Public-Key Encryption

Adam O'Neill based on http://cseweb.ucsd.edu/~mihir/cse207/

Symmetric-key Crypto

- Before Alice and Bob can communicate securely, they need to have a common secret key K_{AB} .
- If Alice wishes to also communicate with Charlie then she and Charlie must also have another common secret key K_{AC} .
- If Alice generates K_{AB} , K_{AC} , they must be communicated to her partners over private and authenticated channels.

Public-key Crypto

- Alice has a secret key that is shared with nobody, and an associated public key that is known to everybody.
- Anyone (Bob, Charlie, ...) can use Alice's public key to send her an encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a database

- Senders don't need secrets
- There are no shared secrets

Syntax

A public-key (or asymmetric) encryption scheme $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ consists of three algorithms, where

5

ited

an

a

How it Works

Step 1: Key generation

Alice locally computers $(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{K}$ and stores sk.

Step 2: Alice enables any prospective sender to get pk.

Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don't require privacy of pk but we do require authenticity: the sender should be assured pk is really Alice's key and not someone else's. One could

- Put public keys in a trusted but public "phone book", say a cryptographic DNS.
- Use certificates as we will see later.

Privacy

• The privacy notion is like IND-CPA for symmetric-key encryption, except the adversary is given the public key.

Finalize (b)

IND-CPA

10554

Let $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a PKE scheme and \mathcal{A} an adversary.

Game Left AE

procedure Initialize

 $(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{K}$; return pk

procedure $LR(M_0, M_1)$

Return $C \stackrel{\$}{\leftarrow} \mathcal{E}_{pk}(M_0)$

Game Right AE

procedure Initialize

 $(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{K}$; return pk

procedure $LR(M_0, M_1)$

Return $C \stackrel{\$}{\leftarrow} \mathcal{E}_{pk}(M_1)$

tralize procedure means the "trivial" finali Associated to AE, A are the probabilities

procedure.

$$\Pr\left[\operatorname{Left}_{\mathcal{A}\mathcal{E}}^{\mathcal{A}}{\Rightarrow}1\right]$$

$$\mathsf{Pr}\left[\mathrm{Left}_{\mathcal{A}\mathcal{E}}^{\mathcal{A}}{\Rightarrow}1\right] \qquad \qquad \mathsf{Pr}\left[\mathrm{Right}_{\mathcal{A}\mathcal{E}}^{\mathcal{A}}{\Rightarrow}1\right]$$

that A outputs 1 in each world. The ind-cpa advantage of A is

$$\mathbf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathcal{A}\mathcal{E}}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{Right}^{\mathcal{A}}_{\mathcal{A}\mathcal{E}}{\Rightarrow}1\right] - \mathsf{Pr}\left[\mathrm{Left}^{\mathcal{A}}_{\mathcal{A}\mathcal{E}}{\Rightarrow}1\right]$$

Explanation

The "return pk" statement in **Initialize** means the adversary A gets the public key pk as input. It does not get sk.

It can call **LR** with any equal-length messages M_0, M_1 of its choice to get back an encryption $C \stackrel{\$}{\leftarrow} \mathcal{E}_{pk}(M_b)$ of M_b under sk, where b=0 in game $\mathrm{Left}_{\mathcal{AE}}$ and b=1 in game $\mathrm{Right}_{\mathcal{AE}}$. Notation indicates encryption algorithm may be randomized.

A is not allowed to call **LR** with messages M_0 , M_1 of unequal length. Any such A is considered invalid and its advantage is undefined or 0.

It outputs a bit, and wins if this bit equals b.

Building a Scheme

We would like security to result from the hardness of computing discrete logarithms.

Let the receiver's public key be g where $G = \langle g \rangle$ is a cyclic group. Let's let the encryption of x be g^x . Then

$$\underbrace{g^{\times}}_{\mathcal{E}_g(x)} \xrightarrow{\mathsf{hard}} x$$

so to recover x, adversary must compute discrete logarithms, and we know it can't, so are we done?

Key Encapsulation

 To build a PKE scheme it is often easier to first build what is called a key-encapsulation mechanism

Key Encapsulation

- To build a PKE scheme it is often easier to first build what is called a key-encapsulation mechanism
- A PKE scheme is then obtained by using hybrid encryption (the so-called KEM-DEM paradigm)

(pk, m)

Key Encapsulation (x, * mod N) (x, Y) f(x)=5

A KEM $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ is a triple of algorithms

KEM Security

Let $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ be a KEM with key length k. Security requires that if we let

$$(K_1, C_a) \stackrel{\$}{\leftarrow} \mathcal{EK}_{pk}$$

then K_1 should look "random". Somewhat more precisely, if we also generate $K_0 \stackrel{\$}{\leftarrow} \{0,1\}^k$; $b \stackrel{\$}{\leftarrow} \{0,1\}$ then

A has a hard time figuring out b

KEM Security

Let KEM = (KK, EK, DK) be a KEM with key length k, and A an adversary.

Game $Left_{\mathcal{KEM}}$

procedure Initialize

$$(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{KK}$$
 return pk

procedure Enc

$$K_0 \stackrel{\$}{\leftarrow} \{0,1\}^k$$
; $(K_1, C_a) \stackrel{\$}{\leftarrow} \mathcal{EK}_{pk}$ return (K_0, C_a)

Game $\operatorname{Right}_{\mathcal{KEM}}$

procedure Initialize

$$(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{KK}$$
return pk

procedure Enc

$$K_0 \stackrel{\$}{\leftarrow} \{0,1\}^k; \ (K_1, C_a) \stackrel{\$}{\leftarrow} \mathcal{EK}_{pk}$$
 return (K_1, C_a)

We allow only one call to **Enc**. The ind-cpa advantage of A is

$$\mathsf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathcal{KEM}}(A) = \mathsf{Pr}\left[\mathrm{Right}^{\mathcal{A}}_{\mathcal{KEM}} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathrm{Left}^{\mathcal{A}}_{\mathcal{KEM}} \Rightarrow 1\right]$$

We can turn DH key exchange into a KEM via

- Let Alice have public key g^x and secret key x
- Bob picks y and sends g^y to Alice as the ciphertext
- The key K is (a hash of) the shared DH key $g^{xy} = Y^x = X^y$

The DH key is a group element. Hashing results in a key that is a string of a desired length.

El GamalkEM

 $g^{a} \cdot g^{b} = g^{a+b}$

Let $G = \langle g \rangle$ be a cyclic group of order m and $H : \{0,1\}^* \to \{0,1\}^k$ a (public, keyless) hash function. Define KEM $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ by

$$\begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{K} \mathcal{K} \\ \hline x \overset{\$}{\leftarrow} \mathbf{Z}_{m} \\ X \leftarrow g^{x} \\ \mathrm{return} \ (X, x) \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{E} \mathcal{K}_{X} \\ \hline y \overset{\$}{\leftarrow} \mathbf{Z}_{m}; \ C_{a} \leftarrow g^{y} \\ \hline Z \leftarrow X^{y} \\ K \leftarrow H(C_{a} \| Z) \\ \mathrm{return} \ (K, C_{a}) \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{D} \mathcal{K}_{x}(C_{a}) \\ \hline Z \leftarrow C_{a}^{x} \\ K \leftarrow H(C_{a} \| Z) \\ \mathrm{return} \ K \end{array}$$

Hybrid Encryption

Given a KEM $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ with key length k, we can build a PKE scheme with the aid of a symmetric encryption scheme $\mathcal{SE} = (\mathcal{KS}, \mathcal{ES}, \mathcal{DS})$ that also has key length k. Namely, define the PKE scheme $\mathcal{AE} = (\mathcal{KK}, \mathcal{E}, \mathcal{D})$ via:

$$\begin{array}{c|c} \textbf{Alg } \mathcal{E}_{pk}(M) & \textbf{Alg } \mathcal{D}_{sk}((C_a, C_s)) \\ \hline (K, C_a) \overset{\$}{\leftarrow} \mathcal{E} \mathcal{K}_{pk} & K \leftarrow \mathcal{D} \mathcal{K}_{sk}(C_a) \\ C_s \overset{\$}{\leftarrow} \mathcal{E} \mathcal{S}_{K}(M) & M \leftarrow \mathcal{D} \mathcal{S}_{K}(C_s) \\ \hline \text{Return } (C_a, C_s) & \text{Return } M \end{array}$$

One query simplification

In assessing IND-CPA security of a PKE scheme, we may assume A makes only one LR query. It can be shown that this can decrease its advantage by at most the number of LR queries.

Theorem: Let \mathcal{AE} be a PKE scheme and A an $\operatorname{ind-cpa}$ adversary making $oldsymbol{q}$ LR queries. Then there is a $\operatorname{ind-cpa}$ adversary A_1 making 1 LR query such that

$$\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{ind-cpa}}(A) \leq \mathbf{q} \mathbf{Adv}_{\mathcal{AE}}^{\mathrm{ind-cpa}}(A_1) \qquad \qquad 2$$
 and the running time of A_1 is about that of A .

MOTTRUE SYMMETRIC CTTING Proof

hybrids queries I, ..., i by A i-th hybrid: are answered by enaryphing (i±1)-51- quem: avery own oracle it2,..., 2 quen: en crypt RIGHT

hybrids

Hybrid Encryption

If the KEM and symmetric encryption scheme are both IND-CPA, then so is the PKE scheme constructed by hybrid encryption.

Theorem: Let KEM $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ and symmetric encryption scheme $\mathcal{SE} = (\mathcal{KS}, \mathcal{ES}, \mathcal{DS})$ both have key length k, and let $\mathcal{AE} = (\mathcal{KK}, \mathcal{EK}, \mathcal{D})$ be the corresponding PKE scheme built via hybrid encryption. Let \mathcal{AE} be an adversary making 1 **LR** query. Then there are adversaries $\mathcal{B}_a, \mathcal{B}_s$ such that

$$\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{ind-cpa}}(A) \leq 2 \cdot \mathbf{Adv}_{\mathcal{KEM}}^{\mathrm{ind-cpa}}(B_a) + \mathbf{Adv}_{\mathcal{SE}}^{\mathrm{ind-cpa}}(B_s)$$
.

Furthermore B_a makes one **Enc** query, B_s makes one **LR** query, and both have running time about the same as that of A.

Proof E12 M_{\circ} Epk(K) Ex (mo)

Benefits

Modular design, assurance via proof

Benefits

- Modular design, assurance via proof
- Speed: 160-bit elliptic curve exponentiation takes the time of about 3k-4k block cipher operations or hashes

El Gamal KEM

Let $G = \langle g \rangle$ be a cyclic group of order m and $H : \{0,1\}^* \to \{0,1\}^k$ a (public, keyless) hash function. Define KEM $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ by

$$\begin{array}{c|c} \underline{\mathsf{Alg}\ \mathcal{K}\mathcal{K}} \\ \hline x \overset{\$}{\leftarrow} \mathbf{Z}_m \\ X \leftarrow g^x \\ \mathrm{return}\ (X, x) \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}\ \mathcal{E}\mathcal{K}_X} \\ y \overset{\$}{\leftarrow} \mathbf{Z}_m; \ C_a \leftarrow g^y \\ Z \leftarrow X^y \\ K \leftarrow \mathcal{H}(C_a \| Z) \\ \mathrm{return}\ (K, C_a) \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}\ \mathcal{D}\mathcal{K}_X(C_a)} \\ \hline Z \leftarrow C_a^x \\ K \leftarrow \mathcal{H}(C_a \| Z) \\ \mathrm{return}\ K \end{array}$$

How to prove this scheme is secure?

Random Oracle Model

A random oracle is a publicly-accessible random function

$$\begin{array}{c|c} W & \text{If } H[W] = \bot \text{ then} \\ H[W] \xleftarrow{\$} \{0,1\}^k \\ Return \ H[W] \end{array}$$

Oracle access to H provided to

- all scheme algorithms
- the adversary

The only access to H is oracle access.

ROM EG KEM

Let $G = \langle g \rangle$ be a cyclic group of order m and H the random oracle. Define the Random Oracle Model (ROM) KEM $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ by

$$\frac{\text{Alg } \mathcal{K}\mathcal{K}}{x \overset{\$}{\leftarrow} \mathbf{Z}_{m}} \\
X \leftarrow g^{x} \\
\text{return } (X, x) \\
\frac{\text{Alg } \mathcal{E}\mathcal{K}_{X}^{H}}{y \overset{\$}{\leftarrow} \mathbf{Z}_{m};} C_{a} \leftarrow g^{y} \\
Z \leftarrow X^{y} \\
K \leftarrow H(C_{a} \| Z) \\
\text{return } (K, C_{a}) \\
\frac{\text{Alg } \mathcal{D}\mathcal{K}_{X}^{H}(C_{a})}{Z \leftarrow C_{a}^{x}} \\
K \leftarrow H(C_{a} \| Z) \\
\text{return } K$$

Algorithms $\mathcal{EK}, \mathcal{DK}$ have oracle access to the random oracle H.

ROM KEM Security

Let KEM = (KK, EK, DK) be a ROM KEM with key length k, and let A be an adversary.

Game INDCPA
$$_{KEM}$$
 procedure $H(W)$

procedure Initialize

 $(pk, sk) \stackrel{\$}{\leftarrow} KK; b \stackrel{\$}{\leftarrow} \{0, 1\}$

return pk procedure Enc

procedure Finalize(b')

return $(b = b')$ $F(W) = \bot then H[W] \stackrel{\$}{\leftarrow} \{0, 1\}^k$

return $H[W]$

return $H[W]$

return $H[W]$

return $H[W]$

We allow only one call to **Enc**. The ind-cpa advantage of A is

$$\mathsf{Adv}^{\mathrm{ind\text{-}cpa}}_{\mathcal{KEM}}(A) = 2 \cdot \mathsf{Pr}\left[\mathrm{INDCPA}^{\mathcal{A}}_{\mathcal{KEM}} \Rightarrow \mathsf{true}\right] - 1$$

ROM Security of EG KEM

Claim: The EG KEM is IND-CPA secure in the RO model

In the IND-CPA game

where

$$b \stackrel{\$}{\leftarrow} \{0,1\}; \ K_0 \stackrel{\$}{\leftarrow} \{0,1\}^k; \ K_1 \leftarrow H(g^y || g^{xy})$$

We are saying A has a hard time figuring out b. Why?

The Theorem

The following says that if the CDH problem is hard in *G* then the EG KEM is IND-CPA secure in the ROM.

Theorem: Let $G = \langle g \rangle$ be a cyclic group of order m and let $\mathcal{KEM} = (\mathcal{KK}, \mathcal{EK}, \mathcal{DK})$ be the ROM EG KEM over G with key length k. Let A be an ind-cpa adversary making 1 query to **Enc** and q queries to the RO H. Then there is a cdh adversary B such that

$$\mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{KEM}}(A) \leq q \cdot \mathsf{Adv}^{\mathrm{cdh}}_{G,g}(B).$$

Furthermore the running time of B is about the same as that of A.

B) given! g'y need to compute g'y

pic challenges.

gy Hy indianom entre key

symmetric key

Games for Proof

n the EG

 $\mathcal{KEM} =$ h k Let A be the RO H.

t of A.

Game G_0 , $|G_1|$

$$x, y \stackrel{\$}{\leftarrow} \mathbf{Z}_m; \ K \stackrel{\$}{\leftarrow} \{0, 1\}^k$$
return g^x

procedure Enc

return (K, g^y)

procedure H(W)

procedure Initialize

$$x, y \overset{\$}{\leftarrow} \mathbf{Z}_m; \ K \overset{\$}{\leftarrow} \{0, 1\}^k$$

return g^x
 $f(W) \overset{\$}{\leftarrow} \{0, 1\}^k; \ Y || Z \leftarrow W$

if $(Z = g^{xy} \text{ and } Y = g^y)$ then

bad $\leftarrow \text{true}; \ H[W] \leftarrow K$

return $H[W]$

Assume (wlog) that A never repeats a H-query. Then

$$\mathbf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{KEM}}(A) = \Pr[G_1^A \Rightarrow 1] - \Pr[G_0^A \Rightarrow 1]$$
 $\leq \Pr[G_0^A \ sets \ \mathsf{bad}]$

We would like to design B so that $\Pr[G_0^A \text{ sets bad}] \leq \mathbf{Adv}_{G,g}^{\operatorname{cdh}}(B)$

$$\frac{\textbf{adversary} \ B(g^x, g^y)}{K \leftarrow^{\$} \{0, 1\}^k} \\ b' \leftarrow A^{\text{EncSim}, \text{HSim}}(g^x)$$

$$\frac{\text{adversary } B(g^{x}, g^{y})}{K \overset{\$}{\leftarrow} \{0, 1\}^{k}} \text{ subroutine } \text{HSim}(W)$$

$$b' \leftarrow A^{\text{EncSim}, \text{HSim}}(g^{x})$$

$$\text{if } (Z = g^{xy} \text{ and } Y = g^{y}) \text{ then output } Z \text{ and halt}$$

subroutine EncSim

return H[W]

Problem: B can't do the test since it does not know g^{xy} .

DHIES and ECIES

The PKE scheme derived from KEM + symmetric encryption scheme with

- The RO EG KEM
- Some suitable mode of operation symmetric encryption scheme (e.g. CBC\$) is standardized as DHIES and ECIES

ECIES features:

Operation	Cost	
encryption	2 160-bit exp	
decryption	1 160-bit exp	
ciphertext expansion	160-bits	

ciphertext expansion = (length of ciphertext) - (length of plaintext)

Instantiating the RO

We have studied the EG KEM in an abstract model where H is a random function accessible only as an oracle. To get a "real" scheme we need to instantiate H with a "real" function

How do we do this securely?

Instantiating the RO

We know that PRFs approximate random functions, meaning if $F: \{0,1\}^s \times D \to \{0,1\}^k$ is a PRF then the I/O behavior of F_K is like that of a random function.

So can we instantiate H via F?

RO Paradigm

- Design and analyze schemes in RO model
- In instantiation, replace RO with a hash-function based construct.

Example: H(W) = first 128 bits of SHA1(W). More generally if we need ℓ output bits:

H(W) =first ℓ bits of SHA1(1||W) || SHA1(2||W) || ...

RO Paradigm

There is no proof that the instantiated scheme is secure based on some "standard" assumption about the hash function.

The RO paradigm is a heuristic that seems to work well in practice.

The RO model is a model, not an assumption on H. To say

"Assume SHA1 is a RO"

makes no sense: it isn't.

RO Paradigm

It yields practical, natural schemes with provable support that has held up well in practice.

Cryptanalysts will often attack schemes assuming the hash functions in them are random, and a RO proof indicates security against such attacks.

Bottom line on RO paradigm:

- Use, but use with care
- Have a balanced perspective: understand both strengths and limitations
- Research it!

Counter-Example

Let $\mathcal{AE}' = (\mathcal{K}, \mathcal{E}', \mathcal{D}')$ be an IND-CPA PKE scheme. We modify it to a ROM PKE scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$, which

- Is IND-CPA secure in the ROM, but
- Fails to be IND-CPA secure for all instantiations of the RO.

Counter-Example

Given $\mathcal{AE}'=(\mathcal{K},\mathcal{E}',\mathcal{D}')$ we define $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ via

Alg
$$\mathcal{E}_{pk}^H(M)$$

Parse M as $\langle h \rangle$ where $h: \{0,1\}^* \to \{0,1\}^k$ $x \overset{\$}{\leftarrow} \{0,1\}^k$ if H(x) = h(x) then return M else return $\mathcal{E}'_{pk}(M)$

If H is a RO then for any $M = \langle h \rangle$

$$\Pr[H(x) = h(x)] \le \frac{q}{2^k}$$

for an adversary making q queries to H, and hence security is hardly affected.

Counter-Example

Given $\mathcal{AE}'=(\mathcal{K},\mathcal{E}',\mathcal{D}')$ we define $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ via

Alg $\mathcal{E}_{pk}^H(M)$

Parse M as $\langle h \rangle$ where $h: \{0,1\}^* \to \{0,1\}^k$ $x \stackrel{\$}{\leftarrow} \{0,1\}^k$ if H(x) = h(x) then return M else return $\mathcal{E}'_{pk}(M)$

Now let $h: \{0,1\}^* \to \{0,1\}^k$ be any fixed function, and instantiate H with h. Then if we encrypt $M = \langle h \rangle$ we have

$$\mathcal{E}_{pk}^h(\langle h \rangle) = M$$

so the scheme is insecure.

Chosen Ciphertext Attack

Where we are

We've seen EG KEM and extensions in the RO model

Where we are

- We've seen EG KEM and extensions in the RO model
- Besides discrete-log-based PKE schemes, the other big class of schemes is RSA-based (related to factoring)

Where we are

- We've seen EG KEM and extensions in the RO model
- Besides discrete-log-based PKE schemes, the other big class of schemes is RSA-based (related to factoring)
- Let's first look at the math behind RSA

RSA Math

Recall that $\varphi(N) = |\mathbf{Z}_N^*|$.

Claim: Suppose $e, d \in \mathbf{Z}_{\varphi(N)}^*$ satisfy $ed \equiv 1 \pmod{\varphi(N)}$. Then for any $x \in \mathbf{Z}_N^*$ we have

$$(x^e)^d \equiv x \pmod{N}$$

Proof:

$$(x^e)^d \equiv x^{ed \mod \varphi(N)} \equiv x^1 \equiv x$$

modulo N

RSA Function

A modulus N and encryption exponent e define the RSA function $f: \mathbf{Z}_N^* \to \mathbf{Z}_N^*$ defined by

$$f(x) = x^e \mod N$$

for all $x \in \mathbf{Z}_N^*$.

A value $d \in Z_{\varphi(N)}^*$ satisfying $ed \equiv 1 \pmod{\varphi(N)}$ is called a decryption exponent.

Claim: The RSA function $f: \mathbf{Z}_N^* \to \mathbf{Z}_N^*$ is a permutation with inverse $f^{-1}: \mathbf{Z}_N^* \to \mathbf{Z}_N^*$ given by

$$f^{-1}(y) = y^d \mod N$$

Proof: For all $x \in \mathbf{Z}_N^*$ we have

$$f^{-1}(f(x)) \equiv (x^e)^d \equiv x \pmod{N}$$

by previous claim.

Example

Let N = 15. So

$$\mathbf{Z}_{N}^{*} = \{1, 2, 4, 7, 8, 11, 13, 14\}$$
 $\varphi(N) = 8$
 $\mathbf{Z}_{\varphi(N)}^{*} = \{1, 3, 5, 7\}$

Let
$$e=3$$
 and $d=3$. Then $ed\equiv 9\equiv 1\pmod 8$

Let

$$f(x) = x^3 \mod 15$$
$$g(y) = y^3 \mod 15$$

X	f(x)	g(f(x))
1	1	1
2	8	2
4	4	4
7	13	7
8	2	8
11	11	11
13	7	13
14	14	14

RSA Usage

- pk = N, e; sk = N, d
- $\mathcal{E}_{pk}(x) = x^e \mod N = f(x)$
- $\mathcal{D}_{sk}(y) = y^d \mod N = f^{-1}(y)$

Security will rely on it being hard to compute f^{-1} without knowing d.

RSA is a trapdoor, one-way permutation:

- Easy to invert given trapdoor d
- Hard to invert given only N, e

RSA Generators

An RSA generator with security parameter k is an algorithm \mathcal{K}_{rsa} that returns N, p, q, e, d satisfying

- p, q are distinct odd primes
- N = pq and is called the (RSA) modulus
- $|\mathcal{N}| = k$, meaning $2^{k-1} \le \mathcal{N} \le 2^k$
- $e \in \mathbf{Z}_{\varphi(N)}^*$ is called the encryption exponent
- $d \in \mathbf{Z}_{arphi(N)}^*$ is called the decryption exponent
- $ed \equiv 1 \pmod{\varphi(N)}$

More Math

Fact: If p, q are distinct primes and N = pq then $\varphi(N) = (p-1)(q-1)$.

Proof:

$$\varphi(N) = |\{1, \dots, N-1\}| - |\{ip : 1 \le i \le q-1\}| - |\{iq : 1 \le i \le p-1\}|$$

$$= (N-1) - (q-1) - (p-1)$$

$$= N - p - q + 1$$

$$= pq - p - q + 1$$

$$= (p-1)(q-1)$$

Example:

- $15 = 3 \cdot 5$
- $\mathbf{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$
- $\varphi(15) = 8 = (3-1)(5-1)$

Building RSA Generators

Say we wish to have e = 3 (for efficiency). The generator \mathcal{K}_{rsa}^3 with (even) security parameter k:

```
repeat p, q \overset{\$}{\leftarrow} \{2^{k/2-1}, \dots, 2^{k/2} - 1\}; \ N \leftarrow pq; \ M \leftarrow (p-1)(q-1) until N \geq 2^{k-1} \text{ and } p, q \text{ are prime and } \gcd(e, M) = 1 d \leftarrow \text{MOD-INV}(e, M) return N, p, q, e, d
```

One-Wayness

The following should be hard:

Given: N, e, y where $y = f(x) = x^e \mod N$

Find: x

Formalism picks x at random and generates N, e via an RSA generator.

One-Wayness

Let \mathcal{K}_{rsa} be a RSA generator and I an adversary.

Game
$$OW_{\mathcal{K}_{rsa}}$$

procedure Initialize
 $(N, p, q, e, d) \stackrel{\$}{\leftarrow} \mathcal{K}_{rsa}$
 $x \stackrel{\$}{\leftarrow} \mathbf{Z}_N^*; \ y \leftarrow x^e \mod N$
 $return \ N, e, y$

procedure Finalize(x')
 $return \ (x = x')$

The ow-advantage of *I* is

$$\mathsf{Adv}^{\mathrm{ow}}_{\mathcal{K}_{\mathrm{rsa}}}(I) = \mathsf{Pr}\left[\mathrm{OW}_{\mathcal{K}_{\mathrm{rsa}}}^I \Rightarrow \mathsf{true}
ight]$$

Inverting RSA

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the converse is true, meaning whether or not one can invert RSA without factoring.

```
Alg FACTOR(N) // N = pq where p, q are primes for i = 2, ..., \lceil \sqrt{N} \rceil do
if N \mod i = 0 then p \leftarrow i; q \leftarrow N/i; return p, q
```

Algorithm	Time taken to factor N		
Naive	$O(e^{0.5 \ln N})$		
Quadratic Sieve (QS)	$O(e^{c(\ln N)^{1/2}(\ln \ln N)^{1/2}})$		
Number Field Sieve (NFS)	$O(e^{1.92(\ln N)^{1/3}(\ln \ln N)^{2/3}})$		

Number	bit-length	Factorization	alg
RSA-400	400	1993	QS
RSA-428	428	1994	QS
RSA-431	431	1996	NFS
RSA-465	465	1999	NFS
RSA-515	515	1999	NFS
RSA-576	576	2003	NFS
RSA-768	768	2009	NFS

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus

80-bit security: Factoring takes 280 time.

Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.

RSA: What to Remember

The RSA function $f(x) = x^e \mod N$ is a trapdoor one way permutation:

- Easy forward: given N, e, x it is easy to compute f(x)
- Easy back with trapdoor: Given N, d and y = f(x) it is easy to compute $x = f^{-1}(y) = y^d \mod N$
- Hard back without trapdoor: Given N, e and y = f(x) it is hard to compute $x = f^{-1}(y)$

Plain RSA Encryption

The plain RSA PKE scheme $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ associated to RSA generator \mathcal{K}_{rsa} is

$$\begin{array}{c|c} \underline{\mathsf{Alg}\ \mathcal{K}} \\ (N,p,q,e,d) \overset{\$}{\leftarrow} \mathcal{K}_{\mathrm{rsa}} \\ pk \leftarrow (N,e) \\ sk \leftarrow (N,d) \\ \mathrm{return}\ (pk,sk) \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}\ \mathcal{E}_{pk}(M)} \\ \hline C \leftarrow M^e \mod N \\ \mathrm{return}\ C \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}\ \mathcal{D}_{sk}(C)} \\ \hline M \leftarrow C^d \mod N \\ \mathrm{return}\ M \end{array}$$

The "easy-backwards with trapdoor" property implies

$$\mathcal{D}_{sk}(\mathcal{E}_{pk}(M)) = M$$

for all $M \in \mathbf{Z}_N^*$.

RSA-KEM

The ROM SRSA (Simple RSA) KEM $\mathcal{KEM} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator \mathcal{K}_{rsa} is as follows, where $H:\{0,1\}^* \to \{0,1\}^k$ is the RO:

$$\frac{\text{Alg } \mathcal{K}}{(N, p, q, e, d)} \stackrel{\$}{\leftarrow} \mathcal{K}_{rsa} \left| \begin{array}{l} \frac{\text{Alg } \mathcal{E}_{pk}^{H}}{x \overset{\$}{\leftarrow} \mathbf{Z}_{N}^{*}} \\ k \leftarrow (N, e) \\ sk \leftarrow (N, d) \\ \text{return } (pk, sk) \end{array} \right| \left| \begin{array}{l} \frac{\text{Alg } \mathcal{D}_{sk}^{H}(C_{a})}{x \leftarrow C_{a}^{d} \mod N} \\ K \leftarrow H(x) \\ C_{a} \leftarrow x^{e} \mod N \\ \text{return } (K, C_{a}) \end{array} \right| \left| \begin{array}{l} \frac{\text{Alg } \mathcal{D}_{sk}^{H}(C_{a})}{x \leftarrow C_{a}^{d} \mod N} \\ \text{return } K \end{array} \right|$$

Alg
$$\mathcal{E}_{pk}^{H}$$

$$x \overset{\$}{\leftarrow} \mathbf{Z}_{N}^{*}$$

$$K \leftarrow H(x)$$

$$C_{a} \leftarrow x^{e} \mod N$$

$$\operatorname{return}(K, C_{a})$$

$$\frac{\text{Alg } \mathcal{D}^H_{sk}(C_a)}{x \leftarrow C^d_a \mod N}$$

$$K \leftarrow H(x)$$

$$\text{return } K$$

RSA-KEM

Theorem: Let \mathcal{K}_{rsa} be a RSA generator and $\mathcal{KEM} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ the associated ROM SRSA KEM. Let A be an ind-cpa adversary that makes 1 **Enc** query and q queries to the RO H. Then there is a OW-adversary I such that

$$\mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{KEM}}(A) \leq \mathsf{Adv}^{\mathrm{ow}}_{\mathcal{K}_{\mathrm{rsa}}}(I)$$

Furthermore the running time of I is about that of A plus the time for q RSA encryptions.

Proof

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024 ROs: $G: \{0, 1\}^{128} \to \{0, 1\}^{894}$ and $H: \{0, 1\}^{894} \to \{0, 1\}^{128}$

Algorithm $\mathcal{E}_{N,e}(M)$ $//|M| \le 765$ $r \stackrel{\$}{\leftarrow} \{0,1\}^{128}; p \leftarrow 765 - |M|$

$$x \leftarrow s||t$$
 $C \leftarrow x^e \mod N$
return C

Algorithm $\mathcal{D}_{N,d}(C)$ // $C \in \mathbb{Z}_N^*$ $x \leftarrow C^d \mod N$

if
$$a = 0^{128}$$
 then return M else return \bot

IND-CPA secure in the RO model [BR'94]

- IND-CPA secure in the RO model [BR'94]
- IND-CCA secure in the RO model [FOPS'00]

- IND-CPA secure in the RO model [BR'94]
- IND-CCA secure in the RO model [FOPS'00]
- IND-CPA secure in the standard model assuming the phihiding assumption [KOS'10]

Protocols:

- SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
- SSH ver 1.0, 2.0
- . . .

Standards:

- RSA PKCS #1 versions 1.5, 2.0
- IEEE P1363
- NESSIE (Europe)
- CRYPTREC (Japan)
- . . .