$$
\text { if (tex.outputmode or tex.pdfoutput or 0) ¿ } 0 \text { then tex.print('""'pdftrue’) end }
$$

HOW TO CALCULATE RUNNING-TIMES

The main point. We will count running-times symbolically for oracle queries, cryptographic, and arbitrary functions; and otherwise, asymptotically, converting concrete numbers into variables. Note common operations like XOR, string comparison, bit-wise complement, etc. are linear-time operations, so can be hidden under the same asymptotic term. So, for example, if a PRF-adversary calls oracle Fn twice and then computes AES twice, xor'ing the outputs and comparing the result to some fixed string, we would calculate running-time as: " 2 Fn queries $+2 \cdot T_{\mathrm{AES}}+O(\ell)$, where for AES $\ell=128$." In particular, the $O(\ell)$ term comes from the constant number of xor and string comparisons.

Further examples. Let's give more examples of how to calculate running-time of the adversaries in the homework under these guidelines. In the homework 2 solutions, Part B, the running-time of the given adversary would be " 2 Fn queries $+2{ }^{130} \cdot T_{\text {AES }}+O(\ell)$ where $\ell=128$ for AES." As above, the $O(\ell)$ term comes from the constant number of xor and bit-wise complement computations.

Number-theoretic algorithms. In the number-theoretic setting we can use asymptotics naturally because numbers can vary in bit-length. You are expected to know the running-time of the basic algorithms discussed in class (there is a table in the slides giving these). The only one whose running-time derivation is not explained is EXT-GCD, so just remember that it's quadratic-time; and you should understand that MOD-INV calls EXT-GCD so its running-time is also quadratictime. You should also understand that exponentiation in a group $G=\langle g\rangle$ exponentiating g to the power m uses $O(|m|) g$-operations by the square-and-multiply algorithm; when $G=\mathbb{Z}_{p}^{*}$ the g-operation is multiplication modulo p which is quadratic time. Thus is $|m|$ is on the order of $|p|$ as it is commonly for discrete-log-based schemes, exponentiation in \mathbb{Z}_{p}^{*} is cubic-time.

