COMPSCI-466: Practice Midterm Exam

This is longer than the actual midterm will be!

Problem 1. Let $\mathbb{Z}_{3}=\{0,1,2\}$ and $\mathbb{Z}_{3}^{*}=\{1,2\}$. Consider the symmetric-key encryption scheme $\mathrm{SE}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ with message-space $\left(\mathbb{Z}_{3}\right)^{2}$ defined as follows. Key-generation algorithm \mathcal{K} outputs a uniformly random $k \in \mathbb{Z}_{3}^{*}$ and encryption algorithm \mathcal{E} is defined by

Algorithm $\mathcal{E}_{\pi}(M)$:
Parse M as $M[1] M[2]$ where each $M[i] \in \mathbb{Z}_{3}$
For $i=1,2$ do:
$C[i] \leftarrow M[i] \cdot k \bmod 3$
Return $C[1] C[2]$
(Part A.) Finish the description of SE. That is, specify a decryption algorithm \mathcal{D} such that $\mathrm{SE}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a correct symmetric-key encryption scheme with \mathcal{K}, \mathcal{E} as defined above.
(Part B.) Is SE a substitution cipher? Why or why not?
(Part C.) Is SE a Shannon-secure? Why or why not?
Problem 2. Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a blockcipher. Define $F:\{0,1\}^{2 n+k} \times\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$ as follows for any $K_{2} \in\{0,1\}^{k}$ and $K_{1}, K_{3}, X \in\{0,1\}^{n}$:

Algorithm $F_{K_{1}\left\|K_{2}\right\| K_{3}}(M)$:
$W \leftarrow K_{1} \oplus \bar{M} ; X \leftarrow E_{K_{2}}^{-1}(W)$
$Y \leftarrow K_{3} \oplus X$
Return Y
(Part A.) Is F blockcipher? Prove your answer.
(Part B.) What is the running-time of a 3-query exhaustive key search adversary against F ?
(Part C.) Give the most efficient 3-query key recovery adversary that you can having advantage 1 against F. State and prove your adversary's advantage and resource usage.

Problem 3. Let $F:\{0,1\}^{128} \times\{0,1\}^{128} \rightarrow\{0,1\}^{128}$ be a function family. For each of the following properties below, say whether that property contradicts F being a good PRF.

1. F is not invertible - for most $K \in\{0,1\}^{128}, F_{K}(\cdot)$ is not a permutation.
2. For every $K, x \in\{0,1\}^{128}$, we have $F_{\bar{K}}(x)=\overline{F_{K}(x)}$.
3. For every $K, x \in\{0,1\}^{128}$, we have $F_{K}(x)=F_{K}(\bar{x})$.
4. For every $K, x \in\{0,1\}^{128}$, the fourth bit of K is never used in the computation of $F_{K}(x)$.

Problem 4. Define symmetric-key encryption scheme $\mathrm{SE}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where \mathcal{K} returns a random 128-bit key K and

$$
\begin{aligned}
& \text { Algorithm } \mathcal{E}_{K}(M) \text { : } \\
& \quad \text { If }|M| \neq 256 \text { then return } \perp \\
& M[1] \| M[2] \leftarrow M \\
& C[0] \leftarrow \mathrm{AES} S_{K}(M[1]) \\
& \text { For } i=1,2 \text { do: } \\
& \quad C[i] \leftarrow \mathrm{AES} S_{K}\left(C_{0}[i-1] \oplus M[i]\right) \\
& \text { Return } C[0] C[1] C[2]
\end{aligned}
$$

(Part A.) Define a decryption algorithm \mathcal{D} such that $\mathrm{SE}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a symmetric-key encryption scheme satisfying the correctness condition.
(Part B.) Show that SE is not IND-CPA secure. Your adversary should break the encryption scheme without breaking AES. State and prove your adversary's advantage and resource usage.

