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1 Introduction

Recap on online learning. In the last lecture, we introduce the online learning protocol and saw some algorithms
for making sequential predictions. We concluded the lecture by discussing the multi-armed bandit problem as
a simple framework for developing algorithms that can explore. We saw the EXP3 algorithm, which balances
exploration and exploitation to achieve O(

√
AT logA) regret in the adversarial setting.

Note that the bandit protocol we studied does not require generalization anymore. Indeed in our formulation,
there are no features whatsoever and, while features could be introduced, we are competing with the best fixed
action rather than best “feature-dependent” policy. So we should think of algorithms like Exp3 as exhibiting just
the exploration capability. (There are extensions that can handle generalization but we may not discuss them.)

To work our way towards algorithms that can generalize and explore, today we will first study the stochastic
multi-armed bandit protocol, which is a simpler setting than we saw last time, so it still doesn’t require generalization.
Here we will develop some statistical algorithms that showcase the algorithmic principle of optimism and some new
tools for incorporating the generalization capability.

2 Stochastic Multi-armed bandits

Optimism in the face of uncertainty provides an intuitive way to think about exploration. The idea is that, if we don’t
know everything about the environment, we should hope that it is most favorable to us and act accordingly. We will
introduce this idea in the reward-formulation of multi-armed bandits. Working with rewards is not fundamentally
different from the loss formulation, but somewhat more in line with the reinforcement learning literature.

The stochastic multi-armed bandit setting follows the same protocol as we saw in the last lecture, except
that each arm a is associated with a distribution ν(a) and in each round the rewards are generated by sampling
rt(a) ∼ ν(a). We write µ(a) = E[r(a)] to be the mean and let us continue to assume that rt(a) ∈ [0, 1]. (Note that
this is a special case of the previous setup, after translating losses to rewards.)

Since the rewards are stochastic it is natural to try to estimate their means µ(a). The optimism principle is
that: by a concentration argument we can be confident that each true mean µ(a) is sandwiched in the interval
µ̂(a) ± conf(a) for some carefully defined notion of conf. Acting optimistically means choosing the action that
maximizes argmaxa µ̂(a) + conf(a). Assuming our confidence intervals are correct, this is the best reward we could
hope to achieve. See Figure 2 for an illustration.

The upper confidence bound algorithm, or UCB, implements exactly this strategy. Let Nt(a) =
∑t
τ=1 1{aτ = a}

denote the number of times we have pulled arm a up to and including round t. Then we can define

µ̂t(a) =
1

Nt(a)

t∑
τ=1

rt(a)1{at = a}, conft(a) =

√
log(2AT/δ)

Nt(a)
,

where δ ∈ (0, 1) is our failure probability parameter. The choice of conf arises from a concentration and union
bounding argument. Then, after pulling each arm once, we set

at = argmax
a

µ̂t−1(a) + conft−1(a).
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Figure 1: An illustration of the UCB algorithm, showing how every time we play a suboptimal action we acquire
information. In the round on the left, arm a is the UCB but it is suboptimal. It will be chosen and the corresponding
confidence interval will shrink substantially. In this case the optimal arm a? becomes the UCB afterwards.

To understand why this algorithm might work well it is helpful to consider two cases. First, if the arm that we
play is optimal, meaning at = a?, then we incur no regret. The other case is when at 6= a?. If this happens, the
confidence interval for at must be quite large, because the true mean µ(at) is in the confidence interval and this
value is smaller that µ(a?). Thus, when we play at, even though we incur some regret, we will shrink the confidence
interval for at substantially. Intuitively, every time we incur regret, we learn a lot about the unknown means.

The next theorem formalizes this intuition and provides a regret bound for the UCB algorithm.

Theorem 1. UCB ensures that, with probability ≥ 1− δ: maxa Tµ(a)−
∑
t µ(at) ≤ O

(√
AT log(AT/δ)

)
.

Proof. First, by a union bound and a (slightly subtle) concentration argument, we have with probability 1− δ:

∀t ∈ [T ], a ∈ [A] : |µ̂t(a)− µ(a)| ≤ conft(a).

Assuming this holds, we use the optimistic regret decomposition. Let a? = argmaxa µ(a). Then for t > A:

µ(a?)− µ(at) = µ(a?)− µ̂t−1(a?) + µ̂t−1(a?)− µ̂t−1(at) + µ̂t−1(at)− µ(at)

≤ conft−1(a?) + µ̂t−1(a?)− µ̂t−1(at) + conft−1(at)

≤ 2 · conft−1(at)

where the second step uses the confidence bound and the last step uses the selection rule. Thus, the regret is

∑
t

(µ(a?)− µ(at)) ≤ A+ 2

T∑
t=A+1

conft−1(at) ≤ A+ 2
√

log(2AT/δ) ·
T∑

t=A+1

√
1

Nt−1(at)

To bound this last sum, we need to use the fact that Nt(at) ≥ 1 (since we pull each arm once to start) and
Nt(at) = Nt−1(at) + 1 so that all the counts are increasing. Then

T∑
t=A+1

√
1

Nt−1(at)
=
∑
a

NT (a)∑
j=1

√
1

j
≤ 2

∑
a

√
NT (a) ≤ 2

√
AT

This second to last inequality follows from the bound
∑n
i=1 1/

√
i ≤ 2

√
n which can be proven by induction, while

the last inequality uses Cauchy-Schwarz. Essentially, the worst case allocation is uniform over all the arms.

Note that optimism plays a critical role in the proof, by allowing us to (roughly speaking) replace the conf(a?)
term with a second conf(at) term. This is crucial because conf(a?) will not necessarily shrink in each round, but
conf(at) certainly will. The fact that the regret is bounded by our own confidence interval also formalizes the
intuition that when we incur regret, we must learn a lot.

While we will not cover this in the course, we note that one can obtain stronger guarantees, known as instance-
dependent or gap-dependent bounds for the UCB strategy.

3 Stochastic linear bandits

Since the UCB strategy seems quite flexible, it is a natural algorithm to try in many other exploration settings.
Here we will consider a setting that does requires some amount of generalization, known as linear bandits.
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The protocol is the same as in stochastic multi-armed bandits, except we will consider a large, potentially
infinite, set of actions A where each action a is associated with a feature vector φ(a) ∈ Rd. Instead of parametrizing
the reward distribution for each action separately, we assume there is a single vector θ? ∈ Rd such that

∀a ∈ A : r(a) ∼ N (〈φ(a), θ?〉 , σ2).

In particular, we have E[r(a)] = 〈φ(a), θ?〉 which is known as linear realizability. Note that different noise distribu-
tions can be considered, but Gaussian noise is easy to work with while retaining all of the main ideas.

In some sense this is a special case of the stochastic MAB protocol, so we can simply run UCB while ignoring all
of the linear structure. This will achieve

√
|A|T log(|A|) regret, which could be quite bad if the number of actions

is large. The hope in linear bandits is to exploit the additional structure to replace all instances of |A| with the
feature dimension d. Indeed we will see how to achieve O(d

√
T log(d)) regret, which allows us to scale to large

action spaces and captures some notion of generalization.
Since we are in a stochastic setting we can try to instantiate a UCB strategy. We need to answer two questions:

(1) How do we do estimation? (2) How do we construct the confidence intervals? The answer to both of these
questions will come from basic properties of linear regression.

Intuition from linear regression. Since we have linear structure, the most natural estimator is via linear
regression. To build intuition, it is helpful to review the analysis of “fixed design” linear regression. Suppose we
have a dataset {(φi, ri)}ni=1 of feature vectors and their associated rewards where φi ∈ Rd and ri ∼ N (〈φi, θ?〉 , σ2).

Then we can form an estimate θ̂ by solving the following problem:

θ̂ ← argmin
θ∈Rd

n∑
i=1

(〈φi, θ〉 − ri)2
, θ̂ = (Φ>Φ)−1Φ>R,

where we have written the estimator in a closed form using the matrix notation: Φ ∈ Rn×d has rows corresponding
to the feature vectors and R ∈ Rn has the rewards. (For now let us assume that n ≥ d and Φ>Φ is invertible.)

By realizability, we can write R = Φθ? + Z where Z ∈ Rn is a vector of N (0, σ2) entries. Therefore

θ̂ − θ? = (Φ>Φ)−1Φ>Φθ? + (Φ>Φ)−1Φ>Z − θ? = (Φ>Φ)−1Φ>Z.

The cleanest way to control the last term is to express the error in a certain norm induced by the features. For a
positive definite matrix M let ‖x‖2M = x>Mx be the Mahalanobis norm. Then taking expectation over the noise
vector Z gives:

EZ∼N (0,σ2)

[
‖θ̂ − θ?‖2Φ>Φ

]
= EZ∼N (0,σ2)

[
‖(Φ>Φ)−1Φ>Z‖2Φ>Φ

]
= EZ∼N (0,σ2)[Z

>Φ(Φ>Φ)−1Φ>Z] = σ2d (1)

The last step here follows from the fact that we are projecting an n-dimensional gaussian vector onto a d dimensional
subspace. Formally, by trace rotation E[Z>MZ] = E tr(MZZ>) = σ2 tr(M). Finally, by the Cauchy-Schwarz
inequality for any feature φ

EZ∼N (0,σ2)

[〈
φ, θ̂ − θ?

〉]
≤ EZ∼N (0,σ2)

[
‖φ‖(Φ>Φ)−1‖θ̂ − θ?‖Φ>Φ

]
≤ ‖φ‖(Φ>Φ)−1

√
σ2d. (2)

As we can see, the matrix Φ>Φ =
∑n
i=1 φiφ

>
i , which is the covariance matrix of the features plays a critical

role in the convergence of linear regression. The norm ‖ · ‖Φ>Φ is sometimes called the data norm and it measure
how much “signal” we have in each direction. For example, if the features are the standard basis elements ei, it is
natural to expect that we have a better estimate of θ?i for coordinates i that we have seen many times.

LinUCB. Although we cannot use exactly the above analysis, the intuition is very helpful when designing the
algorithm. To avoid the requirement that the covariance matrix is invertible, we will use a regularized version of
linear regression to form an estimate θ̂t at round t. Then we will use the data norm to form our confidence interval
and the UCBs will be based on the inverse data norm, drawing inspiration from Eq. (2).
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At round t we have data {(φ(ai), ri)}t−1
i=1 and we solve the ridge regression problem

θ̂t ← argmin
θ

t−1∑
i=1

(〈φ(ai), θ〉 − ri)2 + λ‖θ‖22, θ̂t = Σ−1
t

t−1∑
τ=1

φ(aτ )rτ ,

where Σt = λI +
∑t−1
i=1 φ(ai)φ(ai)

> is the “regularized” feature covariance at time t. The confidence interval is:

Ballt =
{
θ : ‖θ − θ̂t‖Σt

≤ β
}
,

where we will set β roughly like σ2d. Then, the UCB strategy is

at = argmax
a∈A

max
θ∈Ballt

〈φ(a), θ〉 .

A similar strategy defines the confidence bound as conft(a) =
√
β‖φ(a)‖Σ−1

t
and maximizes

〈
φ(a), θ̂t

〉
+ conft(a).

For this algorithm we can prove the following theorem. Many variations of this result are possible.

Theorem 2. Suppose that ‖θ?‖ ≤W and ∀a ∈ A : |〈φ(a), θ?〉| ≤ 1, ‖φ(a)‖ ≤ B. Set

λ = σ2/W 2, β = σ2

(
2 + 4d log

(
1 +

TB2W 2

d

)
+ 8 log(4/δ)

)
.

Then, there is a universal constant C > 0 such that, with probability at least 1− δ we have:

T ·max
a∈A
〈φ(a), θ?〉 −

∑
t

〈φ(at), θ
?〉 ≤ Cσ

√
T

(
d log

(
1 +

TB2W 2

dσ2

)
+ log(4/δ)

)
.

Proof. The first claim is that with probability at least 1− δ we have

∀t ∈ [T ] : θ? ∈ Ballt.

We will not prove this claim here as it is quite technical, but you may refer to Chapter 6.3 of the RL theory
monograph for a detailed proof. However, the choice of β scaling as dσ2 should be somewhat predictable based on
Eq. (1) while a dependence on log(T ) and log(1/δ) arise from a union bound over time.

Assuming the above is true, we can proceed with the optimistic regret decomposition. At round t we have

〈φ(a?), θ?〉 − 〈φ(at), θ
?〉 ≤ max

θ∈Ballt
〈φ(a?), θ〉 − 〈φ(at), θ

?〉

≤ max
θ∈Ballt

〈φ(at), θ〉 − 〈φ(at), θ
?〉

= max
θ∈Ballt

〈
φ(at), θ − θ̂t

〉
−
〈
φ(at), θ

? − θ̂t
〉

≤ 2
√
β · ‖φ(at)‖Σ−1

t

The first inequality uses that θ? ∈ Ballt, while the second uses that at is the UCB action so it maximizes the
“index” maxθ∈Ballt 〈φ(a), θ〉. In the last step we use Cauchy-Schwarz just as we did to obtain Eq. (2). Actually
since we assumed that mean rewards are in [−1, 1] the per-round regret is at most 2, which is another bound we
can use for free.

Thus, we can bound the cumulative regret by

∑
t

〈φ(a?), θ?〉 − 〈φ(at), θ
?〉 ≤ 2

√
β
∑
t

min
(

1, ‖φ(at)‖Σ−1
t

)
≤ 2
√
βT

√√√√ T∑
t=1

min
(

1, ‖φ(at)‖2Σ−1
t

)
(3)

This is essentially the same argument we did for the few-actions case, except we have a different notion of confidence.
For intuition, you can think of ‖φ(at)‖Σ−1

t
as analogous

√
1/Nt(a) which we saw in the previous proof.

To finish the proof we need a more intricate potential function argument.
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Lemma 3 (Elliptical potential lemma). Let x1, . . . , xT be a sequence of vectors with ‖xt‖2 ≤ B and define Σ1 = λI,
Σt+1 = Σt + xtx

>
t . Then

T∑
t=1

min(1, x>t Σ−1
t xt) ≤ d log

(
1 +

TB2

dλ

)
Proof. First we claim that min(1, x>t Σ−1

t xt) ≤ 2x>t Σ−1
t+1xt, where we have shifted the index on the covariance matrix

by one. The key here is to use the Sherman-Morrison-Woodbury formula for rank-one updates to a matrix inverse:

x>t Σ−1
t+1xt = x>t (Σt + xtx

>
t )−1xt = x>t

(
Σ−1
t −

Σ−1
t xtx

>
t Σ−1

t

1 + ‖xt‖2Σ−1
t

)
xt

= ‖xt‖2Σ−1
t
−
‖xt‖4Σ−1

t

1 + ‖xt‖2Σ−1
t

=
‖xt‖2Σ−1

t

1 + ‖xt‖2Σ−1
t

Now let us consider two cases. If x>t Σ−1
t xt ≤ 1, then we can lower bound the RHS by ‖xt‖2Σ−1

t

/2 immediately. If

x>t Σ−1
t xt ≥ 1 then observe that the RHS is directly at least 1/2 since z

1+z is increasing in x.

Next, the concavity of the log-determinant function means that log det(Σt) ≤ log det Σt+1 +tr(Σ−1
t+1(Σt−Σt+1))

by a first-order Taylor approximation. This gives us a telescoping sum

T∑
t=1

min(1, x>t Σ−1
t xt) ≤

T∑
t=1

x>t Σ−1
t+1xt =

T∑
t=1

tr(Σ−1
t+1(Σt+1 − Σt)) ≤

T∑
t=1

log det Σt − log det Σt−1 = log

(
det ΣT+1

det Σ1

)
This last term can be bounded using the norm bound on xt. Observe that we must bound det(I + 1

λ

∑
t xtx

>
t ).

On one hand, we have tr(λ−1
∑
t xtx

>
t ) = λ−1

∑
t ‖xt‖22 ≤ B2T/λ, so the sum of the eigenvalues is at most B2T/λ.

Then by applying the AM-GM inequality to the eigenvalues (σ1, . . . , σd) of the matrix λ−1
∑
t xtx

>
t , we have

log det

(
1 +

1

λ

∑
t

xtx
>
t

)
= d log

(
d∏
i=1

(1 + σi)

)1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi)

)
≤ d log

(
1 +

TB2

dλ

)
Using Lemma 3 in Eq. (3) proves the theorem.

There are many variations on the stochastic linear bandit problem for which algorithms like LinUCB can achieve
poly(d)

√
T regret bounds. One example is the “linear contextual bandit” problem where the feature vectors change

from round to round, perhaps as different users come to the system, but linear realizability continues to hold. In
this case we will learn to compete with the best policy, which chooses the best action for each user and is therefore
able to generalize across users.
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