

∑
s′ P (s′ | s, a)(V t−1

h+1 (s′)− V ?h+1(s′))∆

N t−1(s, a)
+

HS∆

N t−1(s, a)

.
Es′∼P (s,a)[V

t−1
h+1 (s′)− V ?h+1(s′)]

H
+

H2S∆

N t−1(s, a)
+

HS∆

N t−1(s, a)
.

Here we use a Bernstein-type inequality to control the “product of differences” (P t−1−P ?)(V t−1−V ?) in terms of
the “variance,” and then we use the optimistic property of V t−1 to relate the variance to the “downstream error.”
The last step uses the AM-GM inequality to obtain a linear term in the overestimation at the next time.

Already we can see that the S factors appear in the “lower order” terms that have a 1/N t−1(s, a) rather than
the square root. On the other hand we have a 1/H factor of the downstream error. This ends up exponentiating
through the recursion:

E
dπ
t

h
[V t−1
h (s)− V ?h (s)] . (1 + 1/H)E

s′∼dπth+1

[
V t−1
h+1 (s′)− V ?h+1(s′)

]
+ error terms,

but fortunately (1 + 1/H)H ≤ e for all H. So this does not cause any significant issues.
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