
Gisors

"

⑧
s

Eng
Q.cslbiTGG.is

-
If C is PRG

then 66M is PRF
.⇒÷÷""

What about a variable length

PRF ?

prefix - free : Adversary not

allowed to query X , y St .

X is a proper prefix of y .

Variable length tree
construction

f R Funs[{0, 1}
j , S]

upon receiving a query x = (a1, . . . , an) 2 {0, 1}
` from A do:

if n < j then
then y f(x)
else u (a1, . . . , aj), v (aj+1, . . . , an), y G⇤(f(u), v)

send y to A.

For j = 0, . . . , `, define pj to be the probability that A outputs 1 in Hybrid j. As the reader may
easily verify, we have

PRFpfadv[A, F̃] = |p` � p0|.

Next, we define an e�cient PRG adversary B
0 that attacks the Q-wise parallel composition G0

of G, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|.

Adversary B
0 runs as follows:

upon receiving ~r as in (4.32) from its challenger, B
0 plays the role of challenger to A, as

follows:

! R {1, . . . , `}
initialize an empty associative array Map : {0, 1}

⇤
! Z>0

ctr 0
upon receiving a query x = (a1, . . . , an) 2 {0, 1}

` from A do:
if n < ! then

(⇤) y R S

else
u (a1, . . . , a!�1), d a!, v (a!+1, . . . , n)
if u /2 Domain(Map) then

ctr ctr + 1, Map[u] ctr
p Map[u], y G⇤(rpd, v)

send y to A.

Finally, B
0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B
0 outputs 1 in Experiment b of Attack Game 4.2 with

respect to G0. It is not too hard to see that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B
0 labels nodes in the evaluation tree. At

the line marked (⇤), B
0 assigns random labels to all nodes in the evaluation tree at levels 0 through

j � 1, and the assumption that A never makes the same query twice guarantees that these labels
are consistent (the same node does not receive two di↵erent labels at di↵erent times). Now, on the
one hand, when B

0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels to
nodes at level j as well, and the lookup table ensures that this is done consistently. On the other
hand, when B

0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to
nodes at level j, which is the same as assigning random labels to the parents of these nodes at level

151

¥

Iast#eproof that 66M is a

prefix - free variable length

Pkt
hybjid{

6*6,6,M
PRF

. flu) label
Teed for b* of u

f R Funs[{0, 1}
j , S]

upon receiving a query x = (a1, . . . , an) 2 {0, 1}
` from A do:

if n < j then
then y f(x)
else u (a1, . . . , aj), v (aj+1, . . . , an), y G⇤(f(u), v)

send y to A.

For j = 0, . . . , `, define pj to be the probability that A outputs 1 in Hybrid j. As the reader may
easily verify, we have

PRFpfadv[A, F̃] = |p` � p0|.

Next, we define an e�cient PRG adversary B
0 that attacks the Q-wise parallel composition G0

of G, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|.

Adversary B
0 runs as follows:

upon receiving ~r as in (4.32) from its challenger, B
0 plays the role of challenger to A, as

follows:

! R {1, . . . , `}
initialize an empty associative array Map : {0, 1}

⇤
! Z>0

ctr 0
upon receiving a query x = (a1, . . . , an) 2 {0, 1}

` from A do:
if n < ! then

(⇤) y R S

else
u (a1, . . . , a!�1), d a!, v (a!+1, . . . , n)
if u /2 Domain(Map) then

ctr ctr + 1, Map[u] ctr
p Map[u], y G⇤(rpd, v)

send y to A.

Finally, B
0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B
0 outputs 1 in Experiment b of Attack Game 4.2 with

respect to G0. It is not too hard to see that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B
0 labels nodes in the evaluation tree. At

the line marked (⇤), B
0 assigns random labels to all nodes in the evaluation tree at levels 0 through

j � 1, and the assumption that A never makes the same query twice guarantees that these labels
are consistent (the same node does not receive two di↵erent labels at di↵erent times). Now, on the
one hand, when B

0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels to
nodes at level j as well, and the lookup table ensures that this is done consistently. On the other
hand, when B

0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to
nodes at level j, which is the same as assigning random labels to the parents of these nodes at level

151

NON -

µ
.

multi - challenge PKG adversary

TRIVIAL
✓ 2*1 matrix of challenges

PRG

⇐O=
,PRF

Pg

t D

w*CT-to get- uniform redfin:[think
-

of it as

→ -

To fixed)
ai# Eat 's -

what
is -

Oi.EE???hathe
final

value

of a
"

-

ask.it?EIt=oemCb
]

✓ as

oq€E⑦E
remainder

Cotaimed
seed PRE)

input length El outputting ,n

Seen

length

Multi - challenge PRG

1=1

Dlt,,
. - .

ite
) stand - d " K "

either ti =G(si) forsitlo.IT
Hi

or tie soak
"

Hi

G :{ 0,13
"

→ E oyI3
"

WTS single - challenge PRG
'

security =) multi - challenge
PRG security

how ? ?

Define htt hybrids (aka games)
such that in the i - th

hybrid t
, , - a.

, to , are
" real

"

ti , - . , te are
" random

"

hybrid
iE- htt]

For j=t to it

Rj th 0,13
"

For j=kIto I

io÷÷÷÷÷÷:.retypes
.

Want to construct Bi

St
.

Pr[Hybrid its ⇒ 7)
- PRE Hybrid i⇒7)
E Adv

L
Bit

singuehallenge

Adv
m

:
- Pres (D) =

P , I Hybrid I ⇒ I]
- Pv I Hybrid I t I ⇒ If

÷
⇒

ofttimes& Expand .

P r f theb I ⇒ I] - Pr I Hy b h - I ⇒ I][mnn¥¥¥¥z7E÷

Pr I Hy b 3 ⇒ 77)

rc_#

Claim . F Bi St - Prf Hybi -11)
-

'

Hf
giinnalechafrbada-pr.LA/bitI=7IIAEavcp#y.

→ Adversary B ;
Lz)

N

For g
's I to i -t single

kit { o ,

In challenge

For j
-

- it I to il
s ;

't
{ 0,73

"

Tgpitblsgi) x tie 10113
"

d ←
iDCR , , . . ,

Ri - i ,Z , Titi ,
. .

,
Te)

ret
dead

Hole 10,13

Key Point !
Depending on what Z is C i. e

,

real or random)
, Bi exactly

simulates either Hy bi or Hbybiti
Cor D .

G :{ 0,15-710,13
"

Let b be a distinguishes

Exp I Exp 2

single:{ Tetons " Float .

.

ye - Gls) ret y .

rety

Adults)=Pr[D(Exp 2) ⇒ I]
- Pr -lD(Exp 2) ⇒ I]

Exp I Expel
sections

"

y , .
. .

.is#9oiEfnyic-bCsi7V-it-L91retCyn...syq7

ret (y , ye)

length - doubling PRG from PRF KE
°

-
E¥¥

n Sgt

→ F :S 0,11×10113
"

→ 10,73
"

is a PRF

→ Define Aa G :{0,13A20,172

-
by :

*

→ al Gcs) : Ascents
"

ret FslFsk⑦)REE .

F- can actually be F :{ 0,13790113-70,15
generalized to l

Now run the PRG through the 66M PREtonstruck
Claim .you get NMAC w/ block - length I

.

Alg

NMACKCXI

,] . . . YENI) ←
t ← K

Tf

It For it to n block -

with

te

FtC*-
l

ret t

Computational
Number Theory

Adam O’Neill
Based on http://cseweb.ucsd.edu/~mihir/cse207/

Secret Key Exchange

History
• Cryptography existed for thousands of years as only

symmetric-key.

History
• Cryptography existed for thousands of years as only

symmetric-key.

• Nobody thought secret key exchange was possible.

History
• Cryptography existed for thousands of years as only

symmetric-key.

• Nobody thought secret key exchange was possible.

• In the 1970’s, Diffie and Hellman, and Merkle,
proposed the first secret key exchange protocols.

History
• Cryptography existed for thousands of years as only

symmetric-key.

• Nobody thought secret key exchange was possible.

• In the 1970’s, Diffie and Hellman, and Merkle,
proposed the first secret key exchange protocols.

• Public-key (asymmetric) cryptography was born.

History
• Cryptography existed for thousands of years as only

symmetric-key.

• Nobody thought secret key exchange was possible.

• In the 1970’s, Diffie and Hellman, and Merkle,
proposed the first secret key exchange protocols.

• Public-key (asymmetric) cryptography was born.

• Protocols are based on computational group theory
and number theory so we first study that.

Some Notation
Notation

Z = {. . . ,�2,�1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N 2 Z let gcd(a,N) be the largest d 2 Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.

Mihir Bellare UCSD 10

Modular Arithmetic
Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 =

{1, 5, 7, 11}

• '(12) = 4

Mihir Bellare UCSD 11

Division and modDivision and mod

INT-DIV(a,N) returns (q, r) such that

• a = qN + r

• 0 r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r 2 ZN

is the remainder when a is divided by N.

Example: INT-DIV(17, 3) = (5, 2) and 17 mod 3 = 2.

Def: a ⌘ b (mod N) if a mod N = b mod N.

Example: 17 ⌘ 14 (mod 3)

Mihir Bellare UCSD 14

Groups
Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b 2 G , a value a · b is defined.

Example: G = Z
⇤
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N is a group.

Mihir Bellare UCSD 15

ClosureGroups: Closure

Closure: For every a, b 2 G we have a · b is also in G .

Example: G = Z12 with a · b = ab does not have closure because
7 · 5 = 35 62 Z12.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies closure,

meaning

gcd(a,N) = gcd(b,N) = 1 implies gcd(ab mod N,N) = 1

Example: Let G = Z
⇤
12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 2 Z
⇤
12

Exercise: Prove the above Fact.

Mihir Bellare UCSD 16

AssociativityGroups: Associativity

Associativity: For every a, b, c 2 G we have (a · b) · c = a · (b · c).

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies

associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1

5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1

Exercise: Given an example of a set G and a natural operation
a, b 7! a · b on G that satisfies closure but not associativity.

Mihir Bellare UCSD 17

Identity Element
Groups: Identity element

Identity element: There exists an element 1 2 G such that
a · 1 = 1 · a = a for all a 2 G .

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then 1 is the identity

element because a · 1 mod N = 1 · a mod N = a for all a.

Mihir Bellare UCSD 18

Inverses
Groups: Inverses

Inverses: For every a 2 G there exists a unique b 2 G such that
a · b = b · a = 1.

This b is called the inverse of a and is denoted a
�1 if G is understood.

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then

8a 2 Z
⇤
N 9b 2 Z

⇤
N such that a · b mod N = 1.

We denote this unique inverse b by a
�1 mod N.

Example: 5�1 mod 12 is the b 2 Z
⇤
12 satisfying 5b mod 12 = 1, so b =

5

Mihir Bellare UCSD 19

Exercises
Exercises

Let N 2 Z+ and let G = ZN . Prove that G is a group under the operation
a · b = (a+ b) mod N.

Let n 2 Z+ and let G = {0, 1}n. Prove that G is a group under the
operation a · b = a � b.

Let n 2 Z+ and let G = {0, 1}n. Prove that G is not a group under the
operation a · b = a ^ b. (This is bit-wise AND, for example
0110 ^ 1101 = 0100.)

Mihir Bellare UCSD 21

Computational ShortcutsComputational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16

Mihir Bellare UCSD 24

ExponentiationExponentiation

Let G be a group and a 2 G . We let a0 = 1 be the identity element and
for n � 1, we let

a
n = a · a · · · a| {z }

n

.

Also we let
a
�n = a

�1
· a

�1
· · · a

�1
| {z }

n

.

This ensures that for all i , j 2 Z,

• a
i+j = a

i
· a

j

• a
ij = (ai)j = (aj)i

• a
�i = (ai)�1 = (a�1)i

Meaning we can manipulate exponents “as usual”.

Mihir Bellare UCSD 25

OrderGroup Orders

The order of a group G is its size |G |, meaning the number of elements in
it.

Example: The order of Z⇤
21 is 12 because

Z
⇤
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Fact: Let G be a group of order m and a 2 G . Then, am = 1.

Examples: Modulo 21 we have

• 512 ⌘ (53)4 ⌘ 204 ⌘ (�1)4 ⌘ 1

• 812 ⌘ (82)6 ⌘ (1)6 ⌘ 1

Mihir Bellare UCSD 27

Lagrange’s Theorem

Simplifying ExponentiationSimplifying exponentiation

Corollary: Let G be a group of order m and a 2 G . Then for any i 2 Z,

a
i = a

i mod m.

Example: What is 574 mod 21?

Solution: Let G = Z
⇤
21 and a = 5. Then, m = 12, so

574 mod 21 = 574 mod 12 mod 21

= 52 mod 21

= 4.

Mihir Bellare UCSD 29

ExercisesExercise

Evaluate the expressions shown in the first column. Your answer, in the
second column, should be a member of the set shown in the third column.
In the first case, the inverse refers to the group Z

⇤
101. Don’t use any

electronic tools; these are designed to be done by hand.

Expression Value In

34�1 mod 101 Z
⇤
101

51602 mod 17 Z
⇤
17

|Z
⇤
24| N

Mihir Bellare UCSD 31

Running TimeMeasuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024, 22048.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

Mihir Bellare UCSD 32

Algorithms on NumbersAlgorithms on numbers

Algorithm Input Output Time
ADD a, b a+ b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a0,N 0) quadratic
MOD-INV a 2 Z

⇤
N , N a

�1 mod N quadratic
MOD-EXP a, n, N a

n mod N cubic
EXPG a, n a

n
2 G O(|n|) G -ops

Mihir Bellare UCSD 33

Extended gcd
Extended gcd

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Example: EXT-GCD(12, 20) =

(4, 2,�3) because

4 = gcd(12, 20) = 12 · (�3) + 20 · 2 .

Mihir Bellare UCSD 34

Extended gcdExtended gcd Algorithm

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Alg EXT-GCD(a,N) // (a,N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else
(q, r) INT-DIV(a,N); (d , x , y) EXT-GCD(N, r)
a
0
 y ; N 0

 x � qy

return (d , a0,N 0)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| · |N|). So the extended gcd can be computed
in quadratic time.

Mihir Bellare UCSD 36

Modular InverseModular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a
�1 mod N,

meaning the unique a
0
2 Z

⇤
N satisfying aa

0
⌘ 1 (mod N).

But if we let (d , a0,N 0) EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a
0 + N · N

0

But N · N
0
⌘ 0 (mod N) so aa

0
⌘ 1 (mod N)

Alg MOD-INV(a,N)
(d , a0,N 0) EXT-GCD(a,N)
return a

0 mod N

Modular inverse can be computed in quadratic time.

Mihir Bellare UCSD 37

Modular ExponentiationModular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y 1
for i = 1, . . . , n do y y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.

Mihir Bellare UCSD 38

Square-And-Mult ExampleSquare-and-Multiply Exponentiation Example

Suppose the binary length of n is 5, meaning the binary representation of
n has the form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute a
n. Our exponentiation algorithm will proceed to

compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = 1

y4 = y
2
5 · a

b4 = a
b4

y3 = y
2
4 · a

b3 = a
2b4+b3

y2 = y
2
3 · a

b2 = a
4b4+2b3+b2

y1 = y
2
2 · a

b1 = a
8b4+4b3+2b2+b1

y0 = y
2
1 · a

b0 = a
16b4+8b3+4b2+2b1+b0 .

Mihir Bellare UCSD 41

Cyclic groupsGenerators and cyclic groups

Let G be a group of order m and let g 2 G . We let

hgi = { g
i : i 2 Z } .

Fact: hgi = { g
i : i 2 Zm }

Exercise: Prove the above Fact.

Fact: The size |hgi| of the set hgi is a divisor of m

Note: |hgi| need not equal m!

Definition: g 2 G is a generator (or primitive element) of G if hgi = G ,
meaning |hgi| = m.

Definition: G is cyclic if it has a generator, meaning there exists g 2 G

such that g is a generator of G .

Mihir Bellare UCSD 45

Cyclic groupsGenerators and cyclic groups: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8 5 10 9 7 3 6 1
5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

h2i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

h5i = {1, 3, 4, 5, 9}

• 2 a generator because h2i = Z
⇤
11.

• 5 is not a generator because h5i 6= Z
⇤
11.

• Z
⇤
11 is cyclic because it has a generator.

Mihir Bellare UCSD 46

Exercise
Exercise

Let G be the group Z
⇤
10 under the operation of multiplication modulo 10.

1. List the elements of G

2. What is the order of G?

3. Determine the set h3i

4. Determine the set h9i

5. Is G cyclic? Why or why not?

Mihir Bellare UCSD 47

Discrete log
Discrete Logarithms

If G = hgi is a cyclic group of order m then for every a 2 G there is a
unique exponent i 2 Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function:

DLogG ,g (g
i) = i for all i 2 Zm

g
DLogG ,g (a) = a for all a 2 G .

Mihir Bellare UCSD 48

Discrete log
Discrete Logarithms: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order

m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent
i 2 Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9
2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
DLogG ,2(a)

Mihir Bellare UCSD 49

Finding cyclic groups
Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z
⇤
p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z⇤
p| = p � 1 is not prime, so Fact 2 doesn’t imply Fact 1!

Fact 3: If F is a finite field then F \ {0} is a cyclic group under the
multiplicative operation of F .

Mihir Bellare UCSD 52

Computing discrete logsComputing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 55

Computing discrete logsComputing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z
⇤
p e

1.92(ln p)1/3(ln ln p)2/3

ECp
p
p = e

ln(p)/2

Here p is a prime and ECp represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1.92(ln q)
1/3(ln ln q)2/3

where q is the largest prime factor of p � 1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.

Mihir Bellare UCSD 56

 Computing discrete logs
Discrete logarithm computation records

In Z
⇤
p:

|p| in bits When

431 2005
530 2007
596 2014

For elliptic curves, current record seems to be for |p| around 113.

Mihir Bellare UCSD 57

Elliptic curve groupsEC: More bang for the buck

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280. Then

• If we work in Z
⇤
p (p a prime) we need to set |Z⇤

p| = p � 1 ⇡ 21024

• But if we work on an elliptic curve group of prime order p then it
su�ces to set p ⇡ 2160.

Why? Because

e
1.92(ln 21024)1/3(ln ln 21024)2/3

⇡

p

2160 = 280

But now:

Group Size Cost of Exponentiation
2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!

Mihir Bellare UCSD 58

Discrete log gameDL Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize

x
$
 Zm;X g

x

return X

procedure Finalize(x 0)
return (x = x

0)

The dl-advantage of A is

Adv
dl
G ,g (A) = Pr

h
DLA

G ,g) true
i

Mihir Bellare UCSD 59

Computational Diffie-
HellmanCDH: The Computational Di�e-Hellman Problem

Let G = hgi be a cyclic group of order m with generator g 2 G . The CDH
problem is:

Input: X = g
x
2 G and Y = g

y
2 G

Desired Output: g xy
2 G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x DLogG ,g (X); Return Y
x .

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.

Mihir Bellare UCSD 60

CDH Game
CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X g
x ;Y g

y

return X ,Y

procedure Finalize(Z)
return (Z = g

xy)

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g) true
i

Mihir Bellare UCSD 61

Building cyclic groups

• Need large groups over which schemes can work

Building cyclic groups

• Need large groups over which schemes can work

• We need generators in these groups

Building cyclic groups

• Need large groups over which schemes can work

• We need generators in these groups

• How to do this efficiently?

Building cyclic groupsBuilding cyclic groups

To find a suitable prime p and generator g of Z⇤
p:

• Pick numbers p at random until p is a prime of the desired form

• Pick elements g from Z
⇤
p at random until g is a generator

For this to work we need to know

• How to test if p is prime

• How many numbers in a given range are primes of the desired form

• How to test if g is a generator of Z⇤
p when p is prime

• How many elements of Z⇤
p are generators

Mihir Bellare UCSD 63

Finding primesFinding primes

Desired: An e�cient algorithm that given an integer k returns a prime
p 2 {2k�1, . . . , 2k � 1} such that q = (p � 1)/2 is also prime.

Alg Findprime(k)
do
p

$
 {2k�1, . . . , 2k � 1}

until (p is prime and (p � 1)/2 is prime)
return p

• How do we test primality?

• How many iterations do we need to succeed?

Mihir Bellare UCSD 64

Primality testingPrimality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , d
p
Ne do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|
3) time randomized algorithms

• Even a O(|N|
8) time deterministic algorithm

Mihir Bellare UCSD 65

Density of primes
Density of primes

Let ⇡(N) be the number of primes in the range 1, . . . ,N. So if

p
$
 {1, . . . ,N} then

Pr [p is a prime] =
⇡(N)

N

Fact: ⇡(N) ⇠
N

ln(N)

So

Pr [p is a prime] ⇠
1

ln(N)

If N = 21024 this is about 0.001488 ⇡ 1/1000.

So the number of iterations taken by our algorithm to find a prime is not
too big.

Mihir Bellare UCSD 67

DH Secret Key Exchange
Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x
$
 Zp�1; X g

x mod p

X
������!

y
$
 Zp�1; Y g

y mod p

Y
 ������

KA Y
x mod p KB X

y mod p

• Y
x = (g y)x = g

xy = (g x)y = X
y modulo p, so KA = KB

• Adversary is faced with the CDH problem.

Mihir Bellare UCSD 68

DH Secret Key Exchange
DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7! g
x mod p?

• How can Bob quickly compute y 7! g
y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7! g
xy mod p?

• . . .

Exercise: Answer as many of these questions as you can based on the
content of this chapter.

Mihir Bellare UCSD 69

Baby-Step Giant-Step

Testing Primality

