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Variable length tree 
construction

f  R Funs[{0, 1}
j , S]

upon receiving a query x = (a1, . . . , an) 2 {0, 1}
` from A do:

if n < j then
then y  f(x)
else u (a1, . . . , aj), v  (aj+1, . . . , an), y  G⇤(f(u), v)

send y to A.

For j = 0, . . . , `, define pj to be the probability that A outputs 1 in Hybrid j. As the reader may
easily verify, we have

PRFpfadv[A, F̃ ] = |p` � p0|.

Next, we define an e�cient PRG adversary B
0 that attacks the Q-wise parallel composition G0

of G, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|.

Adversary B
0 runs as follows:

upon receiving ~r as in (4.32) from its challenger, B
0 plays the role of challenger to A, as

follows:

!  R {1, . . . , `}
initialize an empty associative array Map : {0, 1}

⇤
! Z>0

ctr  0
upon receiving a query x = (a1, . . . , an) 2 {0, 1}

` from A do:
if n < ! then

(⇤) y  R S

else
u (a1, . . . , a!�1), d a!, v  (a!+1, . . . , n)
if u /2 Domain(Map) then

ctr  ctr + 1, Map[u] ctr
p Map[u], y  G⇤(rpd, v)

send y to A.

Finally, B
0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B
0 outputs 1 in Experiment b of Attack Game 4.2 with

respect to G0. It is not too hard to see that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B
0 labels nodes in the evaluation tree. At

the line marked (⇤), B
0 assigns random labels to all nodes in the evaluation tree at levels 0 through

j � 1, and the assumption that A never makes the same query twice guarantees that these labels
are consistent (the same node does not receive two di↵erent labels at di↵erent times). Now, on the
one hand, when B

0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels to
nodes at level j as well, and the lookup table ensures that this is done consistently. On the other
hand, when B

0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to
nodes at level j, which is the same as assigning random labels to the parents of these nodes at level
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f  R Funs[{0, 1}
j , S]

upon receiving a query x = (a1, . . . , an) 2 {0, 1}
` from A do:

if n < j then
then y  f(x)
else u (a1, . . . , aj), v  (aj+1, . . . , an), y  G⇤(f(u), v)

send y to A.

For j = 0, . . . , `, define pj to be the probability that A outputs 1 in Hybrid j. As the reader may
easily verify, we have

PRFpfadv[A, F̃ ] = |p` � p0|.

Next, we define an e�cient PRG adversary B
0 that attacks the Q-wise parallel composition G0

of G, such that

PRGadv[B0, G0] =
1

`
· |p` � p0|.

Adversary B
0 runs as follows:

upon receiving ~r as in (4.32) from its challenger, B
0 plays the role of challenger to A, as

follows:

!  R {1, . . . , `}
initialize an empty associative array Map : {0, 1}

⇤
! Z>0

ctr  0
upon receiving a query x = (a1, . . . , an) 2 {0, 1}

` from A do:
if n < ! then

(⇤) y  R S

else
u (a1, . . . , a!�1), d a!, v  (a!+1, . . . , n)
if u /2 Domain(Map) then

ctr  ctr + 1, Map[u] ctr
p Map[u], y  G⇤(rpd, v)

send y to A.

Finally, B
0 outputs whatever A outputs.

For b = 0, 1, let Wb be the event that B
0 outputs 1 in Experiment b of Attack Game 4.2 with

respect to G0. It is not too hard to see that for any fixed j = 1, . . . , `, we have

Pr[W0 | ! = j] = pj�1 and Pr[W1 | ! = j] = pj .

Indeed, condition on ! = j for fixed j, and consider how B
0 labels nodes in the evaluation tree. At

the line marked (⇤), B
0 assigns random labels to all nodes in the evaluation tree at levels 0 through

j � 1, and the assumption that A never makes the same query twice guarantees that these labels
are consistent (the same node does not receive two di↵erent labels at di↵erent times). Now, on the
one hand, when B

0 is in Experiment 1 of its attack game, it e↵ectively assigns random labels to
nodes at level j as well, and the lookup table ensures that this is done consistently. On the other
hand, when B

0 is in Experiment 0 of its attack game, it e↵ectively assigns pseudo-random labels to
nodes at level j, which is the same as assigning random labels to the parents of these nodes at level
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History
• Cryptography existed for thousands of years as only 

symmetric-key.

• Nobody thought secret key exchange was possible.

• In the 1970’s, Diffie and Hellman, and Merkle, 
proposed the first secret key exchange protocols.

• Public-key (asymmetric) cryptography was born.

• Protocols are based on computational group theory 
and number theory so we first study that.



Some Notation
Notation

Z = {. . . ,�2,�1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N 2 Z let gcd(a,N) be the largest d 2 Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.

Mihir Bellare UCSD 10



Modular Arithmetic
Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 =

{1, 5, 7, 11}

• '(12) = 4

Mihir Bellare UCSD 11



Division and modDivision and mod

INT-DIV(a,N) returns (q, r) such that

• a = qN + r

• 0  r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r 2 ZN

is the remainder when a is divided by N.

Example: INT-DIV(17, 3) = (5, 2) and 17 mod 3 = 2.

Def: a ⌘ b (mod N) if a mod N = b mod N.

Example: 17 ⌘ 14 (mod 3)

Mihir Bellare UCSD 14



Groups
Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b 2 G , a value a · b is defined.

Example: G = Z
⇤
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N is a group.

Mihir Bellare UCSD 15



ClosureGroups: Closure

Closure: For every a, b 2 G we have a · b is also in G .

Example: G = Z12 with a · b = ab does not have closure because
7 · 5 = 35 62 Z12.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies closure,

meaning

gcd(a,N) = gcd(b,N) = 1 implies gcd(ab mod N,N) = 1

Example: Let G = Z
⇤
12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 2 Z
⇤
12

Exercise: Prove the above Fact.

Mihir Bellare UCSD 16



AssociativityGroups: Associativity

Associativity: For every a, b, c 2 G we have (a · b) · c = a · (b · c).

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies

associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1

5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1

Exercise: Given an example of a set G and a natural operation
a, b 7! a · b on G that satisfies closure but not associativity.

Mihir Bellare UCSD 17



Identity Element
Groups: Identity element

Identity element: There exists an element 1 2 G such that
a · 1 = 1 · a = a for all a 2 G .

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then 1 is the identity

element because a · 1 mod N = 1 · a mod N = a for all a.

Mihir Bellare UCSD 18



Inverses
Groups: Inverses

Inverses: For every a 2 G there exists a unique b 2 G such that
a · b = b · a = 1.

This b is called the inverse of a and is denoted a
�1 if G is understood.

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then

8a 2 Z
⇤
N 9b 2 Z

⇤
N such that a · b mod N = 1.

We denote this unique inverse b by a
�1 mod N.

Example: 5�1 mod 12 is the b 2 Z
⇤
12 satisfying 5b mod 12 = 1, so b =

5

Mihir Bellare UCSD 19



Exercises
Exercises

Let N 2 Z+ and let G = ZN . Prove that G is a group under the operation
a · b = (a+ b) mod N.

Let n 2 Z+ and let G = {0, 1}n. Prove that G is a group under the
operation a · b = a � b.

Let n 2 Z+ and let G = {0, 1}n. Prove that G is not a group under the
operation a · b = a ^ b. (This is bit-wise AND, for example
0110 ^ 1101 = 0100.)

Mihir Bellare UCSD 21



Computational ShortcutsComputational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16

Mihir Bellare UCSD 24



ExponentiationExponentiation

Let G be a group and a 2 G . We let a0 = 1 be the identity element and
for n � 1, we let

a
n = a · a · · · a| {z }

n

.

Also we let
a
�n = a

�1
· a

�1
· · · a

�1
| {z }

n

.

This ensures that for all i , j 2 Z,

• a
i+j = a

i
· a

j

• a
ij = (ai )j = (aj)i

• a
�i = (ai )�1 = (a�1)i

Meaning we can manipulate exponents “as usual”.
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OrderGroup Orders

The order of a group G is its size |G |, meaning the number of elements in
it.

Example: The order of Z⇤
21 is 12 because

Z
⇤
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Fact: Let G be a group of order m and a 2 G . Then, am = 1.

Examples: Modulo 21 we have

• 512 ⌘ (53)4 ⌘ 204 ⌘ (�1)4 ⌘ 1

• 812 ⌘ (82)6 ⌘ (1)6 ⌘ 1
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Lagrange’s Theorem



Simplifying ExponentiationSimplifying exponentiation

Corollary: Let G be a group of order m and a 2 G . Then for any i 2 Z,

a
i = a

i mod m.

Example: What is 574 mod 21?

Solution: Let G = Z
⇤
21 and a = 5. Then, m = 12, so

574 mod 21 = 574 mod 12 mod 21

= 52 mod 21

= 4.
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ExercisesExercise

Evaluate the expressions shown in the first column. Your answer, in the
second column, should be a member of the set shown in the third column.
In the first case, the inverse refers to the group Z

⇤
101. Don’t use any

electronic tools; these are designed to be done by hand.

Expression Value In

34�1 mod 101 Z
⇤
101

51602 mod 17 Z
⇤
17

|Z
⇤
24| N
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Running TimeMeasuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024, 22048.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.
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Algorithms on NumbersAlgorithms on numbers

Algorithm Input Output Time
ADD a, b a+ b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a0,N 0) quadratic
MOD-INV a 2 Z

⇤
N , N a

�1 mod N quadratic
MOD-EXP a, n, N a

n mod N cubic
EXPG a, n a

n
2 G O(|n|) G -ops

Mihir Bellare UCSD 33



Extended gcd
Extended gcd

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Example: EXT-GCD(12, 20) =

(4, 2,�3) because

4 = gcd(12, 20) = 12 · (�3) + 20 · 2 .

Mihir Bellare UCSD 34



Extended gcdExtended gcd Algorithm

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Alg EXT-GCD(a,N) // (a,N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else
(q, r) INT-DIV(a,N); (d , x , y) EXT-GCD(N, r)
a
0
 y ; N 0

 x � qy

return (d , a0,N 0)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| · |N|). So the extended gcd can be computed
in quadratic time.
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Modular InverseModular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a
�1 mod N,

meaning the unique a
0
2 Z

⇤
N satisfying aa

0
⌘ 1 (mod N).

But if we let (d , a0,N 0) EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a
0 + N · N

0

But N · N
0
⌘ 0 (mod N) so aa

0
⌘ 1 (mod N)

Alg MOD-INV(a,N)
(d , a0,N 0) EXT-GCD(a,N)
return a

0 mod N

Modular inverse can be computed in quadratic time.
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Modular ExponentiationModular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y  1
for i = 1, . . . , n do y  y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.
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Square-And-Mult ExampleSquare-and-Multiply Exponentiation Example

Suppose the binary length of n is 5, meaning the binary representation of
n has the form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute a
n. Our exponentiation algorithm will proceed to

compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = 1

y4 = y
2
5 · a

b4 = a
b4

y3 = y
2
4 · a

b3 = a
2b4+b3

y2 = y
2
3 · a

b2 = a
4b4+2b3+b2

y1 = y
2
2 · a

b1 = a
8b4+4b3+2b2+b1

y0 = y
2
1 · a

b0 = a
16b4+8b3+4b2+2b1+b0 .
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Cyclic groupsGenerators and cyclic groups

Let G be a group of order m and let g 2 G . We let

hgi = { g
i : i 2 Z } .

Fact: hgi = { g
i : i 2 Zm }

Exercise: Prove the above Fact.

Fact: The size |hgi| of the set hgi is a divisor of m

Note: |hgi| need not equal m!

Definition: g 2 G is a generator (or primitive element) of G if hgi = G ,
meaning |hgi| = m.

Definition: G is cyclic if it has a generator, meaning there exists g 2 G

such that g is a generator of G .
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Cyclic groupsGenerators and cyclic groups: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8 5 10 9 7 3 6 1
5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

h2i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

h5i = {1, 3, 4, 5, 9}

• 2 a generator because h2i = Z
⇤
11.

• 5 is not a generator because h5i 6= Z
⇤
11.

• Z
⇤
11 is cyclic because it has a generator.
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Exercise
Exercise

Let G be the group Z
⇤
10 under the operation of multiplication modulo 10.

1. List the elements of G

2. What is the order of G?

3. Determine the set h3i

4. Determine the set h9i

5. Is G cyclic? Why or why not?
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Discrete log
Discrete Logarithms

If G = hgi is a cyclic group of order m then for every a 2 G there is a
unique exponent i 2 Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function:

DLogG ,g (g
i ) = i for all i 2 Zm

g
DLogG ,g (a) = a for all a 2 G .
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Discrete log
Discrete Logarithms: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order

m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent
i 2 Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9
2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
DLogG ,2(a)
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Finding cyclic groups
Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z
⇤
p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z⇤
p| = p � 1 is not prime, so Fact 2 doesn’t imply Fact 1!

Fact 3: If F is a finite field then F \ {0} is a cyclic group under the
multiplicative operation of F .

Mihir Bellare UCSD 52



Computing discrete logsComputing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X )

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.
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Computing discrete logsComputing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z
⇤
p e

1.92(ln p)1/3(ln ln p)2/3

ECp
p
p = e

ln(p)/2

Here p is a prime and ECp represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1.92(ln q)
1/3(ln ln q)2/3

where q is the largest prime factor of p � 1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.
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 Computing discrete logs
Discrete logarithm computation records

In Z
⇤
p:

|p| in bits When

431 2005
530 2007
596 2014

For elliptic curves, current record seems to be for |p| around 113.
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Elliptic curve groupsEC: More bang for the buck

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280. Then

• If we work in Z
⇤
p (p a prime) we need to set |Z⇤

p| = p � 1 ⇡ 21024

• But if we work on an elliptic curve group of prime order p then it
su�ces to set p ⇡ 2160.

Why? Because

e
1.92(ln 21024)1/3(ln ln 21024)2/3

⇡

p

2160 = 280

But now:

Group Size Cost of Exponentiation
2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!
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Discrete log gameDL Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize

x
$
 Zm;X  g

x

return X

procedure Finalize(x 0)
return (x = x

0)

The dl-advantage of A is

Adv
dl
G ,g (A) = Pr

h
DLA

G ,g ) true
i
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Computational Diffie-
HellmanCDH: The Computational Di�e-Hellman Problem

Let G = hgi be a cyclic group of order m with generator g 2 G . The CDH
problem is:

Input: X = g
x
2 G and Y = g

y
2 G

Desired Output: g xy
2 G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x  DLogG ,g (X ); Return Y
x .

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.
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CDH Game
CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X  g
x ;Y  g

y

return X ,Y

procedure Finalize(Z )
return (Z = g

xy )

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g ) true
i
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Building cyclic groups
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Building cyclic groups

• Need large groups over which schemes can work

• We need generators in these groups

• How to do this efficiently?



Building cyclic groupsBuilding cyclic groups

To find a suitable prime p and generator g of Z⇤
p:

• Pick numbers p at random until p is a prime of the desired form

• Pick elements g from Z
⇤
p at random until g is a generator

For this to work we need to know

• How to test if p is prime

• How many numbers in a given range are primes of the desired form

• How to test if g is a generator of Z⇤
p when p is prime

• How many elements of Z⇤
p are generators
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Finding primesFinding primes

Desired: An e�cient algorithm that given an integer k returns a prime
p 2 {2k�1, . . . , 2k � 1} such that q = (p � 1)/2 is also prime.

Alg Findprime(k)
do
p

$
 {2k�1, . . . , 2k � 1}

until (p is prime and (p � 1)/2 is prime)
return p

• How do we test primality?

• How many iterations do we need to succeed?
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Primality testingPrimality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , d
p
Ne do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|
3) time randomized algorithms

• Even a O(|N|
8) time deterministic algorithm
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Density of primes
Density of primes

Let ⇡(N) be the number of primes in the range 1, . . . ,N. So if

p
$
 {1, . . . ,N} then

Pr [p is a prime] =
⇡(N)

N

Fact: ⇡(N) ⇠
N

ln(N)

So

Pr [p is a prime] ⇠
1

ln(N)

If N = 21024 this is about 0.001488 ⇡ 1/1000.

So the number of iterations taken by our algorithm to find a prime is not
too big.
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DH Secret Key Exchange
Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x
$
 Zp�1; X  g

x mod p

X
������!

y
$
 Zp�1; Y  g

y mod p

Y
 ������

KA  Y
x mod p KB  X

y mod p

• Y
x = (g y )x = g

xy = (g x)y = X
y modulo p, so KA = KB

• Adversary is faced with the CDH problem.
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DH Secret Key Exchange
DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7! g
x mod p?

• How can Bob quickly compute y 7! g
y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7! g
xy mod p?

• . . .

Exercise: Answer as many of these questions as you can based on the
content of this chapter.
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Baby-Step Giant-Step



Testing Primality


