Public-Key
Encryption

Adam O’Neill
based on http://cseweb.ucsd.edu/~mihir/cse207/

Symmetric-key Crypto

e Before Alice and Bob can communicate securely, they need to have a
common secret key Kxp.

e If Alice wishes to also communicate with Charlie then she and Charlie
must also have another common secret key Kxc.

o |f Alice generates Kag, Kac, they must be communicated to her
partners over private and authenticated channels.

Public-key Crypto

e Alice has a secret key that is shared with nobody, and an associated
public key that is known to everybody.

e Anyone (Bob, Charlie, ...) can use Alice's public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

e Senders don't need secrets

e [here are no shared secrets

Syntax

A public-key (or asymmetric) encryption scheme AE = (K, £, D) consists
of three algorithms, where

pk<=— K
sk
Y l
M— ¢ e >C = D —=Mor L

> <

Step
Alice

Step
Step

We d
shou
could

How It Works

1: Key generation
locally computers (pk, sk) < KC and stores sk.

2: Alice enables any prospective sender to get pk.
3: The sender encrypts under pk and Alice decrypts under sk.

on't require privacy of pk but we do require authenticity: the sender
d be assured pk is really Alice’s key and not someone else's. One

Put public keys in a trusted but public “phone book™, say a

cryptographic DNS.

e Use certificates as we will see later.

Privacy

e The privacy notion is like IND-CPA for symmetric-key
encryption, except the adversary is given the public key.

C\r\n A \Q/LQ, L \93

" IND-CPA — ", ..

Let A = (KC,E,D) be a PKE scheme and A an adversary.

Game Left 4¢ Game Right 4¢
procedure Initialize procedure Initialize
(pk, sk) < K ; return pk (pk, sk) < IC; return pk
procedure LR(My, M) &— procedure LR(My, M;) J
Return C <& Epk (Mo Return C <& 5,,;(@1)
U\IO .[/(ﬂ,a/\r\:b proce A" oALR oot]/\/M-L U7 TR vy
Associated to AE, A are the probabilities \d Y0 ks .
Pr|Lefthe=1| Pr | Right4e=1]

that A outputs 1 in each world. The ind-cpa advantage of A is
Adv P (A) = Pr | Right/e=1| — Pr | Leftfs=1]

Explanation

The “return pk” statement in Initialize means the adversary A gets the
public key pk as input. It does not get sk.

It can call LR with any equal-length messages Mo, My of its choice to get
back an encryption C il Epk(Mp) of My under sk, where b =0 in game

Left 4¢ and b =1 in game Right 4-. Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages My, My of unequal length. Any
such A is considered invalid and its advantage is undefined or O.

It outputs a bit, and wins if this bit equals b.

Building a Scheme

We would like security to result from the hardness of computing discrete
ogarithms.

_et the receiver's public key be g where G = (g) is a cyclic group. Let's
et the encryption of x be g*. Then

x hard
g — X

N~~~
Eg(x)

so to recover x, adversary must compute discrete logarithms, and we know
It can't, so are we done?

Key Encapsulation

e o build a PKE scheme it is often easier to first build what
Is called a key-encapsulation mechanism

Key Encapsulation

e o build a PKE scheme it is often easier to first build what
Is called a key-encapsulation mechanism

e A PKE scheme is then obtained by using hybrid
encryption (the so-called KEM-DEM paradigm)

Qéﬁ %CP%W&

ey Encapsulation
G 5 mad N (1) 300=y

A KEM ICEM = (KK, EK, DK) is a triple of algorithms

V2

1<<ju)7

KEM Security

Let CEM = (KK, EK, DK) be a KEM with key length k. Security
requires that if we let

(K1, Cs) < EK i

then Kj should look “random”. Somewhat more precisely, if we also
generate Ko < {0,1}*; b <> {0,1} then

C;——=

Kb%

A has a hard time figuring out b

KEM Security

Let CEM = (KK, E, DK) be a KEM with key length k, and A an
adversary.

Game Leftignm

procedure Initialize

(pk, sk) < KK

return pk

procedure Enc

Ko <~ {0,1}F; (K1, Ga) <& EK i
return (Ko, C,)

Game nghtKgM

procedure Initialize

(pk, sk) <& KK

return pk

procedure Enc

Ko <~ {0,1}%; (K1, Ga) <& EK i
return (Ki, G,)

We allow only one call to Enc. The ind-cpa advantage of A is

Adv2dcPa(A) = Pr [Rightég = 1} — Pr [Leftég = 1}

Bmldlng a KEM
6205 0 CPJL X=5lc - (9)

We can turn DH key exchange into a KEM via
o Let Alice have public key g~ and secret key x

e Bob picks y and sends g” to Alice as the ciphertext
e The key K is (a hash of) the shared DH key g = Y* = XY

The DH key is a group element. Hashing results in a key that is a string of
a desired length.

w\«\ M/J/WV

El Gamal KEM © 7

£

C_)

4L

")

Let G (g) be a cyclic group of order m and H : {0,1}* — {0,1}* a (public, keyless)

hash function. Define KEM KEM =

Alg KCIC

X@Zm
X<+ g

return (X, x)

K

(KKC, EC, DK) by

X <=

Alg ERx Alg DK,(Cs)
y < Zm Co— g
Z —)?y a AR
K « H(C.)|Z) K H(G[Z)
return (K, C,) return §
< DI
] :
Xy L = gy = gxy
H g_J — H

Hybrid Encryption

Given a KEM KEM = (KK, EK, DK) with key length k, we can build a
PKE scheme with the aid of a symmetric encryption scheme S€ = (KS,

ES,DS) that also has key length k. Namely, define the PKE scheme AE
= (KK, &, D) via:

Alg Ep(M) Alg Dy ((Ca, G5))
(K, o) - EKpi | K+ DKa(C,)
Cs & ESk(M) | M« DSk(G)
Return (C,, Cs) | Return M

One query simplification

In assessing IND-CPA security of a PKE scheme, we may assume A makes
only one LR query. It can be shown that this can decrease its advantage
by at most the number of LR queries.

—/@ Theorem: Let A€ be a PKE scheme and A an ind-cpa adversary making g
LR queries. Then there is a ind-cpa adversary A; making 1 LR query such

that
Adv 1nd cpa A) < ﬂ Adv md—cpa(Al) b 2
S—

rv_——_/
and the running time of A;j is about that of A.

AT TRUE W

6#%/%/6‘“6 ~ rING

\/\VKOM('C/(VS. b I\f)b%
¥4 —— - ,,<,>
A m"’ml P\c
B D b

-Hh gt O Ve v by A
A (L O\Af\%\,\)@(’(/fX LD\\ en C/\(L\ p\r'/lrvg
(BEFT 7

(L'M\ﬁ\’ G U™) 5\(/@“1 OL/JH\ or&;dQ

U Jeny ¢ @ Uryer
I IGL 0\ RO\QQ(_?‘H-T

\/\\/\ovﬁ{ /

_Hybrid Encryption

(@'rK) %CCQ' CE’>

—

If the KEM and symmetric encryption scheme are both IND-CPA, then so
\ Is the PKE scheme constructed by hybrid encryption.

Theorem: Let KEM KEM = (KIC, EX, DK) and symmetric encryption
scheme S& = (KS,ES,DS) both have key length k, and let A = (KK,
£, D) be the corresponding PKE scheme built via hybrid encryption. Let A
be an adversary making 1 LR query. Then there are adversaries B,, B;

such that M
Advye P (A) < 2 Advics SP(B,) 4 Adviss P(By) .

= — =

Furthermore B, makes one Enc query:§5 makes one LR query, and both
have running time about the same as that of A.

GD) (9, /'

Benefits

e Modular design, assurance via proof

Benefits

e Modular design, assurance via proof

e Speed: 160-bit elliptic curve exponentiation takes the
time of about block cipher operations or hashes

El Gamal KEM

Let G = (g) be a cyclic group of order m and H : {0,1}* — {0,1}* a
(public, keyless) hash function. Define KEM KEM = (KK, EX, DK) by

Alg K
x & Z,
X < g~
return (X, x)

Alg 5/CX

y EZ.: C, g
Z +— XY

K < H(G,|2)
return (K, C,)

Alg DK, (C,)

Z +— CS
K < H(C,||Z)

return K

How to prove this scheme is secure?

Random Oracle Model

A random oracle is a publicly-accessible random function

w_ _ If H[W] = L then

H[W] < {0,1}%
<H(W) Return H [W]

Oracle access to H provided to

e all scheme algorithms

e the adversary

The only access to H is oracle access.

ROM EG KEM

Let G = (g) be a cyclic group of order m and H the random oracle. Define
the Random Oracle Model (ROM) KEM KEM = (KK, EK, DK) by

Alg KK
x & Z,
X — g~
return (X, x)

Alg ECY

y Sz Cy+— g7
Z +— XY

K + H(C,||Z)
return (K, G,)

Alg DK (C,)

L +— CX
K < H(GC,||2)

return K

Algorithms EK, DK have oracle access to the random oracle H.

ROM KEM Security

Let LEM = (KK, EX, DK) be a ROM KEM with key length k, and let A
be an adversary.

Game INDCPA e procedure H(W)

procedure Initialize if H[W] = L then H[W] « {0,1}*
(pk,sk) <= KK; b<>{0,1} | return H (W]

return pk procedure Enc

procedure Finalize(b') Ko < {0,1}%; (K1, G5) < EKL
return (b = b') return (Kp, ;)

We allow only one call to Enc. The ind-cpa advantage of A is

Advis P (A) = 2 - Pr [INDCPAR v = true| — 1

ROM Security of EG KEM

Claim: The EG KEM is IND-CPA secure in the RO model

In the IND-CPA game

pk = g" —= < = H

Ca:gy% A

Kp——=

where
b<>{0,1}; Ko< {0,1}%; Ky < H(g”|lg™)

We are saying A has a hard time figuring out b. Why?

The Theorem

The following says that if the CDH problem is hard in G then the EG
KEM is IND-CPA secure in the ROM.

Theorem: Let G = (g) be a cyclic group of order m and let LEM =
(KIC,EK, DK) be the ROM EG KEM over G with key length k. Let A be
an ind-cpa adversary making 1 query to Enc and g queries to the RO H.
Then there is a cdh adversary B such that

Advs P (A) < g - AdvEL(B).

Furthermore the running time of B is about the same as that of A.

y ¢
‘, %Y @)% Nee+ R Com plke Q’J\&j

OO o a0
Y4 C A

Games for Proof

Game Go, Gl

procedure Initialize
X,y & Z K& {0,1}%
return g~

procedure Enc
return (K, g”)

procedure H(W)

HIW] < {0,1Y%; Y||Z « W

if (Z=g" and Y =g”) then
bad < true; | HW] + K

return H[W]

Assume (wlog) that A never repeats a H-query. Then

ind-cpa

(A) = Pr[G]* = 1] — Pr[G§' = 1]

< Pr[G§' sets bad]

We would like to design B so that Pr[G{' sets bad] < Adv . (B)

subroutine EncSim
return (K, g¥)

adversary B(g*, g”)

K < {0,1}%
b AEnCSim,HSim(gX)

subroutine HSim (W)

HIW] < {0,1}; Y||Z + W

if (Z=g"Y and Y = g”) then
output Z and halt

return H[W]

Problem: B can't do the test since it does not know g™.

DHIES and ECIES

The PKE scheme derived from KEM + symmetric encryption scheme with
e The RO EG KEM

e Some suitable mode of operation symmetric encryption scheme (e.g.
CBC9) is standardized as DHIES and ECIES

ECIES features:

Operation Cost

encryption 2 160-bit exp

decryption 1 160-bit exp
ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)

Instantiating the RO

We have studied the EG KEM in an abstract model where H i1s a random

function accessible only as an oracle. To get a “real” scheme we need to
instantiate H with a “real” function

How do we do this securely?

Instantiating the RO

We know that PRFs approximate random functions, meaning if

F:{0,1}° x D — {0,1}% is a PRF then the I/O behavior of F is like
that of a random function.

So can we instantiate H via F?

RO Paradigm

e Design and analyze schemes in RO model

e |n instantiation, replace RO with a hash-function based construct.

Example: H(W) = first 128 bits of SHA1(W). More generally if we need
¢ output bits:

H(W) = first £ bits of SHAL(1||W) || SHAL(2||W) || ...

RO Paradigm

There is no proof that the instantiated scheme is secure based on some
“standard” assumption about the hash function.

The RO paradigm is a heuristic that seems to work well in practice.
The RO model is a model, not an assumption on H. To say

“Assume SHA1 is a RO”

makes no sense: it isn't.

RO Paradigm

It yields practical, natural schemes with provable support that has held up
well in practice.

Cryptanalysts will often attack schemes assuming the hash functions in
them are random, and a RO proof indicates security against such attacks.

Bottom line on RO paradigm:
e Use, but use with care

e Have a balanced perspective: understand both strengths and
limitations

e Research it!

Counter-Example

Let AE" = (K, &', D’) be an IND-CPA PKE scheme. We modify it to a
ROM PKE scheme AE = (K, £, D), which

e |s IND-CPA secure in the ROM, but
e [Fails to be IND-CPA secure for all instantiations of the RO.

Counter-Example

Given AE' = (K, &', D) we define AE = (K, &, D) via

Alg £5(M)

Parse M as (h) where h: {0,1}* — {0,1}*
x < {0, 1}

if H(x) = h(x) then return M

else return &, (M)

If H is a RO then for any M = (h)
Pr{H(x) = h(x)] < —-

for an adversary making g queries to H, and hence security is hardly
affected.

Counter-Example

Given AE' = (K, &', D) we define AE = (K, &, D) via

Alg &5 (M)

Parse M as (h) where h: {0,1}* — {0,1}%
x < {0,1}%

if H(x) = h(x) then return M

else return £, (M)

Now let h: {0,1}* — {0, 1}* be any fixed function, and instantiate H
with h. Then if we encrypt M = (h) we have

Epk((h) =M

so the scheme is insecure.

Chosen Ciphertext Attack

Where we are

e We've seen EG KEM and extensions in the RO model

Where we are

e We've seen EG KEM and extensions in the RO model

e Besides discrete-log-based PKE schemes, the other big
class of schemes is RSA-based (related to factoring)

Where we are

e We've seen EG KEM and extensions in the RO model

e Besides discrete-log-based PKE schemes, the other big
class of schemes is RSA-based (related to factoring)

o | et’s first look at the math behind RSA

RSA Math

Recall that ¢(N) = |Z},].

Claim: Suppose e,d € Z7 , satisfy ed = 1 (mod ¢(N)). Then for any
x € £y, we have

Proof:

modulo N

RSA Function

A modulus N and encryption exponent e define the RSA function
f:Zy — £} defined by

f(x) =x° mod N
for all x € Z,.

A value d € Z7) satisfying ed = 1 (mod ¢(N)) is called a decryption
exponent.

Claim: The RSA function f : Zy, — Z}, is a permutation with inverse
FfL L, — £} given by
FY(y)=y? mod N
Proof: For all x € Z, we have
FLf(x) = (x8)? =x (mod N)

by previous claim.

Example

Let N = 15. So
Zy = {1,2,4,7,8,11,13,14}

o(N) = 8
vy = 11,3,5,7}

x | f(x f(x
Let e =3 and d = 3. Then 1 g) g(f)

ed=9=1 (mod 8) > 1 g 5

4 [4 4

8 | 2 3
f(x) = x>mod 15 11 | 11 11
g(y) = y>mod15 13| 7 13

14 | 14 14

RSA Usage

e pk=N,e; sk=N,d
o Epk(x) =x% mod N = f(x)
e Dyl(y) =y mod N =f"1(y)

Security will rely on it being hard to compute f~1 without knowing d.
RSA is a trapdoor, one-way permutation:

e Easy to invert given trapdoor d

e Hard to invert given only N, e

RSA Generators

An RSA generator with security parameter k is an algorithm /C,s; that
returns N, p, g, e, d satisfying

e p, g are distinct odd primes

e N = pg and is called the (RSA) modulus

e |N| = k, meaning 2k-1 < N < 2k

e € Z;’;(N) is called the encryption exponent

o dc Z:;(N) Is called the decryption exponent
e ed =1 (mod p(N))

More Math

Fact: If p, g are distinct primes and N = pq then o(N) = (p —1)(qg — 1).

Proof:

o(N) = [{1,...,N—1}| —|[{ip:1<i<q—1} —|[{ig: 1< i< p—1}]
=(N-1)—(g—-1)—(p—1)
=N—-p—qg—+1
=pg—p—q+1
=(p—1)(g—-1)
Example:
e 15=3-5
o Zj: =1{1,2,4,7,8,11,13,14}
* ¢(15)=8=03-1)(5-1)

Building RSA Generators

Say we wish to have e = 3 (for efficiency). The generator K> with (even)
security parameter k:
repeat
p,q <> {2k 2K2 1} N« pg; M < (p—1)(q — 1)
until

N > 2k=1 and p, q are prime and gcd(e, M) =1
d + MOD-INV(e, M)
return N, p,qg, e, d

One-Wayness

The following should be hard:
Given: N e,y where y = f(x) = x¢ mod N
Find: x

Formalism picks x at random and generates N, e via an RSA generator.

One-Wayness

Let IC,., be a RSA generator and / an adversary.

Game OWg

procedure Initialize
(N7p7 q7 e7 d) é ICI'S&
X@Z’,"V; y < x® mod N
return N, e, y

procedure Finalize(x')
return (x = x’)

The ow-advantage of [is

Advy”

rsa

(1) = Pr [OW,’C = true]

rsa

Inverting RSA

Inverting RSA : given N, e,y find x such that x* =y (mod N)

T EASY because f1(y) = y? mod N

Know d

T EASY because d = e~ mod p(N)
Know ¢(N)

T EASY because o(N) =(p—1)(g—1)
Know p, g

]

Know N

Factoring

Given: N where N = pg and p, g are prime

Find: p, g

If we can factor we can invert RSA. We do not know whether the converse
Is true, meaning whether or not one can invert RSA without factoring.

Factoring

Alg FACTOR(N) // N = pq where p, g are primes

fori:2,...,{\/NW do
if N mod /i =0 then
p<i;,q<« N/i; return p,q

Factoring

Algorithm Time taken to factor N
Naive O(ed5n)
Quadratic Sieve (QS) O(e<(in N)/2(inIn N)*/2)
Number Field Sieve (NFS) | O(el-92(n N)L/3(In In N)2/3)

Factoring

Number | bit-length | Factorization | alg
RSA-400 400 1993 QS
RSA-428 428 1994 QS
RSA-431 431 1996 NF

RSA-465 465 1999 NFS
RSA-515 515 1999 NFS
RSA-576 576 2003 NFS
RSA-768 763 2009 NFS

Factoring

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus
80-bit security: Factoring takes 259 time.
Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.

RSA: What to Remember

The RSA function f(x) = x® mod N is a trapdoor one way permutation:

e Easy forward: given N, e, x it is easy to compute f(x)

e Easy back with trapdoor: Given N, d and y = f(x) it is easy to
compute x = f1(y) = y¢ mod N

e Hard back without trapdoor: Given N, e and y = f(x) it is hard to
compute x = f1(y)

Plain RSA Encryption

The plain RSA PKE scheme AE = (K, &, D) associated to RSA generator
KCrery IS

Irsa

Alg

Ng | Al (M) Alg D;(C)
(kp,q/,ve) < Krsa C— M mod N| M+ C?% mod N
ISD i : ((e)) return C return M
return (pk sk)

The “easy-backwards with trapdoor” property implies
Dy(Epk(M)) = M

for all M € Zy,.

RSA-KEM

The ROM SRSA (Simple RSA) KEM KEM =
is as follows, where H : {0,1}* — {0,1}* is the RO:

RSA generator IC

Irsa

Alg K
(N,p,q,e,d) <
pk «+ (N, e)
sk + (N, d)
return (pk sk)

K

Irsa

Alg £7

x <& Z%,

K < H(x)

C, + x® mod N
return (K, C,)

(KC, £, D) associated to

Alg DI (C,)

x4+ C¢ mod N
K < H(x)

return K

RSA-KEM

Theorem: Let K., be a RSA generator and KEM = (K, E, D) the
associated ROM SRSA KEM. Let A be an ind-cpa adversary that makes 1
Enc query and g queries to the RO H. Then there is a OW-adversary |/
such that

Adviie P (A) < AdvgY

rsa

()

Furthermore the running time of / is about that of A plus the time for g
RSA encryptions.

Proof

RSA-OAEP

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
ROs: G: {0,1}!%% — {0,1}%%* and H: {0,1}%°* — {0,1}1%8

Algorithm &y (M) // IM| <765
r<{0,1}'%; p < 765 — |M|

128 894
r 0% || M || 107
———(6)—®
d—(H)

s t

X < s||t

C +— x*mod N
return C

Algorithm Dy 4(C) // Cezy

x 4+ C?mod N

s||t « x
128 394
S t

&—H)—
<

— >
r all M| 10
if 2 = 0'® then return M

else return _L

RSA-OAEP

e [ND-CPA secure in the RO model [BR’94]

RSA-OAEP

e [ND-CPA secure in the RO model [BR’94]

e IND-CCA secure in the RO model [FOPS’00]

RSA-OAEP

e [ND-CPA secure in the RO model [BR’94]
e IND-CCA secure in the RO model [FOPS’00]

e IND-CPA secure in the assuming the phi-
hiding assumption [KOS’10]

RSA-OAEP

Protocols:
o SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
e SSH ver 1.0, 2.0

Standards:
e RSA PKCS #1 versions 1.5, 2.0
e |IEEE P1363
e NESSIE (Europe)
e CRYPTREC (Japan)

