
Lecture 6: Policy improvement methods

Akshay Krishnamurthy
akshay@cs.umass.edu

February 28, 2022

1 Introduction and Recap

Last lecture we introduce the Markov decision process and the key definitions. We spent most of the lecture
discussing the finite horizon episodic setting, since some of the main ideas are a bit easier to understand. At the
end we discussed the infinite horizon discounted setting and saw the value iteration algorithm for planning. Today
we will work primarily in the infinite horizon discounted setting and discuss policy optimization methods.

Recall that a discounted MDP is defined by (S,A, R, P, µ, γ) where S is the state space, A is the action space, R
is the reward function, P is the transition operator, µ is the initial state distribution, and γ is the discount factor.
Recall the Bellman equations for policy evaluation and optimality (we will work mostly with Q-functions):

Qπ(s, a) = r(s, a) + γEs′∼P (s,a),a′∼π(s′)Q
π(s′, a′) (1)

Q?(s, a) = r(s, a) + γEs′∼P (s,a) max
a′

Q?(s′, a′) = (T Q?)(s, a) (2)

Today we will discuss methods for computing the optimal policy based on policy improvement. These methods
are particularly nice because they involve directly optimizing the objective we care about, namely J(π), rather than
something more indirect, like finding a fixed point of the Bellman equations. They also have some limitations, which
we will discuss. However, perhaps because of this “directness,” they have been extremely successful in practice,
and play a central role in some of the state-of-the-art Deep RL methods.

Let us start with policy iteration and then turn to more “soft” approaches like policy gradient methods. Two
advantages of these methods are: (a) they can be applied when we only have sample access to the MDP and (b)
they can accommodate function approximation. In the next lecture we will discuss these issues in detail.

2 Policy iteration.

Just like in the finite horizon setting, we can also consider a policy iteration procedure. Here, we start with an

arbitrary policy π(0) and we repeat the iteration: (a) compute Q(t) = Qπ
(t)

(called policy evaluation), (b) update
π(t+1) = πQ(t) (called policy improvement). After T iterations, we simply output π(T+1). Note here that we
always use Q-functions that correspond to actual policies, which is a departure from value-iteration or dynamic
programming methods.

The key lemma for this algorithm also asserts that we make geometric progress toward Q?.

Lemma 1. We have that Qπ
(t+1) ≥ T Qπ(t) ≥ Qπ

(t)

where the inequalities hold pointwise. Additionally ‖Qπ(t+1) −
Q?‖∞ ≤ γ‖Qπ

(t) −Q?‖∞.

Proof. First, by examining the Bellman equations, it is easy to see that T Qπ(t) ≥ Qπ(t)

:

T Qπ
(t)

(s, a) = r(s, a) + γEs′∼P (s,a)

[
max
a′

Qπ
(t)

(s′, a′)
]
≥ r(s, a) + γEs′∼P (s,a),

a′∼π(t)(s′)

[
Qπ

(t)

(s′, a′)
]

= Qπ
(t)

(s, a).

Next we see that Qπ
(t+1) ≥ Qπ(t)

pointwise:

Qπ
(t)

(s, a) = r(s, a) + Es′∼P (s,a),

a′∼π(t)(s′)

[
Qπ

(t)

(s′, a′)
]
≤ r(s, a) + E s′∼P (s,a),

a′∼π(t+1)(s′)

[
Qπ

(t)

(s′, a′)
]
≤ Qπ

(t+1)

(s, a),

1

where the first inequality holds since π(t+1) is greedy with respect to Qπ
(t)

and the second inequality holds by

repeated application of the first inequality inside the expectation. Now we can show that Qπ
(t+1) ≥ T Qπ(t)

:

Qπ
(t+1)

(s, a) = r(s, a) + E s′∼P (s,a),

a′∼π(t+1)(s′)

[
Qπ

(t+1)

(s′, a′)
]
≥ r(s, a) + E s′∼P (s,a),

a′∼π(t+1)(s′)

[
Qπ

(t)

(s′, a′)
]

= T Qπ
(t)

where the first inequality uses the fact that Qπ
(t+1) ≥ Qπ

(t)

pointwise and the last inequality holds since π(t+1) is

greedy with respect to Qπ
(t)

. Finally

‖Q? −Qπ
(t+1)

‖∞ ≤ ‖Q? − T Qπ
(t)

‖∞ = ‖T Q? − T Qπ
(t)

‖∞ ≤ γ‖Q? −Qπ
(t)

‖∞

Recall the policy error lemma from the last lecture

Lemma 2 (Policy error lemma). For any Q-function f , we have J(π?) ≤ J(πf) + 2
1−γ ‖f −Q

?‖∞.

Proof. Consider state s and let a = πf (s) = argmaxa′ f(s, a′). Then

V ?(s)− V πf (s) = Q?(s, π?(s))−Q?(s, a) +Q?(s, a)−Qπf (s, a)

≤ Q?(s, π?(s))− f(s, π?(s)) + f(s, a)−Q?(s, a) +Q?(s, a)−Qπf (s, a)

≤ 2‖Q? − f‖∞ + γEs′∼P (s,a) [V ?(s′)− V πf (s′)] (3)

≤ 2‖Q? − f‖∞ + γ‖V ? − V πf ‖∞

Re-arranging this inequality actually proves a stronger statement, namely that V ? and V πf are close, which implies
that J(π?) and J(πf) are close. (If we examine the proof, note that we only care about errors on the distribution
induced by πf .)

Since π(T+1) is greedy w.r.t. Q(T), this lemma and the “contraction lemma” immediately gives the same
convergence guarantee as we obtained for value iteration, that is O(γT /(1− γ)) sub-optimality after T iterations.

Computational complexity. Observe that although the Bellman optimality equation is a non-linear fixed point,
the Bellman evaluation equation (for a fixed π) is actually linear. Indeed, suppose we define an SA × SA matrix
with entries, Pπ[(s, a), (s′, a′)] = P (s′ | s, a)π(a′ | s′) then we can write

~Qπ = ~r + γPπ ~Qπ ⇒ ~Qπ = (I − γPπ)−1~r.

Thus, each iteration of the algorithm takes poly(S,A) time, roughly the cost of inverting an SA× SA matrix.

3 Policy gradient methods

One concern with policy iteration methods is that π(t) and π(t+1) can be very different, which can lead to some
instabilities, especially when we introducing errors from sampling. In particular, if we look at (3) where we bound
the policy error, we actually care about Q? − f on the data distribution induced by πf . In the context of noiseless

policy iteration, f = Qπ
(T)

and πf = π(T+1) is the greedy policy with respect to this Q function. If we are sampling,

then f = Q̂π
(T)

will be an estimate of Qπ
(T)

, perhaps obtained by sampling trajectories according to π(T). But this
function may be a poor estimate outside of the states that π(T) visits frequently. So if π(T+1) visits those states,
our performance may be quite bad. Thus it is desirable to have algorithms that update less aggressively.

A natural approach is to parametrize the policies in some manner and directly apply standard continuous
optimization methods like gradient descent to the objective J(π).

2

Policy gradient methods. To apply gradient descent in the MDP setting, we first need to turn the problem
from a discrete optimization into a continuous one (Currently the problem is discrete since we know that the optimal
policy is deterministic). To do this, let us define a parametrized policy πθ with some vector valued parameter θ so
that πθ(· | s) ∈ ∆(A) prescribes a distribution over actions for each state. Some examples to keep in mind are:

Tabular parametrization: πθ(a | s) = θs,a, θ ∈ RS×A

Softmax parametrization: πθ(a | s) =
exp(θs,a)∑

a′∈A exp(θs,a′)
, θ ∈ RS×A

Softmax-linear: πθ(a | s) =
exp(〈θ, φ(s, a)〉)∑
a′∈A exp(〈θ, φ(s, a)〉)

, θ ∈ Rd.

In the last case, the feature map φ(s, a) is fixed and known.
Now we slightly change the optimization problem from maxπ J(π) to maxθ J(πθ), so we have a continuous

parametrization. From here we can simply do gradient ascent with a learning rate η: Starting with θ(0) initialized
arbitrarily, on the tth iteration we do the update

θ(t) ← θ(t−1) + η∇θJ(πθ(t−1))

A basic issue when instantiating this algorithm is that computing the gradient ∇θJ(πθ) could be quite challenging,
as we may have to differentiate through the dynamics of the MDP. Indeed J(πθ) is a complicated expectation with θ
influencing how we take every action along the trajectory. However, the next theorem, known as the policy gradient
theorem, reveals a very simple structure for this gradient.

To state the theorem, let us define two additional quantities. For any policy π, let dπ denote the discounted
state occupancy measure: dπ(s) = (1− γ)

∑∞
t=0 γ

t Pr(st = s | s0 ∼ µ, π) and let Aπ : S × A → R be the advantage
function given by Aπ(s, a) = Qπ(s, a)− V π(s).

Theorem 3 (Policy gradient theorem). We have the following expressions for ∇θJ(πθ):

Reinforce: ∇θJ(πθ) = E

[(∞∑
t=0

γtrt

)
·

(∞∑
t=0

∇θ log πθ(at | st)

)
| πθ

]
(4)

Q-version: ∇θJ(πθ) = E

[∞∑
t=0

γtQπθ (st, at) · ∇θ log πθ(at | st) | πθ

]
=

1

1− γ
E s∼dπθ
a∼πθ(·|s)

[Qπθ (s, a)∇θ log πθ(a | s)]

(5)

A-version: ∇θJ(πθ) =
1

1− γ
E s∼dπθ
a∼πθ(·|s)

[Aπθ (s, a)∇θ log πθ(a | s)] (6)

The expressions for ∇θJ(πθ) given by this theorem all are very convenient because they can be written as
expectations under πθ. This makes these gradients particularly suitable for estimation with samples, we can simply
collect many trajectories from πθ and obtain (nearly) unbiased estimates of the gradient. All that is required is
that we can take derivatives of the policy parametrization itself.

The A-version, in terms of the advantage function, is somewhat nice for building intuition. Note that the
advantage Aπθ (s, a) is positive if increasing the probability of taking action a relative to the distribution πθ(· | s)
(and keeping everything else fixed) leads to an improvement in value. Since ∇θ log πθ(a | s) is always non-negative
(since πθ(· | s) is a distribution), this expression shows that we increase the weight on actions that have positive
advantage, which intuitively should lead to a better policy.

Proof. The key technical insight is that ∇x log(f(x)) = 1/f(x) · ∇xf(x) and so:

∇θπθ(a | s) = πθ(a | s) · ∇θ log(πθ(a | s)),

which will allow us to preserve the distribution over which we are taking expectations.

3

Let us first prove (4). For a trajectory τ define R(τ) =
∑∞
t=0 γ

trt. Then:

∇θJ(πθ) =
∑
τ

R(τ)∇θP[τ | πθ]

=
∑
τ

R(τ)P[τ | πθ] · ∇θ log (P[τ | πθ])

=
∑
τ

R(τ)P[τ | πθ] · ∇θ log (µ(s0)πθ(a0 | s0)P (s1 | s0, a0)πθ(a1 | s1) . . .)

=
∑
τ

R(τ)P[τ | πθ] ·

(∞∑
t=0

∇θ log (πθ(at | st))

)
,

which, via the definition of R(τ), is precisely the REINFORCE expression for the policy gradient.
There are at least two ways to prove the Q-version in (5). One nice way is to start from the REINFORCE

version and group the terms as follows

∇θJ(πθ) = E

[∞∑
t=0

γtrt ·
∞∑
t=0

∇θ log πθ(at | st) | πθ

]
=

∞∑
t=0

E

∇θ log πθ(at | st) ·

t−1∑
t′=0

γt
′
rt′︸ ︷︷ ︸

past rewards

+

∞∑
t′=t

γt
′
rt′︸ ︷︷ ︸

future rewards

 | πθ
 .

For the first term, we will use that the rewards are in the past to show that the gradient is actually zero. For the
second term we will use that the rewards are in the future and the Markov property to give us the Q-function. Let
us look at the second term first. Fix index t

E

[
∇θ log(πθ(at | st))

∞∑
t′=t

γt
′
rt′ | πθ

]
= E

[
∇θ log(πθ(at | st)) · E

[∞∑
t′=t

γt
′
rt′ | st, at, π

]
| πθ

]

= E

[
γt∇θ log(πθ(at | st)) · E

[∞∑
t′=0

γt
′
rt′ | s0 = st, a0 = at, π

]
| πθ

]
= E

[
γtQπθ (st, at)∇θ log(πθ(at | st)) | πθ

]
.

Here the key point is that the sum of future rewards is independent of the gradient term, conditioned on st, at
which allows us to obtain the Q function.

Similarly for the “past” term, first observe that for any state st at time t we have

Ea∼πθ(·|st) [∇θ log πθ(a | st) | st] =
∑
a

πθ(a | st)∇θ log πθ(a | st) =
∑
a

∇θπθ(a | st) = ∇θ
∑
a

πθ(a | st) = 0.

Here the last step holds because πθ(· | st) is a distribution. Now

E

[
∇θ log(πθ(at | st))

t−1∑
t′=0

γt
′
rt′ | πθ

]
= E

[
t−1∑
t′=0

γt
′
rt′ · E [∇θ log πθ(at | st) | st, πθ] | πθ

]
= 0.

Combining the two steps establishes the second expression. (There is a different proof given in the RL theory
monograph which I encourage you to study.) The version in terms of the occupancy measure is a simple re-writing.

The advantage version can be derived using an argument similar to how we handled the “past” term above.
Indeed V πθ (st) is independent of at given st, so again we can see that the gradient term will be zero here.

Estimation from samples. One advantage of PG methods is that they are fairly easy to implement even when
we don’t know the MDP and only have sample access. Let us discuss one sampling scheme to obtain unbiased
estimates of ∇θJ(πθ) which will allow us to instead run stochastic gradient ascent. If we look a the Q-version in (5),
we would like to obtain unbiased estimates of Qπθ (s, a) for some (s, a) pair and we immediately run into the issue
that Qπθ (s, a) is an infinite sum of rewards. First we show how to avoid this with a truncation argument.

4

Fix (s, a) and some policy π. Collect a truncated trajectory τ starting from (s, a) and executing π, where at
each time step t we terminate with probability 1 − γ (after seeing the reward rt). This trajectory will be finitely
long with probability 1 and the expected length is O(1

1−γ). Let t? denote the time step that we terminate. We

estimate Q̂π(s, a) =
∑t?

t=0 rt as the undiscounted sum of rewards until the stopping time. Then

E
[
Q̂π(s, a)

]
= E

[
t?∑
t=0

rt | π, s0 = s, a0 = a

]
= E

[∞∑
T=0

1{t? = T}
T∑
t=0

rt | π, s0 = s, a0 = a

]

= E

[∞∑
t=0

rt1{t? ≥ t} | π, s0 = s, a0 = a

]
= E

[∞∑
t=0

γtrt | π, s0 = s, a0 = a

]

Now that we can get an unbiased estimate of the Q-function for any (s, a) pair, we can estimate the Q-version
of the policy gradient using the same trick. Roll-out a single trajectory starting from s0 ∼ µ and executing πθ and
truncating this trajectory at every time step with probability (1− γ). This gives us a sequence (s0, a0, . . . , st? , at?)
and by the same argument as above the undiscounted sum of Q-functions is unbiased for the policy gradient.

E

[
t?∑
t=0

Qπθ (st, at) · ∇θ log(πθ(at | st))

]
= ∇θJ(πθ)

So all we have to do is estimate the Q-functions along this trajectory, which we can do using a couple more roll-outs.
Actually using the same roll-out suffices, but it needs to be a bit longer so we can estimate Qπθ (st? , at?).

4 Natural policy gradient

By considering gradient ascent approaches, we open up the possibility of usin the entire optimization toolbox to
solve RL problems. One idea along this line is a related algorithm that takes a particularly clean form with the
softmax parametrization. We will study the convergence properties of this algorithm in detail in the next lecture
but for now let us explain the derivation.

A somewhat standard idea in optimization is what is called “preconditioning” where instead of performing the
standard gradient update θ(t+1) ← θ(t) + η∇f(θ(t)) on objective f , we multiply the gradient by some matrix to
induce a better geometry, that is θ(t+1) ← θ(t) + ηMt∇f(θ(t)). One perspective on this is that we allow different
step sizes in different directions, which can be good if the curvature of the objective function is very different (these
are the “adaptive gradient” methods). Also if we set Mt to be the inverse hessian (∇2f(θ(t)))−1 then we obtain
Newton’s method.

One choice for Mt that is often used when optimizing over probability models is derived from the Fisher infor-
mation matrix which results in the natural gradient method. For a general parametrized probability distribution
pθ(x) the Fisher information matrix is defined as I(θ) := Ex∼pθ(·)

[
(∇θ log pθ(x))(∇θ log pθ(x))>

]
. In the context of

policy gradient methods, we define

F (θ) := E s∼dπθ
a∼πθ(·|s)

[
(∇θ log πθ(a | s))(∇θ log πθ(a | s))>

]
Then, we perform the updates

θ(t+1) ← θ(t) + ηF (θ)†∇θJ(πθ(t))

While this update looks quite confusing, it takes a very clean form when working with the softmax parametrization
πθ(· | s) ∝ exp(θs,a). This is given in the following lemma.

Lemma 4. For the softmax parametrization the NPG update takes the form:

θ(t+1) ← θ(t) +
η

1− γ
A(t) + ηv, π(t+1)(a | s) ∝ π(t)(a | s) · exp(ηA(t)(s, a)/(1− γ))

Here v is a state-dependent offset (vs,a = cs for all a ∈ A) and ∝ denotes that π(t+1)(· | s) is a distribution.

5

This resembles a soft policy iteration, since rather than taking the greedy action (max), we are taking a softmax.
Note that the update does not depend on either the initial distribution µ or the distribution d(t) which is used in
the definition of the pre-conditioner. Note also how the policy update looks strikingly similar to the Exponential
Weights update we saw earlier in the course.

Proof. Let us fix an iteration t and drop the superscripts to simplify the notation. First, observe that, with the
softmax parametrization

∇θ log(πθ(a | s)) = es,a −
∑
a′

es,a′πθ(a
′ | s)

Recall that we already saw that Ea∼πθ(·|s) [∇θ log πθ(a | s)] = 0 (which is also easy to see from the above expression).
The update uses the Moore-Penrose pseudoinverse, which is the minimum norm w that is also a solution of

min
w
‖∇J(πθ)− F (θ)w‖22.

Using the A-version of the policy gradient theorem we have

∇J(πθ) =
1

1− γ
E s∼dπθ
a∼πθ(·|s)

[Aπθ (s, a) · ∇θ log πθ(a | s)] .

Let us expand the matrix-vector product involving the Fisher matrix:

F (θ)w = E s∼dπθ
a∼πθ(·|s)

[
(∇θ log πθ(a | s))(w>∇θ log πθ(a | s))

]
= E s∼dπθ

a∼πθ(·|s)

[
(∇θ log πθ(a | s))(ws,a − Ea′∼πθ(·|s)[ws,a′])

]
= E s∼dπθ

a∼πθ(·|s)
[ws,a∇θ log πθ(a | s)] ,

where in the first step we use the gradient computation above and at the end we use that the average gradient is
zero. Intuitively, now we can see that a valid solution for w is Aπθ/(1−γ), simply by comparing the two expression.
More formally, using the form of ∇θ log πθ(a | s) again, the (s, a)th component of both of these vectors is

[F (θ)w]s,a = dπθ (s)πθ(a | s)

(
ws,a −

∑
a′

ws,a′πθ(a
′ | s)

)
[∇θJ(πθ)]s,a = dπθ (s)πθ(a | s) (Aπθ (s, a)/(1− γ)) ,

where in the second line we are using that the expected (over actions) advantage is 0, i.e., Ea∼πθ(·|s)[A
πθ (s, a)] = 0.

Examining these expressions we can see that ws,a = Aπθ (s, a)/(1− γ) + vs where vs is some state-dependent offset.
This proves the first part and the second part is immediate since the state-dependent offset can be absorbed into
the normalization term.

6

	Introduction and Recap
	Policy iteration.
	Policy gradient methods
	Natural policy gradient

