Public-Key Encryption

Adam O'Neill
based on http://cseweb.ucsd.edu/~mihir/cse207/

Symmetric-key Crypto

- Before Alice and Bob can communicate securely, they need to have a common secret key $K_{A B}$.
- If Alice wishes to also communicate with Charlie then she and Charlie must also have another common secret key $K_{A C}$.
- If Alice generates $K_{A B}, K_{A C}$, they must be communicated to her partners over private and authenticated channels.

Public-key Crypto

- Alice has a secret key that is shared with nobody, and an associated public key that is known to everybody.
- Anyone (Bob, Charlie, ...) can use Alice's public key to send her an encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a database

- Senders don't need secrets
- There are no shared secrets

Syntax

A public-key (or asymmetric) encryption scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms, where

How it Works

Step 1: Key generation
Alice locally computers $(p k, s k) \stackrel{\varsigma}{\varsigma}^{\varsigma} \mathcal{K}$ and stores $s k$.
Step 2: Alice enables any prospective sender to get $p k$.
Step 3: The sender encrypts under pk and Alice decrypts under sk.
We don't require privacy of $p k$ but we do require authenticity: the sender should be assured $p k$ is really Alice's key and not someone else's. One could

- Put public keys in a trusted but public "phone book", say a cryptographic DNS.
- Use certificates as we will see later.

Privacy

- The privacy notion is like IND-CPA for symmetric-key encryption, except the adversary is given the public key.

Finalize (b)
ret b

Let $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a PKE scheme and A an adversary.
IND-CPA
loss y enc. $p k \approx p k^{\prime}$办der.

Game Left ${ }_{\mathcal{A E}}$
procedure Initialize
$(p k, s k) \stackrel{\mathcal{K}}{\leftarrow}$; return $p k$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
Return $C \stackrel{\$}{\leftarrow} \mathcal{E}_{p k}\left(M_{0}\right)$

Game Right ${ }_{\mathcal{A E}}$ procedure Initialize $(p k, s k) \stackrel{\mathcal{K}}{ }$; return $p k$ procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$ Return $\left.C \stackrel{\&}{\leftarrow} \mathcal{E}_{p k}\left(M_{1}\right)\right)$

No finalize procedure means the "trivial" finale
Associated to $\mathcal{A E}, A$ are the probabilities procedure.

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A E}}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A} \mathcal{E}}^{A} \Rightarrow 1\right]
$$

that A outputs 1 in each world. The ind-cpa advantage of A is

$$
\operatorname{Adv}_{\mathcal{A} \mathcal{E}}^{\mathrm{ind}-\mathrm{cpa}}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A} \mathcal{E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A} \mathcal{E}}^{A} \Rightarrow 1\right]
$$

Explanation

The "return $p k$ " statement in Initialize means the adversary A gets the public key $p k$ as input. It does not get $s k$.

It can call LR with any equal-length messages M_{0}, M_{1} of its choice to get back an encryption $C \stackrel{\varsigma}{\leftarrow} \mathcal{E}_{p k}\left(M_{b}\right)$ of M_{b} under sk, where $b=0$ in game Left $_{\mathcal{A} \mathcal{E}}$ and $b=1$ in game Right $_{\mathcal{A} \mathcal{E}}$. Notation indicates encryption algorithm may be randomized.
A is not allowed to call LR with messages M_{0}, M_{1} of unequal length. Any such A is considered invalid and its advantage is undefined or 0 .

It outputs a bit, and wins if this bit equals b.

Building a Scheme

We would like security to result from the hardness of computing discrete logarithms.

Let the receiver's public key be g where $G=\langle g\rangle$ is a cyclic group. Let's let the encryption of x be g^{x}. Then

$$
\underbrace{g^{x}}_{\mathcal{E}_{g}(x)} \xrightarrow{\text { hard }} x
$$

so to recover x, adversary must compute discrete logarithms, and we know it can't, so are we done?

Key Encapsulation

- To build a PKE scheme it is often easier to first build what is called a key-encapsulation mechanism

Key Encapsulation

- To build a PKE scheme it is often easier to first build what is called a key-encapsulation mechanism
- A PKE scheme is then obtained by using hybrid encryption (the so-called KEM-DEM paradigm)

Key Encapsulation
$\left(x_{5}, y\right) \quad\left(x, x^{\prime \prime \prime} \bmod N\right)(x, y) \quad f(x)=y$
A SEM $\mathcal{K E M}=(\mathcal{K} \mathcal{K}, \mathcal{E K}, \mathcal{D K})$ is a triple of algorithms

$$
\begin{gathered}
(p l c, s k) k^{\ddagger} k \alpha \\
(c, k) \leftarrow \varepsilon k(p k) \leftarrow \\
k^{\prime} \leftarrow P K(s k, c) \\
K=\mid c^{\prime}
\end{gathered}
$$

${ }^{K \in\left\{0.23^{K}\right.}$ KEM Security

Let $\mathcal{K E M}=(\mathcal{K} \mathcal{K}, \mathcal{E} \mathcal{K}, \mathcal{D K})$ be a KEM with key length k. Security requires that if we let

$$
\left(K_{1}, C_{a}\right) \stackrel{\S}{\leftarrow} \mathcal{K}_{p k}
$$

then K_{1} should look "random". Somewhat more precisely, if we also generate $K_{0} \leftarrow^{\S}\{0,1\}^{k} ; b \leftarrow^{\S}\{0,1\}$ then

A has a hard time figuring out b

ए ए

Let $\mathcal{K} \mathcal{E} \mathcal{M}=(\mathcal{K} \mathcal{K}, \mathcal{E} \mathcal{K}, \mathcal{D K})$ be a $K E M$ with key length k, and A an adversary.

```
Game Left }\mp@subsup{\mathcal{KEM}}{M}{
procedure Initialize
(pk, sk) }\stackrel{&}{\leftarrow}\mathcal{K}\mathcal{K
return pk
procedure Enc
Ko\mp@code{&}}\mp@subsup{}{$}{{}{0,1\mp@subsup{}}{}{k};(\mp@subsup{K}{1}{},\mp@subsup{C}{a}{})\stackrel{&}{\leftarrow}\mathcal{E}\mp@subsup{\mathcal{K}}{pk}{
return (Ko, Ca)
```

We allow only one call to Enc. The ind-cpa advantage of A is

$$
\operatorname{Adv}_{\mathcal{K E M}}^{\text {ind-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{K E M}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{K E M}}^{A} \Rightarrow 1\right]
$$

Building a KEM

$$
C=g^{y} \quad g^{x}=p k \quad x=s k \quad k=H\left(g^{x y}\right)
$$

We can turn DH key exchange into a KEM via

- Let Alice have public key g^{x} and secret key x
- Bob picks y and sends g^{y} to Alice as the ciphertext
- The key K is (a hash of) the shared DH key $g^{x y}=Y^{x}=X^{y}$

The DH key is a group element. Hashing results in a key that is a string of a desired length.

El Gama KEM

Let $G=\langle g\rangle$ be a cyclic group of order m and $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ a (public, keyless) hash function. Define KEM $\mathcal{K E M}=(\mathcal{K} \mathcal{K}, \mathcal{E K}, \mathcal{D K})$ by

Hybrid Encryption

Given a KEM $\mathcal{K E M}=(\mathcal{K} \mathcal{K}, \mathcal{E} \mathcal{K}, \mathcal{D K})$ with key length k, we can build a PKE scheme with the aid of a symmetric encryption scheme $\mathcal{S E}=(\mathcal{K} \mathcal{S}$, $\mathcal{E S}, \mathcal{D S})$ that also has key length k. Namely, define the PKE scheme $\mathcal{A E}$ $=(\mathcal{K} \mathcal{K}, \mathcal{E}, \mathcal{D})$ via:

$$
\begin{array}{l|l}
\frac{\operatorname{Alg} \mathcal{E}_{p k}(M)}{\left(K, C_{a}\right) \stackrel{s}{\leftarrow} \mathcal{E}} \mathcal{K}_{p k} & \frac{\operatorname{Alg} \mathcal{D}_{s k}\left(\left(C_{a}, C_{s}\right)\right)}{K \leftarrow \mathcal{D} \mathcal{K}_{s k}\left(C_{a}\right)} \\
C_{s}^{\leftarrow} \mathcal{E S}_{K}(M) & M \leftarrow \mathcal{D} \mathcal{S}_{K}\left(C_{s}\right) \\
\text { Return }\left(\mathcal{C}_{a}, C_{s}\right) & \text { Return } M
\end{array}
$$

One query simplification

In assessing IND-CPA security of a PKE scheme, we may assume A makes only one LR query. It can be shown that this can decrease its advantage by at most the number of LR queries.
Theorem: Let $\mathcal{A E}$ be a PKE scheme and A an ind-cpa adversary making q $\mathbf{L R}$ queries. Then there is a ind-cpa adversary A_{1} making $1 \mathbf{L R}$ query such that

$$
\operatorname{Adv}_{\mathcal{A} \mathcal{E}}^{\text {ind-cpa }}(A) \leq \underbrace{q} \operatorname{Adv}_{\mathcal{A} \mathcal{E}}^{\text {ind-cpa }}\left(A_{1}\right) \approx 2^{q}
$$

and the running time of A_{1} is about that of A.

Proof

i-th hybrid: queries $1, \ldots, i$ by A are answered by encrypting ($i \neq 1$)-st query: avery own orade it 2,..., q que: encrypt RIGHT
hybrids

If the KEM and symmetric encryption scheme are both IND-CPA, then so is the PKE scheme constructed by hybrid encryption.
Theorem: Let $\mathrm{KEM} \mathcal{K} \mathcal{E} \mathcal{M}=(\mathcal{K} \mathcal{K}, \mathcal{E} \mathcal{K}, \mathcal{D K})$ and symmetric encryption scheme $\mathcal{S E}=(\mathcal{K} \mathcal{S}, \mathcal{E S}, \mathcal{D S})$ both have key length k, and let $\mathcal{A E}=(\mathcal{K} \mathcal{K}$, \mathcal{E}, \mathcal{D}) be the corresponding PKE scheme built via hybrid encryption. Let A be an adversary making $1 \mathbf{L R}$ query. Then there are adversaries B_{a}, B_{s} such that

$$
\mathbf{A d v}_{\mathcal{A} \mathcal{E}}^{\text {ind -cpa }}(A) \leq 2 \cdot \mathbf{A d v}_{\mathcal{K} \mathcal{E} \mathcal{M}}^{\text {ind-cpa }}\left(B_{a}\right)+\mathbf{A d v}_{\mathcal{S E}}^{\text {ind-cpa }}\left(B_{s}\right)
$$

Furthermore B_{a} makes one Enc query, B_{s} makes one LR query, and both have running time about the same as that of A.

$$
G_{0}, G_{1}
$$

Benefits

- Modular design, assurance via proof

Benefits

- Modular design, assurance via proof
- Speed: 160-bit elliptic curve exponentiation takes the time of about $3 \mathrm{k}-4 \mathrm{k}$ block cipher operations or hashes

El Gamal KEM

Let $G=\langle g\rangle$ be a cyclic group of order m and $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ a (public, keyless) hash function. Define KEM $\mathcal{K} \mathcal{E M}=(\mathcal{K} \mathcal{K}, \mathcal{E K}, \mathcal{D K})$ by

$\frac{\operatorname{Alg} \mathcal{K} \mathcal{K}}{x \leftarrow \mathbf{Z}_{m}}$	$\frac{\operatorname{Alg} \mathcal{E} \mathcal{K}_{X}}{y \leftarrow^{s} \mathbf{Z}_{m} ;} C_{a} \leftarrow g^{y}$	$\frac{\mathbf{A l g} \mathcal{D K}_{x}\left(C_{a}\right)}{Z \leftarrow C_{a}^{x}}$	
$X \leftarrow g^{x}$	$Z \leftarrow X^{y}$	$K \leftarrow H\left(C_{a} \\| Z\right)$	
return (X,x)	$K \leftarrow H\left(C_{a} \\| Z\right)$	$K \leftarrow$ return $K^{\text {return }\left(K, C_{a}\right)}$	

How to prove this scheme is secure?

Random Oracle Model

A random oracle is a publicly-accessible random function

Oracle access to H provided to

- all scheme algorithms
- the adversary

The only access to H is oracle access.

ROM EG KEM

Let $G=\langle g\rangle$ be a cyclic group of order m and H the random oracle. Define the Random Oracle Model (ROM) KEM $\mathcal{K E \mathcal { M }}=(\mathcal{K} \mathcal{K}, \mathcal{E K}, \mathcal{D K})$ by

$$
\begin{array}{l|l|l}
\frac{\operatorname{Alg} \mathcal{K} \mathcal{K}}{x \leftarrow^{\varsigma} \mathbf{Z}_{m}} & \frac{\mathbf{A l g} \mathcal{E} \mathcal{K}_{X}^{H}}{y \leftarrow^{\varsigma} \mathbf{Z}_{m} ;} C_{a} \leftarrow g^{y} & \frac{\operatorname{Alg} \mathcal{D} \mathcal{K}_{x}^{H}\left(C_{a}\right)}{Z \leftarrow C_{a}^{X}} \\
X \leftarrow g^{x} & Z \leftarrow X^{y} & K \leftarrow H\left(C_{a} \| Z\right) \\
\text { return }(X, x) & K \leftarrow H\left(C_{a} \| Z\right) & \text { return }\left(K, C_{a}\right)
\end{array}
$$

Algorithms $\mathcal{E K}, \mathcal{D K}$ have oracle access to the random oracle H.

ROM KEM Security

Let $\mathcal{K E M}=(\mathcal{K} \mathcal{K}, \mathcal{E K}, \mathcal{D K})$ be a ROM KEM with key length k, and let A be an adversary.

```
Game INDCPA
procedure Initialize
(pk, sk) }\mp@subsup{}{\leftarrow}{\lessgtr}\mathcal{K}\mathcal{K};b\leftarrow&{0,1
return pk
procedure Finalize( }\mp@subsup{b}{}{\prime}\mathrm{ )
return ( }b=\mp@subsup{b}{}{\prime}\mathrm{ )
```

```
procedure H(W)
```

```
procedure H(W)
```



```
return H[W]
```

return H[W]
procedure Enc

```
procedure Enc
```



```
return (K
```

```
return (K
```

We allow only one call to Enc. The ind-cpa advantage of A is

$$
\operatorname{Adv}_{\mathcal{K} \mathcal{E} \mathcal{M}}^{\text {ind-cpa }}(A)=2 \cdot \operatorname{Pr}\left[\operatorname{INDCPA}_{\mathcal{K} \mathcal{E M}}^{A} \Rightarrow \text { true }\right]-1
$$

ROM Security of EG KEM

Claim: The EG KEM is IND-CPA secure in the RO model
In the IND-CPA game

where

$$
b \leftarrow^{\S}\{0,1\} ; K_{0} \leftarrow^{\S}\{0,1\}^{k} ; K_{1} \leftarrow H\left(g^{y} \| g^{x y}\right)
$$

We are saying A has a hard time figuring out b. Why?

The Theorem

The following says that if the CDH problem is hard in G then the EG KEM is IND-CPA secure in the ROM.

Theorem: Let $G=\langle g\rangle$ be a cyclic group of order m and let $\mathcal{K E M}=$ $(\mathcal{K} \mathcal{K}, \mathcal{E K}, \mathcal{D K})$ be the ROM EG KEM over G with key length k. Let A be an ind-cpa adversary making 1 query to Enc and q queries to the RO H. Then there is a cdh adversary B such that

$$
\mathbf{A d v}_{\mathcal{K E M}}^{\text {ind-cpa }}(A) \leq q \cdot \mathbf{A d v}_{G, g}^{\text {edh }}(B)
$$

Furthermore the running time of B is about the same as that of A.

Games for Proof

Game G_{0}, G_{1}		
	procedure $H(W)$	
procedure Initialize	$H[W] \stackrel{s}{s}_{\leftarrow}\{0,1\}^{k} ; Y \\| Z \leftarrow W$	
$x, y \leftarrow \mathbf{Z}_{m} ; K \leftarrow\{0,1\}^{k}$	if $\left(Z=g^{x y}\right.$ and $\left.Y=g^{y}\right)$ then	
return g^{x}	bad \leftarrow true; $H[W] \leftarrow K$	
ocedure Enc	return $H[W]$	
return $\left(K, g^{y}\right)$		

Assume (wlog) that A never repeats a H-query. Then

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{K E M} \mathcal{M}}^{\text {ind-cpa }}(A) & =\operatorname{Pr}\left[G_{1}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[G_{0}^{A} \Rightarrow 1\right] \\
& \leq \operatorname{Pr}\left[G_{0}^{A} \text { sets bad }\right]
\end{aligned}
$$

We would like to design B so that $\operatorname{Pr}\left[G_{0}^{A}\right.$ sets bad $] \leq \operatorname{Adv}_{G, g}^{\mathrm{cdh}}(B)$

	subroutine EncSim return $\left(K, g^{y}\right)$	
adversary $B\left(g^{\times}, g^{-}\right)$	subroutine $\operatorname{HSim}(W)$	
$K \stackrel{S}{5}^{5}\{0,1\}^{k}$	$H[W] \stackrel{¢}{¢}\{0,1\}^{k} \cdot Y \\| Z \leftarrow W$	
$b^{\prime} \leftarrow A^{\text {EncSim,HSim }}\left(g^{\times}\right)$	if $\left(Z=g^{x y}\right.$ and $\left.Y=g^{y}\right)$ then output Z and halt return $H[W]$	

Problem: B can't do the test since it does not know $g^{x y}$.

DHIES and ECIES

The PKE scheme derived from KEM + symmetric encryption scheme with

- The RO EG KEM
- Some suitable mode of operation symmetric encryption scheme (e.g. CBC\$) is standardized as DHIES and ECIES

ECIES features:

Operation	Cost
encryption	2160 -bit exp
decryption	1160 -bit exp
ciphertext expansion	160 -bits

ciphertext expansion $=($ length of ciphertext $)-($ length of plaintext $)$

Instantiating the RO

We have studied the EG KEM in an abstract model where H is a random function accessible only as an oracle. To get a "real" scheme we need to instantiate H with a "real" function

How do we do this securely?

Instantiating the RO

We know that PRFs approximate random functions, meaning if $F:\{0,1\}^{s} \times D \rightarrow\{0,1\}^{k}$ is a PRF then the I/O behavior of F_{K} is like that of a random function.

So can we instantiate H via F ?

RO Paradigm

- Design and analyze schemes in RO model
- In instantiation, replace RO with a hash-function based construct.

Example: $H(W)=$ first 128 bits of $\operatorname{SHA1}(W)$. More generally if we need ℓ output bits:
$H(W)=$ first ℓ bits of $\operatorname{SHA} 1(1|\mid W)\|\operatorname{SHA}(2|\mid W) \| \ldots$

RO Paradigm

There is no proof that the instantiated scheme is secure based on some "standard" assumption about the hash function.

The RO paradigm is a heuristic that seems to work well in practice.
The RO model is a model, not an assumption on H. To say

> "Assume SHA1 is a RO"
makes no sense: it isn't.

RO Paradigm

It yields practical, natural schemes with provable support that has held up well in practice.

Cryptanalysts will often attack schemes assuming the hash functions in them are random, and a RO proof indicates security against such attacks.

Bottom line on RO paradigm:

- Use, but use with care
- Have a balanced perspective: understand both strengths and limitations
- Research it!

Counter-Example

Let $\mathcal{A \mathcal { E } ^ { \prime }}=\left(\mathcal{K}, \mathcal{E}^{\prime}, \mathcal{D}^{\prime}\right)$ be an IND-CPA PKE scheme. We modify it to a ROM PKE scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$, which

- Is IND-CPA secure in the ROM, but
- Fails to be IND-CPA secure for all instantiations of the RO.

Counter-Example

Given $\mathcal{A E}^{\prime}=\left(\mathcal{K}, \mathcal{E}^{\prime}, \mathcal{D}^{\prime}\right)$ we define $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ via
Alg $\mathcal{E}_{p k}^{H}(M)$
Parse M as $\langle h\rangle$ where $h:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$
$x \leftarrow^{\S}\{0,1\}^{k}$
if $H(x)=h(x)$ then return M
else return $\mathcal{E}_{p k}^{\prime}(M)$
If H is a RO then for any $M=\langle h\rangle$

$$
\operatorname{Pr}[H(x)=h(x)] \leq \frac{q}{2^{k}}
$$

for an adversary making q queries to H, and hence security is hardly affected.

Counter-Example

Given $\mathcal{A \mathcal { E } ^ { \prime }}=\left(\mathcal{K}, \mathcal{E}^{\prime}, \mathcal{D}^{\prime}\right)$ we define $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ via
Alg $\mathcal{E}_{p k}^{H}(M)$
Parse M as $\langle h\rangle$ where $h:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$
$x \leftarrow^{\S}\{0,1\}^{k}$
if $H(x)=h(x)$ then return M
else return $\mathcal{E}_{p k}^{\prime}(M)$
Now let $h:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be any fixed function, and instantiate H with h. Then if we encrypt $M=\langle h\rangle$ we have

$$
\mathcal{E}_{p k}^{h}(\langle h\rangle)=M
$$

so the scheme is insecure.

Chosen Ciphertext Attack

Where we are

- We've seen EG KEM and extensions in the RO model

Where we are

- We've seen EG KEM and extensions in the RO model
- Besides discrete-log-based PKE schemes, the other big class of schemes is RSA-based (related to factoring)

Where we are

- We've seen EG KEM and extensions in the RO model
- Besides discrete-log-based PKE schemes, the other big class of schemes is RSA-based (related to factoring)
- Let's first look at the math behind RSA

RSA Math

Recall that $\varphi(N)=\left|\mathbf{Z}_{N}^{*}\right|$.
Claim: Suppose $e, d \in \mathbf{Z}_{\varphi(N)}^{*}$ satisfy $e d \equiv 1(\bmod \varphi(N))$. Then for any $x \in \mathbf{Z}_{N}^{*}$ we have

$$
\left(x^{e}\right)^{d} \equiv x(\bmod N)
$$

Proof:

$$
\left(x^{e}\right)^{d} \equiv x^{e d} \bmod \varphi(N) \equiv x^{1} \equiv x
$$

modulo N

RSA Function

A modulus N and encryption exponent e define the RSA function $f: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ defined by

$$
f(x)=x^{e} \quad \bmod N
$$

for all $x \in \mathbf{Z}_{N}^{*}$.
A value $d \in Z_{\varphi(N)}^{*}$ satisfying ed $\equiv 1(\bmod \varphi(N))$ is called a decryption exponent.

Claim: The RSA function $f: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ is a permutation with inverse $f^{-1}: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ given by

$$
f^{-1}(y)=y^{d} \quad \bmod N
$$

Proof: For all $x \in \mathbf{Z}_{N}^{*}$ we have

$$
f^{-1}(f(x)) \equiv\left(x^{e}\right)^{d} \equiv x \quad(\bmod N)
$$

by previous claim.

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then

$$
e d \equiv 9 \equiv 1 \quad(\bmod 8)
$$

Let

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	7
8	2	8
11	11	11
13	7	13
14	14	14

RSA Usage

- $p k=N, e ; \quad s k=N, d$
- $\mathcal{E}_{p k}(x)=x^{e} \bmod N=f(x)$
- $\mathcal{D}_{\text {sk }}(y)=y^{d} \bmod N=f^{-1}(y)$

Security will rely on it being hard to compute f^{-1} without knowing d.
RSA is a trapdoor, one-way permutation:

- Easy to invert given trapdoor d
- Hard to invert given only N, e

RSA Generators

An RSA generator with security parameter k is an algorithm $\mathcal{K}_{r \text { sa }}$ that returns N, p, q, e, d satisfying

- p, q are distinct odd primes
- $N=p q$ and is called the (RSA) modulus
- $|N|=k$, meaning $2^{k-1} \leq N \leq 2^{k}$
- $e \in \mathbf{Z}_{\varphi(N)}^{*}$ is called the encryption exponent
- $d \in \mathbf{Z}_{\varphi(N)}^{*}$ is called the decryption exponent
- $e d \equiv 1(\bmod \varphi(N))$

More Math

Fact: If p, q are distinct primes and $N=p q$ then $\varphi(N)=(p-1)(q-1)$.
Proof:

$$
\begin{aligned}
\varphi(N) & =|\{1, \ldots, N-1\}|-|\{i p: 1 \leq i \leq q-1\}|-|\{i q: 1 \leq i \leq p-1\}| \\
& =(N-1)-(q-1)-(p-1) \\
& =N-p-q+1 \\
& =p q-p-q+1 \\
& =(p-1)(q-1)
\end{aligned}
$$

Example:

- $15=3 \cdot 5$
- $\mathbf{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- $\varphi(15)=8=(3-1)(5-1)$

Building RSA Generators

Say we wish to have $e=3$ (for efficiency). The generator $\mathcal{K}_{\text {rsa }}^{3}$ with (even) security parameter k :
repeat

$$
\begin{aligned}
& \qquad p, q \leftarrow^{\$}\left\{2^{k / 2-1}, \ldots, 2^{k / 2}-1\right\} ; N \leftarrow p q ; M \leftarrow(p-1)(q-1) \\
& \text { until } \\
& \quad N \geq 2^{k-1} \text { and } p, q \text { are prime and } \operatorname{gcd}(e, M)=1 \\
& d \leftarrow \operatorname{MOD}-\operatorname{INV}(e, M) \\
& \text { return } N, p, q, e, d
\end{aligned}
$$

One-Wayness

The following should be hard:
Given: N, e, y where $y=f(x)=x^{e} \bmod N$
Find: x
Formalism picks x at random and generates N, e via an RSA generator.

One-Wayness

Let $\mathcal{K}_{\text {rsa }}$ be a RSA generator and I an adversary.

```
Game OW (\mathcal{K}
procedure Initialize
(N,p,q,e,d)}\mp@subsup{\leftarrow}{\leftarrow}{$}\mp@subsup{\mathcal{K}}{\textrm{rsa}}{
x\leftarrow $ Z
return N,e,y
```

The ow-advantage of I is

$$
\mathbf{A d v}_{\mathcal{K}_{\mathrm{rsa}}}^{\mathrm{ow}}(I)=\operatorname{Pr}\left[\mathrm{OW}_{\mathcal{K}_{\mathrm{rsa}}}^{\prime} \Rightarrow \text { true }\right]
$$

Inverting RSA

Factoring

Given: N where $N=p q$ and p, q are prime
Find: p, q
If we can factor we can invert RSA. We do not know whether the converse is true, meaning whether or not one can invert RSA without factoring.

Factoring

$$
\begin{aligned}
& \text { Alg } \operatorname{FACTOR}(N) \\
& \text { for } i=2, \ldots,[\sqrt{N}\rceil \text { do } \\
& \text { if } N \bmod i=0 \text { then } \\
& \quad p \leftarrow i ; q \leftarrow N / i ; \text { return } p, q
\end{aligned}
$$

Factoring

Algorithm	Time taken to factor N
Naive	$O\left(e^{0.5 \ln N}\right)$
Quadratic Sieve (QS)	$O\left(e^{\left.c(\ln N)^{1 / 2}(\ln \ln N)^{1 / 2}\right)}\right.$
Number Field Sieve (NFS)	$O\left(e^{1.92(\ln N)^{1 / 3}(\ln \ln N)^{2 / 3}}\right)$

Factoring

Number	bit-length	Factorization	alg
RSA-400	400	1993	QS
RSA-428	428	1994	QS
RSA-431	431	1996	NFS
RSA-465	465	1999	NFS
RSA-515	515	1999	NFS
RSA-576	576	2003	NFS
RSA-768	768	2009	NFS

Factoring

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus 80-bit security: Factoring takes 2^{80} time.

Factorization of RSA-1024 seems out of reach at present.
Estimates vary, and for more security, longer moduli are recommended.

RSA: What to Remember

The RSA function $f(x)=x^{e} \bmod N$ is a trapdoor one way permutation:

- Easy forward: given N, e, x it is easy to compute $f(x)$
- Easy back with trapdoor: Given N, d and $y=f(x)$ it is easy to compute $x=f^{-1}(y)=y^{d} \bmod N$
- Hard back without trapdoor: Given N, e and $y=f(x)$ it is hard to compute $x=f^{-1}(y)$

Plain RSA Encryption

The plain RSA PKE scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator $\mathcal{K}_{\text {rsa }}$ is

$\frac{\operatorname{Alg} \mathcal{K}}{(N, p, q, e, d)} \leftarrow^{\S} \mathcal{K}_{\text {rsa }}$	$\frac{\operatorname{Alg} \mathcal{E}_{p k}(M)}{C \leftarrow M^{e} \bmod N}$	$\frac{\operatorname{Alg} \mathcal{D}_{\text {sk }}(C)}{M \leftarrow C^{d} \bmod N}$
$p k \leftarrow(N, e)$ $s k \leftarrow(N, d)$ return $(p k, s k)$	return C	return M

The "easy-backwards with trapdoor" property implies

$$
\mathcal{D}_{s k}\left(\mathcal{E}_{p k}(M)\right)=M
$$

for all $M \in \mathbf{Z}_{N}^{*}$.

RSA-KEM

The ROM SRSA (Simple RSA) KEM $\mathcal{K E \mathcal { M }}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator $\mathcal{K}_{\text {rsa }}$ is as follows, where $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ is the RO:

$$
\begin{array}{l|l|l}
\operatorname{Alg} \mathcal{K} \\
(N, p, q, e, d) \leftarrow \mathcal{K}_{\mathrm{rsa}} & \frac{\operatorname{Alg} \mathcal{E}_{p k}^{H}}{x \leftarrow^{\S} \mathbf{Z}_{N}^{*}} & K \leftarrow H(x) \\
p k \leftarrow(N, e) & \underline{\operatorname{Alg} \mathcal{D}_{\text {sk }}^{H}\left(C_{a}\right)} \\
x \leftarrow C_{a}^{d} \bmod N \\
s k \leftarrow(N, d) & C_{a} \leftarrow x^{e} \bmod N & K \leftarrow H(x) \\
\text { return }(p k, s k) & \text { return }\left(K, C_{a}\right) & \text { return } K
\end{array}
$$

RSA-KEM

Theorem: Let $\mathcal{K}_{\text {rsa }}$ be a RSA generator and $\mathcal{K} \mathcal{E} \mathcal{M}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ the associated ROM SRSA KEM. Let A be an ind-cpa adversary that makes 1 Enc query and q queries to the RO H. Then there is a OW-adversary I such that

$$
\operatorname{Adv}_{\mathcal{K E M}}^{\text {ind-cpa }}(A) \leq \operatorname{Adv}_{\mathcal{K}_{\text {rsa }}}^{\text {ow }}(I)
$$

Furthermore the running time of I is about that of A plus the time for q RSA encryptions.

Proof

RSA-OAEP

Receiver keys: $p k=(N, e)$ and $s k=(N, d)$ where $|N|=1024$ ROs: $G:\{0,1\}^{128} \rightarrow\{0,1\}^{894}$ and $H:\{0,1\}^{894} \rightarrow\{0,1\}^{128}$

Algorithm $\mathcal{E}_{N, e}(M) \quad / /|M| \leq 765$
$r \leftarrow\{0,1\}^{128} ; p \leftarrow 765-|M|$

$x \leftarrow s \| t$
$C \leftarrow x^{e} \bmod N$
return C

Algorithm $\mathcal{D}_{N, d}(C) \quad / / C \in \mathbb{Z}_{N}^{*}$
$x \leftarrow C^{d} \bmod N$ $s \| t \leftarrow x$

if $a=0^{128}$ then return M else return \perp

RSA-OAEP

- IND-CPA secure in the RO model [BR'94]

RSA-OAEP

- IND-CPA secure in the RO model [BR'94]
- IND-CCA secure in the RO model [FOPS'00]

RSA-OAEP

- IND-CPA secure in the RO model [BR'94]
- IND-CCA secure in the RO model [FOPS'00]
- IND-CPA secure in the standard model assuming the phihiding assumption [KOS'10]

RSA-OAEP

Protocols:

- SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
- SSH ver 1.0, 2.0
- . . .

Standards:

- RSA PKCS \#1 versions 1.5, 2.0
- IEEE P1363
- NESSIE (Europe)
- CRYPTREC (Japan)
- . . .

