
Lecture 10: Fundamental limits for linear function approximation

Akshay Krishnamurthy
akshay@cs.umass.edu

April 5, 2022

In the last lecture, we saw two methods for exploration with linear function approximation. The first one, LSVI-
UCB operates in the linear/low-rank MDP model and achieves a regret bound of poly(H)

√
d3T over T episodes.

This algorithm is based on “local optimism” and is similar to the UCB-VI algorithm for tabular MDPs. The second
one doesn’t really have a name, and is based on “global optimism.” This is more like the confidence ball version
of LinUCB and we’ll see that this algorithm can be generalized in subsequent lectures. Last time we sketched how
this method achieves poly(H)

√
d2T regret under the weaker assumption of “linear Bellman completeness.”

While these algorithms represent statistically tractable approaches, the assumptions (linear MDP, or bellman
completeness) are quite strong, so we should ask if we can get away with weaker assumptions. In this direction,
perhaps the most natural question is to ask what can be done with just linear realizability of Q?. This is reasonable
to ask because linear realizability for Q? is sufficient in bandits (as we saw with LinUCB). So we are asking if we
can get away with similar function approximation assumptions, while dealing with credit assignment.

The short answer is that not much can be done with just linear realizability, which has been the topic of a
number of “lower bounds” papers in the last couple of years. The only two positive results I know are:

1. Finite horizon, deterministic dynamics (and start state), and deterministic reward.

2. Finite horizon, deterministic dynamics (and start state), stochastic reward, with a “gap” between the Q-values
of the optimal and suboptimal actions.

The upper bounds are fairly simple and rely on exactly identifying Q? or π? on some states and actions. Today we
will sketch one such algorithm. In terms of lower bounds there are many (this list may not be exhaustive):

1. Offline RL, discounted setting, coverage in the second moment sense

2. Offline RL, episodic setting, coverage in the second moment sense

3. Offline RL, coverage in the density ratio sense.

4. Online RL, exponentially many actions, stochastic dynamics, gaps

5. Online RL, polynomially many actions.

The key mechanisms are instability of bellman backup operator and the ability to hide a vector in an exponentially
large set. We will discuss some of these mechanisms today as well.

1 Upper bounds

In this section, we assume that Q?h(s, a) = 〈θ?h, φ(s, a)〉. The upper bound for working with linear realizability
in deterministic systems is based on a simple depth first search algorithm. The idea is to maintain a subspace
Bh ⊂ Rd for each layer h on which we know Q?h exactly. More precisely, we maintain a set of linear equations for
Q?h. We represent Bh by a set of linearly independent vectors with regression targets {(ψ1, y1), . . . , (ψd′ , yd′} where

d′ = dim(Bh) ≤ d and yi is the Q?h function for feature ψi, yi = 〈θ?h, ψi〉. Implicitly we then let θ̂h be any vector

that satisfies the linear equations
〈
θ̂h, ψi

〉
= yi. Since yi is the Q?h value for feature ψi, due to linear realizability,

1

Algorithm 1.1 DFS algorithm for deterministic dynamics/rewards and linear Q?.

Global state: B0:H−1 initialized to empty sets (implicitly θ̂h is any vector satisfying linear equations in Bh).
Time step h, and an action sequence a0:h−1 to reach some state sh.
If h = H, return V ?H(sH) = 0
while there exists ah ∈ A: φ(sh, a) /∈ span(Bh) do

Let sh+1 be the state reached by executing a0:h, recursively learn V ?h+1(sh+1).
Update Bh ← Bh ∪ {(φ(sh, ah), r(sh, ah) + V ?h+1(sh+1))}.

end while
return V ?h (sh) = maxa

〈
θ̂h, φ(sh, ah)

〉

we can impute Q?h on any other vector φ, in the subspace. In particular, there exists α1, . . . , αd′ ∈ R such that

φ =
∑d′

i=1 αiψi. On the other hand we should not try to “extrapolate” to φ outside of the subspace.
We can find this basis using a recursive depth first search procedure, displayed in Algorithm 1.1. The algorithm

tries to compute the V ? function for a single state s. To do so it makes sure that all features φ(s, a) are in the
subspace for the current level and if they are it simply outputs the inputed value. If some features are not in the
subspace it recursively asks for the value function of the subsequent states and adds these features in.

The correctness of the algorithm under deterministic dynamics and rewards is straightforward and we can see
that the number of episodes required is O(dH). This is because at each level we will make at most d recursive calls.
However, note that it uses determinism of both dynamics and rewards in a critical way. With stochastic rewards
we may not be able to guarantee that our regression targets r(sh, ah) +V ?h+1(sh+1) are exactly equal to Q?h(sh, ah),
since we will have some statistical noise. Stochastic dynamics are more problematic, since we may not be able to
return to any given state sh which is important in the “backtracking” part of the recursion.

Stochastic rewards can be handled under a “gap” assumption, via a simple modification of this approach. The
gap assumption is that Q?h(s, π?h(s)) ≥ maxa 6=π?h(s)Q

?
h(s, a) + ∆ for some ∆ > 0. Here, although we cannot learn

V ? exactly, we can learn π? exactly. So rather than do “dynamic programming” backups, we can instead track
the optimal actions and use the roll-outs to get unbiased estimates for Q?h. Essentially, to get Q?h(sh, ah) we first
ensure that we know the optimal actions from (sh, ah) to the end and then we collect O(1/∆2) samples by rolling
into (sh, ah) and rolling out with this optimal policy.

2 Lower bounds in offline RL

I find it easier to understand the lower bound mechanisms in offline RL. Since we have not discussed this problem
before, let us go over the setup. In (discounted) offline RL, there is an unknown MDP M = (S,A, P,R, µ, γ),
but we will not get to interact with it. Instead we will receive a dataset D = {(si, ai, ri, s′i)}ni=1 sampled via the
process: (si, ai) ∼ ρ, ri ∼ R(si, ai), s

′
i ∼ P (si, ai) where ρ is some data collection distribution. Using this dataset

we would like to output a policy π̂ that is near-optimal for the MDP. An even simpler problem is offline policy
evaluation where we have a fixed target policy π and we simply want to estimate Qπ, (say we measure the error by
|Q̂π(s?, a?)−Qπ(s?, a?)| where s?, a? are known as well).

(You will study some closely related problems in the homework.)
The first observation when thinking about these problems is that you will need ρ to “cover the states” in some

sense. With linear realizability we can draw inspiration for a suitable coverage condition from the H = 1 case
or linear contextual bandits. Here the offline dataset is just {(si, ai, ri)}ni=1 (since there is no subsequent state)
and we assume that E[r|s, a] = 〈φ(s, a), θ?〉 for some known features with ‖φ(s, a)‖2 ≤ 1. This is the analog of
linear realizability of Q?. Given this dataset, maybe the only thing we can really do is linear regression onto
the rewards. If we define Σρ = Es,a∼ρ[φ(s, a)φ(s, a)>] then linear regression ensures that our estimate θ̂ satisfies

‖θ̂ − θ?‖2Σρ ≤ O(d/n). Unfortunately, this may not tell us anything about Q?(s?, a?) if Σρ is rank-degenerate and

φ(s?, a?) is orthogonal to its column space. Indeed, essentially the best bound we can get is

|Q̂?(s?, a?)−Q?(s?, a?)| = |
〈
φ(s?, a?), θ̂ − θ?

〉
| ≤ ‖φ(s?, a?)‖Σ−1

ρ
· ‖θ̂ − θ?‖Σρ ,

2

s0 s1 r

φ = γ φ = 1

Figure 1: The construction of Amortila-Jiang-Xie.

s1
1 s1

2 s1
3 s1

4 s1
5

s2
1 s2

2 s2
3 s2

4 s2
5

r r r r r
√
d/2

r(d2 −
√

d
2)φ = e1

φ = e5
V = r

√
d
2

V = r

V = r d2

V = r
√

d
2

Figure 2: The construction of Wang-Foster-Kakade.

but the “distribution shift coefficient” ‖φ(s?, a?)‖Σ−1
ρ

may not be small. So, one coverage assumption is simply that

this coefficient is bounded. A stronger assumption is that λmin(Σρ) ≥ 1/d (which is as large as it can be due to
feature normalization), which implies that this coefficient is bounded.

Definition 1. We say that an offline RL problem has coverage in the second moment sense if λmin(Σρ) ≥ c/d,
where d is the feature dimension and c is some constant.

Let us now show how value functions may not even be identifiable for the discounted offline RL problems even
if second moment coverage is satisfied. This can be seen by a very simple problem with two states and one feature,
visualized in Figure 1. There, when the problem has discount factor γ ∈ [1/2, 1) then it is easy to see that linear
realizability holds, as we can take θ? = r/(1− γ). Additionally, we can have ρ supported only s0 and satisfy second
moment coverage. But then r will never be observed, which shows that θ? is not identifiable.

In episodic offline RL, it may be more natural to assume we have a distribution ρh for each level h ∈ [H] and
ask that second moment coverage holds for all layers. While this precise phenomena can no longer occur, something
very similar is possible. The idea is to make the features of a layer be roughly {e1, . . . , ed,1/

√
d} and have the value

function be rh1. Then the value function on the state with feature 1 is a factor of
√
d larger than the “standard

basis” states. We can use this to create a geometric amplification that results in a Ω(dH) type lower bound.
The construction with just two layers is visualized in Figure 2. In the construction we take d = 8, and set the

features of the states s1:4 to be the standard basis elements (say e1, . . . , e4 correspond to the dashed actions and

e5:8 to the solid actions). Then we set the features for state s5 to be φ(s5, a) =
∑8
j=5 ej/

√
d
2 . By playing with the

rewards we can make it so that V (s5) is a factor of
√
d/2 larger than the value of the other states. Stacking this

construction we can make it so the value function is roughly r(d/2)H/2 at the first time step.
The issue is that the offline data distribution will not cover the special state s5, and instead will be uniform on

the standard basis elements. This is problematic since, although there is a large immediate reward after s5, we will
never see it. Instead we have to rely on the rewards at the last layer to learn r, but we can make r exponentially
small (and noisy) while keeping the value function of constant magnitude.

Mechanism: error amplification. The key mechanism here is error amplification under bellman backups.
Indeed, suppose we knew r̂ satisfying |r − r̂| ≤ ε. Then at the last layer we know the Q function with error
ε
√
d/2, and in particular we would set V̂ (s2

5) = r̂
√
d/2. To estimate the Q function at the second-to-last layer the

“population” regression solution would yield that θ̂1[1], . . . , θ̂1[4] = r̂ and θ̂1[5], . . . , θ̂1[8] = V (s2
5) = r̂

√
d/2. But

note that the error on s1
5 for this estimate is now ε(d/2), which is multiplicatively larger than at the previous layer!

Remark 2. Note that the error amplification cannot happen if φ(s5) is in the convex hull of the other features,
rather than simply in the span of the other features. Indeed this observation can be turned into an upper bound
analysis if the data collection distribution is supported on the vertices of the convex hull containing all the features,
but this analysis pays for the number of vertices, which could be exponentially large.

3

For an algorithmic perspective on this issue, we can consider value iteration with function approximation in
the discounted policy evaluation setting. Let us review the algorithm. To simplify the notation, we can drop the
actions entirely, or you can think of replacing φ(s, π(s)) = φ(s). We start with θ(0) = 0 and we repeat the iteration:

θ(t) ← argmin
θ

n∑
i=1

(
〈φ(si), θ〉 − ri − γ

〈
φ(s′i), θ

(t−1)
〉)2

(1)

The population regression problem can be written as θ(t) = Σ−1
covθr + γΣ−1

covΣcrθ
(t−1) where θr = Eρ[φ(s, π(s)) · r],

Σcov = Σρ and Σcr = E(s,a,s′)∼ρ[φ(s, π(s))φ(s′, π(s′))>] is the “cross covariance.” Unrolling this relationship, we see
that if we do T rounds of the population problem we obtain

θ(T) = Σ−1
covθr + γΣ−1

covΣcrθ
(T−1) = . . . =

T∑
k=0

(γΣ−1
covΣcr)

kΣ−1
covθr

From here we can obtain a better understanding of what’s happening with error amplification: If the eigenvalues
of γΣ−1

covΣcr are greater than 1 we may exponentially amplify any errors we have in estimating θr. And this is
indeed the issue with the construction in Figure 2, where Σcov = Id/d and Σcr has an eigenvalue with a very large
magnitude so that λmax(Σ−1

covΣcr) = Θ(
√
d). (A very similar unrolling occurs in the finite horizon setting, without

the γ factor.) So this matrix dictates whether error amplification will occur or not for value iteration type methods.
As an aside, if we return to the construction in Figure 1 γΣ−1

covΣcr = 1 but θr = 0, so the value iteration solution
is just 0. This is wrong! The issue here is that the true value function is not uniquely defined by observable
quantities under this offline data distribution.

3 Interlude: Double sampling

Since we have been discussing value-iteration type methods, it is also a good point to introduce another issue with
these methods, known as the double sampling issue. I have not seen this explicitly appear in any lower bound, but
it is a well-documented failure mode for dynamic programming methods in particular.

Consider a discounted MDP and let T denote the Bellman optimality operator (T f)(s, a) := E[r+γmax f(s′, a′) |
s, a]. Since Q? is the solution to the fixed point problem Q = T Q, we could try to estimate Q? by solving

Q̂← argmin
f∈F

n∑
i=1

(
f(si, ai)− ri − γmax

a′
f(s′i, a

′
i)
)2

,

either with an offline dataset or with data we have collected while exploring. Note that the optimization variable
f appears in two places in the objective, so this may not be computationally tractable but it is reasonable to ask
if this method has favorable statistical properties.

For a given function f the population objective decomposes into two terms, the bias squared and variance, as:

E

[(
f(s, a)− r − γmax

a′
f(s′, a′)

)2
]

= E
[
(f(s, a)− (T f)(s, a))

2
]

︸ ︷︷ ︸
=:bias(f)

+ Es,a
[
Var

(
r + γmax

a′
f(s′, a′) | s, a

)]
︸ ︷︷ ︸

=:var(f)

We know that Q? is the only function that has bias(Q?) = 0. The issue is that the variance term depends on the
function f being considered, and there may be some other function f that actually has a lower population objective,
due to having var(f)� var(Q?). (It is easy to construct examples.) This means that Q? may not actually be the
minimizer of the squared Bellman error objective!

There are essentially three ways to mitigate this. The first is to assume access to a sampler for the MDP
which allows you to obtain many samples from the same (s, a), regress onto the “average” next-step value, and
therefore substantially shrink the variance term. The second is to assume deterministic dynamics which implies
that the variance term does not depend on the function f being considered. The final way is to assume Bellman
completeness, which means that T f ∈ F , so we can subtract off the variance term by considering the objective

Q̂← argmin
f∈F

max
g∈F

n∑
i=1

(
f(si, ai)− ri − γmax

a′
f(s′i, a

′
i)
)2

−
n∑
i=1

(
g(si, ai)− ri − γmax

a′
f(s′i, a

′
i)
)2

,

In fact, this is essentially what we did in the global optimism algorithm in the previous lecture.

4

4 Lower bounds in Online RL

The offline RL lower bounds highlight some challenges with error amplification, but they don’t imply lower bounds
for online exploration. Indeed the construction in Figure 1 is trivial in the online setting since we will visit s1 and
learn the reward. Something similar arises in the construction in Figure 2. Nevertheless, online exploration with
only linear realizability is also statistically intractable.

The constructions are much more involved, but one basic mechanism is the ability to pack exponentially many
near-orthogonal vectors into Euclidean space. This is formalized in the following lemma, which can be proved by
the probabilistic method.

Lemma 3 (Packing lemma). Fix d ∈ N and α > 0. If m ≤ exp(α2d/8) then there exists m unit vectors {vi}mi=1 ⊂ Rd

such that ∀i 6= j : | 〈vi, vj〉 | ≤ α.

Of course, this packing construction must be used in tandem with some “credit assignment” issue to establish a
lower bound, since we can solve any linear stochastic bandit problem. However, when coupled with credit assignment
effects, this can lead to an exponential sample complexity lower bound. Let us sketch a construction.

Consider m + 1 states and m actions, where m � exp(dα2) as in the packing lemma. There is one special
“terminal state,” which we call f and there is a special action called a? ∈ [m]. We set up the transitions so that

P (f | s = i, a = a?) = P (f | s = i, a = i) = 1, P (· | s = i, a = j) =

{
i w.p. 〈vi, vj〉+ 2α

f w.p.1− 〈vi, vj〉 − 2α

In words, we can immediately terminate from any state s = i if we guess the special action a? or if we take the
action with the same name as the state. Otherwise we have some large chance of terminating but we continue to
some other state at the next level. This is referred to as the “leaking complete graph.” We set the rewards so that

r(i, a?) = 〈vi, va?〉+ 2α, r(i, i) = 3α
4 , r(i, j) = −2α (〈vi, vj〉+ 2α) , V ?(f) = 0

Based on these rewards, and since | 〈vi, vj〉 | ≤ α, intuitively the optimal thing to do is take a?, immediately pick
up at least α reward, and transit to the terminal state. But this requires guessing a? which seems hard to do. Note
that, unlike in the bandit setting, choosing the wrong actions here gives you essentially no information since neither
the immediate rewards r(i, j) nor the transitions have anything to do with a?.

The tricky part is to make sure that linear realizability is satisfied. For this we mostly have to worry about
Q?(i, j) but we can use that V ?(j) is quite large and in particular depends on a?. The main computation is

V ?(j) = 〈vj , va?〉+ 2α

Q?(i, j) = −2α(〈vi, vj〉+ 2α) + (〈vi, vj〉+ 2α)V ?(j) = (〈vi, vj〉+ 2α) 〈vj , va?〉

Using this, we set φ(i, j) = (〈vi, vj〉+ 2α)vj (and appropriately set φ(f, ·) and φ(i, i)) to satisfy linear realizability.
The coefficient vector is essentially va? . Crucially, we’ve made it so that linear realizability holds despite the fact
that the immediate rewards reveal nothing about va? .

Finally, the lower bound arises by stacking this construction for H layers. The last layer results in a stochastic
linear bandit problem, which is problematic, but observe that the probability of getting to a non-terminal state at
the last layer is very small, as it is upper bounded by < (1 − α)H . This means that we learn essentially nothing
about a? unless we guess it exactly correctly or make it to the last layer and results in a min(exp(d), cH) lower
bound.

5

	Upper bounds
	Lower bounds in offline RL
	Interlude: Double sampling
	Lower bounds in Online RL

