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In the last lecture, we developed structural conditions that permit statistically efficient reinforcement learning
with nonlinear function approximation. The basic condition is that the way that the function class interacts with
the MDP dynamics admits some “bilinear structure.” More specifically we saw the notion of the Bellman rank,
where the average Bellman errors admit a factorization as:

Eh(π, f) := E sh∼dπh
ah∼πf (sh)

[(f − T f)(sh, ah)] = 〈wh(π), vh(f)〉 ,

where wh : Π→ Rd and vh : F → Rd are d-dimensional embeddings associated with the policies and value functions.
The Bellman rank of the problem is the dimensionality of this embedding.

We also briefly discussed many models that admit low Bellman rank. Two illustrative examples that highlight
the two distinct aspects of the decomposition are the linear Bellman complete setting and the block MDP setting.
The former admits low Bellman rank simply because (f − T f) is a linear function. On the other hand, the latter
admits low Bellman rank because dπh can be embedded into a low-dimensional space, capturing a “bottleneck”
structure in the dynamics.

Finally, our proof that problems with bilinear structure are statistically tractable was actually constructive. We
developed an algorithm and showed that this algorithm has sample complexity scaling polynomially with all of the
relevant quantities. Thus it can addresses all three of the challenges we have been focusing on in the course.

The main downside is that this algorithm is not computationally efficient in any sense; it should be thought of
as the analog of exponential weights for contextual bandits (recall that this algorithm achieves the optimal regret
guarantee for contextual bandits, but requires enumerating over the policy class). Continuing with this analogy, in
contextual bandits we saw that we can address computation and statistics simultaneously through the framework of
oracle efficient methods, of which SquareCB is a notable example. Thus, we can ask how to develop oracle efficient
algorithms for Bilinear classes if at all possible, or, more narrowly, for interesting subclasses. While this is still
relatively immature as a research program, there have been some interesting ideas and connections to the Deep RL
literature, which we will cover today.

1 Basic framework: representation learning

So far, we don’t have an efficient algorithm that works for general Bilinear classes, and we believe that this is not
possible. But we can make some progress in some models and perhaps the most interesting models are the ones
with bottleneck structure like the block and low rank MDPs. For these problems, the basic approach for developing
algorithms is through representation learning, where we construct an auxiliary supervision signal that reveals some
useful aspect of the bottleneck structure. The auxiliary supervision is used to learn a concise representation of the
dynamics and this representation is used to form exploration bonuses that allows us to plan to acquire new infor-
mation. Typically representation learning, exploration bonus construction, and planning to explore, are interleaved
until no more information can be acquired. At this point reward maximization is usually quite straightforward.

Block MDP formulation. To fix the ideas of how representation learning might work, consider the block
MDP model. We’ll change the notation a bit to align with the literature. The block MDP is defined by a tuple
(X ,Z,A, P,R) with horizon H. Here X is the observation space, Z is the latent state space, and A is the action
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space. Both Z and A are finite. Each observation x ∈ X is associated with a unique latent state z ∈ Z and we
use φ? : X → Z to denote this mapping. The dynamics P : X × A → ∆(X ) can be expressed in terms of a latent
transition operator PZ : Z ×A → ∆(Z) and an emission distribution PX : Z → ∆(X ) as

P (x′ | x, a) =
∑
z

PX(x′ | z) · PZ(z | φ?(x), a)

In other words, the transition operates by first “decoding” the current latent state φ?(x), then transitioning to
a new latent state, and finally emitting an observation. We often also assume that the reward function R only
depends on the latent state.

In this setup, φ? can be thought of as a “planted” representation that concisely describes the MDP dynamics.
Specifically, if we know φ? then, we could ignore the observations completely and instead work with the latent states,
which reduces the problem to a tabular MDP. So for representation learning, one idea is to consider a function class
Φ : X → Z of candidate decoders/representations and assume realizability of the ground-truth representation, that
is φ? ∈ Φ. We hope to explore and find a near optimal policy with sample complexity scaling as log |Φ|.

We should point out that this setting admits low Bellman rank if you use Φ to define the Q-function class.
Consider the class defined as all “lookup tables” on top of all candidate decoders:

F := {fM,φ : (x, a) 7→M(φ?(x), a) : φ ∈ Φ,M : Z ×A → [0, H]} .

This function class has statistical complexity scaling as |Z||A|+ log |Φ|, and contains ~Q? as long as φ? ∈ Φ. As we
saw previously, the Block MDP has Bellman rank |Z| for any function class, and so this representation learning
formulation is statistically tractable. The question is how to develop computationally efficient methods.

Forward algorithm. In this setup, one scheme we can consider is a forward-algorithm that operates one step at
a time. In the hth iteration, we do three things:

1. collect some data and learn a representation φ̂h for layer h;

2. define reward functions of the form R̂h,z(xh) := 1{φ̂h(xh) = z};

3. plan to find policies π̂h,z that optimize Rh,z.

The idea is that this set of policies Ψh = {π̂h,z : z ∈ Z} will cover all of the states at layer h. More specifically,
we can proceed inductively, assuming good coverage over the true latent states at time h− 1 and showing that Ψh

somehow provides similar coverage over time step h. Then we can use Ψh to collect data for the next iteration.

2 Block MDP approaches

To instantiate an algorithm we primarily need to specify items (1) and (3) above, as item (2) is already specified.
In typically instantiations, many of the techniques we’ve already learned can work for item (3). For example, if
you have good coverage, then the approximate value iteration procedure we saw in the homework can be used for
planning, but we may require a completeness assumption.

Let us turn to item (1), where the key question is how to learn a useful representation. This would be easy if we
observed the latent states, as we could just solve a supervised learning problem with our decoder class, e.g., train
φ̂ = argminφ∈Φ E[1{φ(x) 6= z}] using the labeled dataset. The issue is that we never observe the latent states, so we
don’t have the labels! On the other hand, we may be able to use just the observations and actions for representation
learning. This is a fairly popular idea in the empirical literature and some things one can try are:

Inverse dynamics. Inverse dynamics broadly refers to learning to predict actions given observations. We may
consider collecting a dataset (xh−1, ah−1, xh) where ah−1 ∼ Unif(A), and training a representation via

φ̂, f̂ ← argmin
f,φ∈Φ

E [− log f(ah−1 | φ(xh−1), φ(xh))] .
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Figure 1: Counterexamples for inverse dynamics and
backward prediction. In the figure, both approaches
group {s3, s4}, {s5, s6}, {s7, s8} which results in an ex-
ploration failure, since one can visit {s7, s8} maximally
but completely avoiding s8.

Approaches based on this idea are fairly successful in Deep RL settings. In theory, we can understand this procedure
by considering the global minimizer of the objective. Via Bayes rule, the global minimizer can be written as

f?(a | x, x′) = Pr[a | x, x′] =
Pr[x′ | x, a] Pr[a | x]

Pr[x′ | x]
=

P (x′ | x, a)(1/A)∑
a′ P (x′ | x, a′)(1/A)

=
PZ(φ?(x′) | φ?(x), a)∑
a′ PZ(φ?(x′) | φ?(x), a′)

.

From, here we can see that the global minimizer only depends on the latent state Z, so the objective encourages
us to filter irrelevant information. However, you can construct examples where it results in a “over-abstraction” in
which we also filter important information. An example is displayed in Figure 1. So while inverse dynamics may
work in some cases, for theory one needs to make assumptions to rule out these counterexamples.

Backward prediction. If we have a learned representation for time h − 1, we could consider predicting the
previous latent state φ̂h−1(xh−1) and previous action ah−1 given the current observation. Again this can be justified
intuitively by reasoning about the global optimizer when we have the correct representation for the previous layer.

φ̂h, f̂ ← argmin
f,φ∈Φ

E
[
− log f(ah−1, φ̂h−1(xh−1) | φ(xh))

]
.

If φ̂h−1 = φ? then the global minimizer here is

f?(a, zh−1 | xh) = Pr[a, zh−1 | xh] =
Pr[xh | a, zh−1] Pr[a, zh−1]

Pr[xh]
=

PZ(zh | a, zh−1) Pr[zh−1]∑
z′h−1,a

′ PZ(zh | a′, z′h−1) Pr[z′h−1]

As with inverse dynamics, this objective also encourages filtering irrelevant information. This can can be analyzed
under fairly strong conditions on the dynamics, in particular the fact that we won’t have the φ? for the previous
time step can be addressed. However, the approach is subject to similar counterexamples as inverse dynamics, in
that it throws away too much information.

Contrastive learning. Another possibility is based on contrastive learning, which is a popular technique for
learning pre-trained representations in a self-supervised manner outside of RL. In the self-supervised setting, the
idea behind contrastive learning is to use some notion of semantic similarity between inputs to create classification
problems where we try to distinguish between similar and dissimilar items. For example, when working with text
data, we might take two sentences from the same paragraph to be “similar” and sentences from different paragraphs
to be different. If we train a model in this fashion, we hope that the representation learned captures some underlying
structure of text, which would be useful for other tasks.

In RL, we can use temporal information to define similarity. For example, we can collect two triples (x
(1)
h−1, a

(1)
h−1, x

(1)
h )

and (x
(2)
h−1, a

(2)
h−1, x

(2)
h ), and we can swap the second observation to create a dissimilar example. More formally, let
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Dh−1 be some distribution over observations at time h− 1. We consider the sampling process:

x
(i)
h−1 ∼ Dh−1, a

(i)
h−1 ∼ Unif(A), x

(i)
h ∼ P (· | xh, ah), for i ∈ {1, 2}, y ∼ Unif({0, 1})

(x, a, x′) =

{
(x

(1)
h−1, a

(1)
h−1, x

(1)
h ) if y = 1

(x
(1)
h−1, a

(1)
h−1, x

(2)
h ) if y = 0

and we return the tuple (x, a, x′) with y as the label. Then we train a binary classifier as

f̂ , φ̂← argmin
f,φ∈Φ

E(x,a,x′,y) [− log f(y | φ(x), a, φ(x′))] ,

where the expectation is over data sampled from the above process. In this way, the classifier is trained to predict
“real” transition triples that may occur via the dynamics, from “fake” transition triples that we manually spliced
together. Again, reasoning about the global optimizer, we find that

f?(1 | x, a, x′) =
Pr[x, a, x′ | y = 1]

Pr[x, a, x′ | y = 1] + Pr[x, a, x′ | y = 0]
=

P (x′ | x, a)(1/A)Dh−1(x)

P (x′ | x, a)(1/A)Dh−1(x) +Dh(x′)(1/A)Dh−1(x)

=
P (x′ | x, a)

P (x′ | x, a) +Dh(x′)
=

P (φ?(x′) | φ?(x), a)

P (φ?(x′) | φ?(x), a) +Dh(φ?(x′))
.

Here Dh is the marginal distribution over xh induced by the above sampling process. Again here we find that the
objective encourages filtering irrelevant information. As with the other approaches, this approach may suffer from
the over-abstraction issue, but it does not lead to an exploration failure. To understand why, suppose we find a
near-optimizer f̂ , φ̂ where φ̂ groups two observations x′ and x̃′ at time step h together. Then even if x and x′ come
from different latent states, we can show that

∀x, a : f?(1 | x, a, x′) ≈ f?(1 | x, a, x′) which implies
P (x′ | x, a)

P (x̃′ | x, a)
≈ Dh(x̃′)

Dh(x′)
.

Put another way the ratio of transitioning to x′ or x̃′ actually does not depend on the previous (x, a) pair. Since a
policy we might use to roll-in induces a distribution over (x, a) this implies that

∀π :
dπh(x′)

dπh(x̃′)
≈ constant independent of π.

This does not show that x′ and x̃′ come from the same latent state, even if we had exact equality here. In particular,
it could be the case that the above equality is satisfied, but two latent states have drastically different “forward”
dynamics, in the sense that T (· | z1, a) 6= T (· | z2, a). However, the argument above shows that if x′ and x̃′ come
from different latent states (say z1, z2), then the two latent states are coupled as far as the “backward dynamics”
are concerned. This means that if we plan to reach one of the states z1 then we will also hit z2. So setting the
reward function as 1{φ̂(xh) = z} and planning to optimize this reward function will succeed.

3 Low rank MDP approaches

We can also consider representation learning in the low rank or linear MDP. The “model-free” formulation is that
we have a linear MDP with unknown feature maps φ?, µ? and we have a function class Φ containing the true feature
mapping φ?. In the “model-based” formulation, we have two classes Φ,Υ where φ? ∈ Φ, µ? ∈ Υ. The model-based
assumptions are stronger, since we require realizability for both embeddings. As you will show on the homework,
both formulations have Bellman rank d, the feature dimension.

The model-based formulation admits a very elegant algorithm that combines many of the techniques we have
seen previously. It is an iterative algorithm that operates in the discounted setting, starting with π0 as the uniform
random policy and two empty datasets D0, D

′
0. In iteration t we

1. Collect a tuple (s, a, s′, a, s′′) where s ∼ dπt−1 (the stationary measure for the previous policy), a, a′ ∼ Unif(A),
and s′ ∼ P (s, a), s′′ ∼ P (s′, a′). Recall that we can use geometric stopping to obtain a sample from dπt−1

with a single trajectory. Add (s, a, s′) to Dt−1 to form Dt and add (s′, a′, s′′) to D′t−1 to form Dt.
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2. Fit a model (φ̂t, µ̂t) using maximum likelihood estimation:

(φ̂t, µ̂t) = argmax
φ∈Φ,µ∈Υ

∑
Dt∪D′t

log(〈φ(s, a), µ(s′)〉)

3. Using the new learned features φ̂t, update the empirical covariance matrix as Σt =
∑
Dt
φ̂t(s, a)φ̂t(s, a)>+λI

and set the reward bonus as

bt(s, a) := β

√
φ̂t(s, a)>Σ−1

t φ̂t(s, a)

4. Compute πt to maximize r + bt in the learned model P̂t = (φ̂t, µ̂t). This can be done by running LSVI-UCB,
but does not require any samples from the environment.

This algorithm is also reasonably close to model-based approaches that work quite well in practice. These empirical
algorithms fit dynamics models (typically not by MLE but using a variational auto-encoder), create an exploration
bonus (perhaps elliptical potential but sometimes using ensembles), and plan to maximize the exploration bonus
in the model. So while not all of the parts are the same, you can view this algorithm/analysis as providing some
justification to these approaches.

While this algorithm certainly has familiar elements, like the elliptical bonus, it is quite challenging to analyze.
The first issue is that, even though we use the elliptical bonus for exploration, the features φ̂t change from iteration
to iteration, so it is not clear how to use φ̂t to track progress. Related to this, it is not clear that using the bonus
defined by the learned features leads to any sort of optimism, which we have seen is quite crucial for exploration.

The first thing to point out is that we can get a generalization guarantee for the maximum likelihood estimation
procedure. Let ρt be the uniform mixture of {dπi ◦Unif(A)}t−1

i=0 and let ρ′t be defined as the next step distribution.
Then we can get that

∀t : max{E(s,a)∼ρt

[
‖P̂t(s, a)− P (s, a)‖2TV

]
,E(s,a)∼ρ′t

[
‖P̂t(s, a)− P (s, a)‖2TV

]
} . log |Φ||Υ|

t
=: εstat.

Using this MLE guarantee, it turns out that we can establish global near-optimism for this algorithm by applying

the simulation lemma in the learned model P̂t (which has dynamics
〈
φ̂t, µ̂t

〉
). In particular, we can show that

∀t,∀π : J(π; P̂t, r + bt)− J(π;P, r) & −

√
A

1− γ
· εstat, (1)

Then we can use the regret decomposition for globally optimistic algorithms to show that

J(π?;P, r)− J(πt;P, r) .
1

1− γ
Es,a∼dπtP

bt(s, a) +
1

1− γ
‖P̂t(s, a)− P ?(s, a)‖TV︸ ︷︷ ︸

bound on Qπt − TQπt

+

√
A

1− γ
· εstat︸ ︷︷ ︸

penalty for “near” optimism

(2)

From here, we want to perform a change-of-measure/distribution-shift argument, to translate from dπtP to the
training distribution under which we collected the data. If we can do this, the quadratic form in the bonus term
will be poly(d) since we’ll get something like tr(Σ−1Σ) = d. Meanwhile the total variation term will be bounded by
εstat since we will be on the training distribution.

The distribution shift argument is quite similar to what is needed to prove (1), except that for (1) we work
primarily in the learned model P̂t while for (2) we work in the true environment. Let us focus on (1) for now.
Proving this essentially requires two steps. First, by simulation lemma we have

J(π; P̂t, r + bt)− J(π;P, r) ≥ 1

1− γ
E(s,a)∼dπ

P̂t

[
bt(s, a) + γEs′∼P̂t(s,a)[V

π
P,r(s

′)]− γEs′∼P (s,a)[V
π
P,r(s

′)]
]

≥ 1

1− γ
E(s,a)∼dπ

P̂t

[
bt(s, a)− ‖P̂t(s, a)− P (s, a)‖TV

]
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Notice how this is quite similar to the bound in (2), except that the expectation is in the learned model P̂t. The
key idea is to use that P̂t itself is a low rank MDP to apply a distribution shift argument on the second term:∣∣∣E(s,a)∼dπ

P̂t

[
‖P̂t(s, a)− P (s, a)‖TV

]∣∣∣ . ∣∣∣∣E(s̃,ã)∼dπ
P̂t,prev

〈
φ̂t(s̃, ã),

∫
µ̂t(s)π(a | s)‖P̂t(s, a)− P (s, a)‖TV

〉∣∣∣∣
.

∣∣∣∣E(s̃,ã)∼dπ
P̂t,prev

‖φ̂t(s̃, ã)‖Σ−1
t
· ‖
∫
µ̂t(s)π(a | s)‖P̂t(s, a)− P (s, a)‖TV‖Σt

∣∣∣∣
Now we can bound the second term by the model error on the training distribution, since

‖
∫
µ̂t(s)π(a | s)‖P̂t(s, a)− P (s, a)‖TV‖2Σt .

∑
Dt

〈
φ̂t(s, a),

∫
µ̂t(s

′)π(a′ | s′)‖P̂t(s′, a′)− P (s′, a′)‖TV

〉2

=
∑
Dt

(
Es′∼P̂t(s,a)π(a′ | s′)‖P̂t(s′, a′)− P (s′, a′)‖TV

)2

.
∑
Dt

(
Es′∼P (s,a)π(a′ | s′)‖P̂t(s′, a′)− P (s′, a′)‖TV

)2

+O(tεstat)

.
∑
Dt

Es′∼P (s,a)π(a′ | s′)‖P̂t(s′, a′)− P (s′, a′)‖2TV +O(tεstat)

. A
∑
Dt

Es′∼P (s,a),a′∼Unif(A)‖P̂t(s′, a′)− P (s′, a′)‖2TV +O(tεstat)

= A
∑
D′t

‖P̂t(s, a)− P (s, a)‖2TV +O(tεstat) = O(Atεstat)

Here the first inequality expands the Σt norm (we are omitting the regularization term) and then in the second
inequality we use that P̂t and P are similar on the training set Dt. The third inequality is a direct application
of Jensen’s inequality, then we perform an importance weighting argument, and finally we use that P̂t and P are
similar on the training set D′t (which is one step ahead). Note that collecting data from two different steps is quite
important here. Finally, we can establish (1) by setting the coefficient β in the elliptical bonus to be roughly Atεstat,
so that it cancels out with the covariance-norm on dπ

P̂t,prev
. (The error term in (1) captures all the regularization

effects as well as the fact that dπ
P̂t,prev

differs from dπ
P̂t

by roughly the initial state.)

The above derivation highlights the key steps in this part of the analysis, but is certainly not tracking all of the
terms. If we do this more carefully, we’ll obtain (1) and to obtain (2), we perform a similar sequence of steps, which
will result in a elliptical potential in the true features φ?. This potential only appears in the analysis, but it will
allow us to track progress in a manner that is consistent across iterations. For this part, we’ll get something like

E(s,a)∼dπtP

[
bt(s, a) +

1

1− γ
‖P̂t(s, a)− P (s, a)‖TV

]
. E(s,a)∼dπtP,prev

‖φ?(s, a)‖Σ?,−1
t
·

√
t|A|Es,a∼ρt

[
b2t (s, a) +

1

(1− γ)2
‖P̂t(s, a)− P (s, a)‖2TV

]
where Σ?t is the covariance matrix in the true features φ?. The two terms under the square root are both relatively
small, since the distribution ρt is precisely (a) how we calculate the bonus bt and (b) how we fit the model P̂t.
Putting things together we can show that this algorithm has a sample complexity that scales as

Õ

(
d4A2 log(|Φ||Υ|/δ)

(1− γ)5ε2

)
,

which is quite reasonable.
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