
Lecture 4: Contextual Bandits

Akshay Krishnamurthy
akshay@cs.umass.edu

February 14, 2022

1 The contextual bandit problem

So far, we have studying the exploration-exploitation tradeoff in relatively simple bandit settings, where there is
little need for generalization. In particular we’ve focused on settings where there is a single reward function that
is fixed over time, which may not be a good model when we have a system that is interacting with many different
users or in many different scenarios. In this lecture, we’ll extend the protocol to model decision making in a variety
of scenarios, which will lead to the development of algorithms that can explore and generalize.

The protocol is known as contextual bandits. The main new feature is that on each round the learner observes
some “contextual information” which it may use to inform its choice of action. For most of the lecture, and in most
of the literature, the context will be an abstract object, which allows us to instantiate the protocol in many diverse
problems. For example, in recommendation settings, the context might be the user coming to our system as well
as a short list of items we may choose to display.

While there are many formulations with somewhat minor differences, a basic stochastic protocol is as follows.
There is an abstract context space X , action space A, a distribution D supported on X , and a reward function
R : X × A → ∆([0, 1]). Let us define f? := (x, a) 7→ Er∼R(x,a)[r] to be the mean reward function. The learning
process proceeds for T rounds where in round t:

1. Nature samples a context xt ∼ D and presents it to the learner.

2. Learner examines the context and uses it to choose an action at ∈ A.

3. Learner collects reward rt ∼ R(xt, at) which is also observed.

As usual we want the learner to accumulate a lot of reward, measured as
∑T
t=1 rt or

∑
t f

?(xt, at). To do this, we
will provide the learner with some function class so that we can incorporate inductive biases and generalize across
contexts. There are two different formulations for the function class.

• Policy class. Here we give the learner a class Π : X → A (or X → ∆(A)) that directly maps contexts to
actions. This class will have a best policy π? := argmaxπ∈Π Ex∼D[f?(x, π(x))] and we will measure regret
relative to this policy:

Regret(T,Π) =

T∑
t=1

f?(xt, π
?(xt))−

T∑
t=1

f?(xt, at).

Note that this policy class could be quite arbitrary and in this formulation we haven’t made any assumptions
about the distribution D or the reward function R. In particular π? may not actually get much reward. This
formulation is analogous to agnostic learning in the supervised/statistical setting.

• Value function class. Here we give the learner a class F : (X ×A)→ [0, 1] that can be used to score context-
action pairs. Any “value function” f induces a “greedy” policy πf : x 7→ argmaxa f(x, a) that takes the
highest scoring action. So from F we can derive a policy class ΠF := {πf : f ∈ F} and we can measure regret
relative to the best policy in ΠF .

1



Since it induces a policy class, the value function class provides more information to the learner, but it turns
out that this information is not so useful unless we make further assumptions. The most standard assumption
is realizability which is that that mean reward function f? is actually in the function class F (This is analogous
to our assumption that the rewards were linearly realizable in linear stochastic bandits). It is not hard to
show that πf? is the globally (unconstrained) optimal policy, and since f? ∈ F , we have πf? ∈ ΠF so we are
interested in competing with the globally optimal policy when we measure regret.

However, we are making a strong assumption. As you will see on the homework, this can be relaxed somewhat
and this model inspires the design of algorithms that work quite well in practice, where realizability is certainly
not going to hold.

Linear contextual bandits. A simple observation is that LinUCB can be used as is in the “value function class”
setting. Unlike the “large actions” version we saw last time, let us instead consider a featurization of context-action
pairs, that is φ : X × A → Rd. Then our function class is linear functions on top of this feature map, that is F =
{φ 7→ 〈θ, φ〉 : θ ∈ Rd, ‖θ‖2 ≤W} and we assume linear realizability. Then at each round t we receive xt and we have

a new feature set {φ(xt, a)}a∈A but we can still choose the UCB action argmaxa∈A

〈
θ̂, φ(xt, a)

〉
+ β‖φ(xt, a)‖Λ−1 .

Intuitively, even though the features are changing from round to round, we can transfer information between
rounds through our estimate (and confidence) on θ?. Almost exactly the same proof we saw for LinUCB will apply
in this setting and it will give a Õ(d

√
T ) regret bound.

Oracle efficiency and reductions. Beyond the linear approach, much of the literature on contextual bandits
has focused on what are known as oracle-efficient algorithms. I would say that this has also been the most successful
approach for designing practically useful algorithms.

Let’s start in the policy class variant of the problem. The key question that arises is how should we think about
designing a computationally efficient algorithm? In fact, a variant of EXP3 can work in the contextual bandit
setting and achieve O(

√
AT log |Π|) regret, but it requires maintaining and updating a weight for each policy, so

the running time is O(|Π|T ). The fact that the regret scales logarithmically with |Π| but the runtime is linear is
somewhat disappointing, because the running time prevents us from using a large function class.

The oracle-efficient approach is a way to avoid this by assuming (abstractly) that your function class is structured
in some way. In the policy class version, the standard oracle assumption is that the class Π supports efficient
optimization for “classification” problems. That is, given any dataset D = {(xi, ~ri)}ni=1 of full information context-
reward vectors, we can compute

argmax
π∈Π

n∑
i=1

ri(xi, π(xi))

This can be seen as a weighted classification problem. Even though there is little theory for this, we do solve such
problems fairly routinely in practice using highly non-linear function classes. So the oracle-efficient approach is a
modular way to compose optimization heuristics that work well in practice with exploration. It is important to
note that this is a purely computational assumption, since we could implement this oracle simply by enumerating
over the policy class. However it does provide a nontrivial restriction when designing algorithms.

In the value functions variant of the problem, it is more natural to assume that we can solve regression problems
over the function class F . Let us turn to one instantiation of this oracle.

2 Contextual bandits with regression oracles

Recently, Foster and Rakhlin developed a very clean reduction from contextual bandits to online regression. They
consider the value function version of the problem with function class F , and they assume access to an online
regression oracle SqAlg that operates in a full-information regression protocol. At each round t of this protocol: (1)
nature chooses an input zt = (xt, at) and an outcome yt, (2) the algorithm sees zt and makes a prediction ŷt ∈ R,

2



(3) algorithm observes yt and suffers loss (ŷt − yt)2. The oracle assumption is that for any sequence {(zt, yt)}Tt=1:

T∑
t=1

(ŷt − yt)2 −min
f∈F

T∑
t=1

(f(zt)− yt)2 ≤ RegSq(T ).

The algorithm can also be asked at any time for predictions on any z ∈ Z. You can think of this as freezing the
internal state of the algorithm passing it z, getting ŷ(z), but then not doing an update.

The online learning community has developed algorithms that typically get RegSq(T ) � log(T ). For example if
F is linear functions as in the LinUCB setting, there is an efficient algorithm that gets RegSq(T ) ≤ O(d log(T/d)).
However, it is important to note that this is not purely a computational assumption as we are also assuming that
the function class supports some online learning guarantee.

Using the online oracle, the algorithm proceeds as follows. Given a learning rate parameter γ at round t we
receive context xt and do the following:

1. For each action a get predictions ŷt,a := ŷt(xt, a) from SqAlg.

2. Let bt := argmaxa∈A ŷt,a

3. Set

pt(a) :=
1

A+ γ(ŷt,bt − ŷt,a)
, pt(bt) := 1−

∑
a6=bt

pt(a)

4. Sample at ∼ pt, observe rt ∼ R(xt, at) and pass (xt, at) with target rt to SqAlg.

This algorithm is called SquareCB. The action selection is based on a technique called “inverse gap weighting,”
or IGW. Here the gaps are the differences between our predictions, ŷt,bt − ŷt,a. The intuition for IGW is that if
action a has a large gap it should be played infrequently, since we expect it to be quite suboptimal. In particular
our predicted best action bt should be played quite frequently.

Alternatively, the probabilities are set to correspond to how much we’ll learn if we are wrong. If we predict
incorrectly that an action is very bad, then we will learn quite a lot when we play it. So we can afford to play it
somewhat infrequently, since when we do play it, we’ll immediately realize how wrong we were.

The guarantee for SquareCB is a reduction from contextual bandit regret to online square loss regret.

Theorem 1. Setting γ =
√
AT/(RegSq(T ) + log(2/δ)), SquareCB guarantees (with probability ≥ 1− δ):

T∑
t=1

f?(xt, π
?(xt))− f?(xt, at) ≤ 4

√
AT · RegSq(T ) + 8

√
AT log(2/δ).

Proof. The first claim is that the following two inequalities hold with probability at least 1− δ
T∑
t=1

f?(xt, π
?(xt))− f?(xt, at) ≤

∑
t

∑
a

pt(a) [f?(xt, π
?(xt))− f?(xt, at)] +

√
2T log(2/δ),∑

t

∑
a

pt(a)(ŷt(xt, a)− f?(xt, a))2 ≤ 2RegSq(T ) + 16 log(2/δ). (1)

The first of these is by a concentration argument (Azuma-Hoeffding). The second also uses concentration, but
additionally that with realizability, for any t, taking expectation over just the random action at and any randomness
in the reward, we have

Ea∼pt,rt(xt,a)

[
(ŷt(xt, a)− rt(xt, a)2 − (f?(xt, a)− rt(xt, a))2

]
=
∑
a

pt(a)Ert(xt,a)

[
ŷt(xt, a)2 − f?(xt, a)2 − 2rt(xt, a)(ŷt(xt, a)− f?(xt, a))

]
=
∑
a

pt(a)(ŷt(xt, a)− f?(xt, a))2.

3



So the left hand side of (1) is the (conditional) expectation of the square loss regret. Intuitively one should
concentrate to the other, but the fact that we don’t have a

√
T on the deviation term is important. In Appendix A,

we will see why this is true.
Now, by adding and subtracting we have

T∑
t=1

f?(xt, π
?(xt))− f?(xt, at) ≤

T∑
t=1

∑
a

pt(a)
[
(f?(xt, π

?(xt))− f?(xt, a))− γ

4
(ŷt(xt, a)− f?(xt, a))2

]
+
γ

2
RegSq(T ) + 4γ log(2/δ) +

√
2T log(2/δ)

The theorem follows by using the next lemma to bound the first term by 2AT/γ and then by our choice of γ.

Lemma 2. For any y ∈ [0, 1]A, the distribution p ensures that for any f?

Ea∼p[max
a?

f?(a?)− f?(a)]− γ

4
Ea∼p(y(a)− f?(a))2 ≤ 2A

γ

Proof. The basic idea is to add and subtract many terms and then handle each part on its own. Consider some f?

and let a? = argmaxa f
?(a). Recall that b = argmaxa y(a). Then, looking at the “CB regret” term

∑
a

p(a)(f?(a?)− f?(a)) =
∑
a6=a?

p(a)

(f?(a?)− y(a?))︸ ︷︷ ︸
=:T1

+ (y(a?)− y(b))︸ ︷︷ ︸
=:T2

+ (y(b)− y(a))︸ ︷︷ ︸
=:T3

+ (y(a)− f?(a))︸ ︷︷ ︸
=:T4


We bound T1 and T4 using the AM-GM inequality, which will lead to some cancellation with the square loss term.
We will bound T3 using the definition of p. For T4 we will combine it with a remainder term in T1 and use the
definition of p to get the bound.

Recall that AM-GM can be used in the following way: x = 2 ·
√

1/η · x
√
η/4 ≤ 1

η + ηx2/4.
Bound on T4. Using AM-GM we get∑

a 6=a?
p(a)(y(a)− f?(a)) ≤ (1− p(a?))

γ
+
γ

4

∑
a 6=a?

p(a)(y(a)− f?(a))2.

We will drop p(a?) in the first term and the second term cancels with things in the square loss term on the LHS.
Bound on T1. Using AM-GM here, we get

(1− p(a?))(f?(a?)− y(a?)) ≤ (1− p(a?))2

p(a?)γ
+
γ

4
p(a?)(f?(a?)− y(a?))2

Again we’ll drop the numerator on the first term and the second cancels what is left of the square loss term on the
LHS. The challenge is that we have p(a?) in the denominator so we need to argue that p(a?) is not too small.

Bound on T2 using residual from T1. Combining T3 and the remaining term from the T1 bound, we have

(1− p(a?))(y(a?)− y(b)) +
1

p(a?)γ
≤ (y(a?)− y(b)) +

1

p(a?)γ

For this consider two cases. First if a? = b then we claim that p(b) = p(a?) ≥ 1/A, since ∀a 6= b : p(a) =
1

A+γ(y(b)−y(a)) ≤ 1/A. In this case this quantity is at most A/γ. In the second case, if a? 6= b then

y(a?)− y(b) +
1

p(a?)γ
= y(a?)− y(b) +

A+ γ(y(b)− y(a?))

γ
=
A

γ

Bound on T3 using the allocation rule. Using the definition of p(a) we get∑
a6=a?

p(a)(y(b)− y(a)) =
∑
a 6=a?

1

A+ γ(y(b)− y(a))
· (y(b)− y(a)) ≤ A− 1

γ
.

Combining everything proves the result.

4



3 Contextual bandits with classification oracles

There is also a line of work on developing contextual bandit algorithms using the policy optimization oracle. The
simplest of these is the ε-greedy strategy, which you may have heard of before. The idea for this algorithm is that we
choose an exploration parameter ε and at each round, with probability ε we choose an action uniformly at random
and with the remaining probability we act according to the empirically best policy so far. This algorithm is quite
simple and, even though it achieves a suboptimal regret bound, it works quite well in practice for contextual bandit
settings.

A rough approximation to this, which has a similar guarantee but more straightforward proof, is the “explore-
first” algorithm. Here we pick a budget N ≤ T of exploration rounds and we act randomly for the first N rounds.
Then we call the policy optimization oracle once to get a policy π̂ which we use for the remaining T −N rounds.

Roughly the regret analysis is as follows. If we collect N exploration samples, we will have N/A samples for
each action so we will be able to prove that

max
π∈Π

Ex[R(x, π(x))]− Ex[R(x, π̂(x))] .

√
A log(|Π|/δ)

N
.

Then,

Regret(T ) . N + (T −N)

√
A log(|Π|/δ)

N
. N + T

√
A log(|Π|/δ)

N
≤ O(T 2/3(A log(|Π|/δ))1/3),

if we choose N � T 2/3(A log |Π|)1/3. ε-greedy, which does not front-load all of the exploration, can also be shown
to achieve a regret bound scaling as T 2/3. Unfortunately this is suboptimal, since

√
AT log |Π| is the optimal rate

(and SquareCB achieves this optimal rate, with realizability).
It is possible to get this optimal regret rate using classification oracle-based algorithms, but (a) the analysis is

quite complicated, and (b) SquareCB tends to outperform these methods in practice. As such, we will not discuss
these methods in the course.

A Fast rates for square loss

To understand why the deviation term in (1) scales as log(1/δ) rather than
√
T log(1/δ), let us take a step back

and consider the offline regression setting. Here we have a function class F : Z → [0, 1], a distribution D ∈ ∆(Z),
and a reward function R : Z → ∆([0, 1]) such that f? : z 7→ E[r | z] is in our function class F . Given dataset
{(zi, ri)}ni=1 we solve the square loss empirical risk minimization problem:

f̂ ← argmin
f∈F

1

n

n∑
i=1

(f(zi)− ri)2

︸ ︷︷ ︸
=:Rn(f)

The square loss is nice because it has a convexity or self-bounding property, which enables faster rates of convergence.
Indeed, we can prove the following.

Proposition 3. With probability at least 1− δ we have

E[(f̂(z)− f?(z))2] ≤ 12 log(2|F|/δ)
n

.

Proof. We will use Bernstein’s inequality (which you saw in the homework) and a union bound. Recall that
Bernstein’s inequality states that, with probability 1− δ

X̄n − µ ≤
√

2σ2 log(1/δ)

n
+

2M log(1/δ)

n
,

5



where X̄n = 1
n

∑
iXi is an average of n iid random variables with mean µ, variance σ2 and range M . In our case,

we will apply this inequality to the random variable (f(zi)− ri)2 − (f?(zi)− ri)2. We need to calculate/bound the
mean, variance, and range. One crucial observation is that our random variable is a difference of squares.

µ(f) := E
[
(f(zi)− ri)2 − (f?(zi)− ri)2

]
= E

[
f(zi)

2 − f?(zi)2 − 2ri(f(zi)− f?(zi))
]

= E
[
f(zi)

2 − f?(zi)2 − 2f?(zi)(f(zi)− f?(zi))
]

= E
[
(f(z)− f?(z))2

]
σ2(f) := Var

[
(f(zi)− ri)2 − (f?(zi)− ri)2

]
≤ E

[(
(f(zi)− ri)2 − (f?(zi)− ri)2

)2]
= E

[
((f(zi)− f?(zi))(f(zi) + f?(zi)− 2ri))

2
]

≤ 4E
[
(f(z)− f?(z))2

]
= 4µ(f).

It is easily seen that since rewards and predictions are in [0, 1] the random variable is in [−1, 1], so we can take
M = 1. Here observe that we have σ2(f) ≤ 4µ(f), which is referred to as self-bounding. This is one property that
allows us to obtain 1/n rates.

Now, Bernstein’s inequality and a union bound reveals that, with probability 1− δ:

∀f ∈ F : |Rn(f)−Rn(f?)− µ(f)| ≤
√

8µ(f) log(2|F|/δ)
n

+
2 log(2|F|/δ)

n
≤ 1

2
µ(f) +

6 log(2|F|/δ)
n

,

where the second inequality is by AM-GM (just like we saw previously). From here, we can deduce two things by
re-arranging.

∀f ∈ F : R̂n(f)−Rn(f?) ≤ 3

2
E
[
(f(z)− f?(z))2

]
+

6 log(2|F|/δ)
n

,

E
[
(f̂(z)− f?(z))2

]
≤ 2

(
R̂n(f̂)−Rn(f?)

)
+

12 log(2|F|/δ)
n

≤ 12 log(2|F|/δ)
n

.

To prove (1), we use roughly the same argument, with two modifications: (1) we need a martingale version since
the random variables are not iid, and (2) we don’t need to use a union bound over |F|. Here the random variable
in consideration is

(ŷt(xt, at)− rt)2 − (f?(xt, at)− rt)2.

Conditioning on everything before round t the expectation of this r.v. is µt :=
∑
a pt(a)(ŷt(xt, a) − f?(xt, a))2

(we saw this calculation previously), we can similarly show that the conditional variance σ2
t ≤ 4µt, and the range

is 1. So the martingale version of Bernstein’s inequality, which is called Freedman’s inequality shows that with
probability at least 1− δ:

∑
t

µt − (ŷt(xt, at)− rt)2 − (f?(xt, at)− rt)2 ≤
√

8
∑
t

µt log(1/δ) + 2 log(1/δ) ≤ 1

2

∑
t

µt + 6 log(1/δ)

Re-arranging this inequality gives∑
t

∑
a

pt,a(ŷt,a − f?(xt, a))2 =
∑
t

µt ≤ 2
∑
t

(ŷt(xt, at)− rt)2 − (f?(xt, at)− rt)2 + 12 log(1/δ)

≤ 2RegSq(T ) + 12 log(1/δ).

6


	The contextual bandit problem
	Contextual bandits with regression oracles
	Contextual bandits with classification oracles
	Fast rates for square loss

