
COMS6998-11: Homework 1

Akshay Krishnamurthy
akshay@cs.umass.edu
Due: Thursday 3/3

Instructions: Turn in your homework to me by email by Monday 2/28.

1. First order generalization. In this problem we will prove a stronger generalization error bound for the
agnostic binary classification, that uses more information about the distribution. Let P be a distribution
over (X,Y ) pairs where X ∈ X and Y ∈ {+1,−1} and let F ⊂ X → {+1,−1} be a finite hypothesis class
and let ` denote the zero-one loss `(ŷ, y) = 1{ŷ 6= y}. Let R(f) = E`(f(X), Y ) denote the risk, and let

f? = argminf∈F R(f). Given n samples let f̂n denote the empirical risk minimizer. The goal here is to prove
a sample complexity bound of the form:

R(f̂n)−R(f?) ≤ c1

√
R(f?) log(|F|/δ)

n
+ c2

log(|F|/δ)
n

. (1)

for constants c1, c2. This can be a much better bound than the one we saw in class, if R(f?) is small. In
particular, if R(f?) = 0 (which is called the realizable setting), then this bound obtains a 1/n-rate.

(a) To prove the result, we will use Bernstein’s inequality, which is a sharper concentration result.

Theorem 1 (Bernstein’s inequality). Let X1, . . . , Xn be iid real-valued random variables with mean zero,
and such that |Xi| ≤M for all i. Then for all t > 0

P[

n∑
i=1

Xi ≥ t] ≤ exp

(
− t2/2∑n

i=1 E[X2
i ] +Mt/3

)
.

We will not prove this here. Use the inequality to show that with probability at least 1− δ

|X̄| ≤
√

2E[X2
1 ] log(2/δ)

n
+

2M log(2/δ)

3n
. (2)

where X̄ = 1
n

∑n
i=1Xi and Xis satisfy the conditions of Bernstein’s inequality.

(b) Use Eq. (2) and the union bound to show Eq. (1).

2. Action elimination for MAB. In class, we saw the UCB strategy for regret minimization in the stochastic
MAB problem. Another strategy, known as action elimination, also has similar properties. Consider the
stochastic A-armed bandit problem in the reward formulation, where there are distributions ν(a) for each
arm a ∈ [A], each with mean µ(a). We view the samples as rewards, so regret is measured as

RegretT = max
a

T · µ(a)−
∑
t

µ(at).

Active arm elimination maintains a set of “active arms” which could plausibly be the best one and operates
in phases or epochs. We start with A1 = [A] and epoch i = 1. Then in epoch i we:

(a) For each arm a ∈ Ai play a for 2i rounds.

(b) Update the empirical mean µ̂(a) and confidence conf(a) accordingly
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(c) Update Ai+1 = {a ∈ Ai : µ̂(a) + conf(a) ≥ maxa′ µ̂(a′)− conf(a′)}

In the last step, we keep arm a if, based on its optimistic estimate µ̂(a) + conf(a), it could still be the best
arm. Show that this algorithm has a

√
AT log(AT/δ) regret bound. You may assume that if arm a has been

pulled N times, we can set conf(a) =
√

log(AT/δ)/N .

3. Action elimination for linear bandits. It’s also possible to design action elimination algorithms for the
linear stochastic bandit problem but avoiding a dependence on the number of actions is tricky. Suppose we
have a finite but large arm set A with features {xa : a ∈ A} ⊂ Rd where ‖xa‖2 ≤ B∀a ∈ A. We assume
that E[r | a] = 〈xa, θ?〉 for some unknown parameter θ? and that the rewards are bounded in, say [0, 1]. We
measure regret as

RegretT = max
a

T · 〈xa, θ?〉 −
∑

t
〈xat , θ?〉 .

Here we will not use an epoching algorithm, but the high-level idea is similar. In round t, we have a covariance
matrix Λt :=

∑t−1
τ=1 xaτx

>
aτ + I and an estimate θ̂t = Λ−1

t

∑t−1
τ=1 xaτ rτ . Set β := Θ(

√
d log(T/δ)). Then we

eliminate actions according to

At :=
{
a ∈ A : ∀b ∈ A,

〈
θ̂t, xb − xa

〉
≤ β · ‖xa − xb‖Λ−1

t

}
(3)

For action selection, we find a distribution p supported on Ai such that

∀a ∈ At : ‖xa − Eb∼p[xb]‖2Λ−1
t
≤ tr(Λ−1

t · Eb∼p[xbx>b ]). (4)

Call that distribution pt. We sample at ∼ pt, play it and proceed to the next round. Note that the problem
in Eq. (4) is always feasible, although we will not prove this here.

For this question, you may assume that ‖θ̂t − θ?‖Λt ≤ β for all t ∈ [T ]. More generally, you need not prove
any concentration statement that you plan to use, since I do not want to you spend too much time on this
aspect of the analysis. Just state what random variable you hope is concentrating to what quantity.

(a) First, show that, by our choice of β, Eq. (3) never eliminates the optimal action argmaxa 〈xa, θ?〉.
(b) Use Eq. 3 and (4) to bound the regret on round t, namely maxa∈A 〈θ?, xa − Eb∼pt [xb]〉, in terms of β,Λ−1

t

and Mt = Eb∼pt [xbx
>
b ].

(c) Show that the algorithm’s regret is Õ(d
√
T ). You may use, without proof, the following inequality∑

t
tr(Λ−1

t Mt) ≤ 2
∑

t
tr(Λ−1

t xatx
>
at) + 8 log(2/δ).

4. Adapting to Misspecification with SquareCB. SquareCB and most of the algorithms we have seen rely
on a notion of realizability, where the expected rewards can be predicted by some function f? in your function
class F . This assumption is unlikely to be satisfied in practice, so minimally it would be nice if our algorithms
were robust to small violations of this assumption. We will study this in this question.

Suppose we are in a contextual bandits setting with function class F , but where the mean rewards µ : X×A →
[0, 1] does not belong to F . Instead assume that there is a known ε such that

min
f?∈F

sup
x,a
|f?(x, a)− µ(x, a)| ≤ ε,

that is there is some function f? ∈ F that is pointwise close to the mean-reward µ. In this problem, we will
study a small variant of SquareCB under misspecification.

(a) First show that, when the oracle is given sequence {(xt, at, rt(xt, at))}Tt=1 where E[rt(xt, at) | xt, at] =
µ(x, a), we have the bound

E

[
T∑
t=1

(ŷt(xt, at)− f?(xt, at))2

]
≤ 2E

[
Regsq(T )

]
+ 4ε2T

where ŷt(xt, at) are the regression oracle’s predictions.
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(b) Using the above fact, show that by changing simply by changing the learning rate γ in SquareCB, it
enjoys a regret bound of

RegretT ≤ O(
√
ATRegsq(T ) + εT

√
A).
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