Lecture 9 — Public-Key Encryption

COSC-466 Applied Cryptography
Adam O’Neill
Adapted from
http://cseweb.ucsd.edu/~mihir/csel107/

Recall Symmetric-Key Crypto

* |n this setting, if Alice wants to communicate
secure with Bob they need a shared key Kas.

Recall Symmetric-Key Crypto

* |n this setting, if Alice wants to communicate
secure with Bob they need a shared key Kas.

e |f Alice wants to also communicate with Charlie
they need a shared key Kac

Recall Symmetric-Key Crypto

* |n this setting, if Alice wants to communicate
secure with Bob they need a shared key Kas.

e |f Alice wants to also communicate with Charlie
they need a shared key Kac

 |f Alice generates Kaz and Kac they must be
communicated to Bob and Charlie over secure
channels. How can this be done?

Public-Key Crypto

* Alice has a secret key that is shared with nobody,
and a public key that is shared with everybodly.

Public-Key Crypto

* Alice has a secret key that is shared with nobody,
and a public key that is shared with everybodly.

* Anyone can use Alice’s public key to send her a
private message.

Public-Key Crypto

* Alice has a secret key that is shared with nobody,
and a public key that is shared with everybodly.

* Anyone can use Alice’s public key to send her a
orivate message.

* Public key is like a phone number: Anyone can
ook it up in a phone book.

Public-Key Crypto

Alice has a secret key that is shared with nobody,
and a public key that is shared with everybodly.

Anyone can use Alice’s public key to send her a
orivate message.

Public key is like a phone number: Anyone can
ook it up in a phone book.

Senders don’t need secrets; there are

Syntax and Correctness of PKE

A public-key (or asymmetric) encryption scheme AE = (K, £, D) consists
of three algorithms, where

M— &£ C C D H=Mor L

B

Code Obfuscation Perspective

Correctness

Let AE = (K, &, D) be an asymmetric encryption scheme. The correct
decryption requirement is that

Pr[D(sk, &(pk, M)) = M] = 1

for all (pk,sk) that may be output by K and all messages M in the
message space of AE. The probability is over the random choices of £.

This simply says that decryption correctly reverses encryption to recover
the message that was encrypted. When we specify schemes, we indicate
what is the message space.

How It Works

Step 1: Key generation
Alice locally computers (pk, sk) <~ KC and stores sk.

Step 2: Alice enables any prospective sender to get pk.
Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don't require privacy of pk but we do require authenticity: the sender
should be assured pk is really Alice's key and not someone else’'s. One
could

e Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

e Use certificates as we will see later.

IND-CPA

Let AE = (K, &, D) be a PKE scheme and A an adversary.

Game Left 4¢ Game Right 4¢
procedure Initialize procedure Initialize
(pk, sk) & K ; return pk (pk, sk) & K ; return pk
procedure LR(My, M) procedure LR(My, M)
Return C <& gpk(Mo) Return C <& gpk(Ml)

Associated to AE, A are the probabilities
Pr [Leftﬁ‘lg;»l} ‘ Pr [Rightﬁ‘lg;q}

that A outputs 1 in each world. The ind-cpa advantage of A is
AdvideP2(A) = Pr [nght Ag;»l} — Pr [Left Ag:,l}

Explanations

The “return pk” statement in Initialize means the adversary A gets the
public key pk as input. It does not get sk.

It can call LR with any equal-length messages My, M; of its choice to get
back an encryption C ¢ E,x(Mp) of M, under sk, where b =0 in game
Left 4¢ and b =1 in game Right 4. Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages My, My of unequal length. Any
such A is considered invalid and its advantage is undefined or O.

It outputs a bit, and wins if this bit equals b.

How to Build a Scheme?

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = (g) is a cyclic group. Let's
let the encryption of x be g*. Then

x hard
g — X

N~
Eg(x)

so to recover x, adversary must compute discrete logarithms, and we know
It can't, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!

A More Basic Problem: Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z7.
p

Alice Bob
_1; X+ g“mod p @
. X
y@Zp_l; Y < g¥ mod p
Y
Ka < Y mod p Kg < XY mod p

o YX=(g") =g =(g%) = XY modulo p, so Ka = Kg
e Adversary is faced with the CDH problem.

Key Exchange to PKE

We can turn DH key exchange into a public key encryption scheme via

e et Alice have public key g~ and secret key x

e |f Bob wants to encrypt M for Alice, he

e Picks y and sends g” to Alice
e Encrypts M under g = (g*)” and sends ciphertext to Alice.

e But Alice can recompute g = (g”)* because

e g” is in the received ciphertext
e x is her secret key

Thus she can decrypt and adversary is still faced with CDH .

DifCre- Wellmor Indequate ?wr‘w‘ SUAUM
o, o
DHIESH /6722
/\&(/ \(// \ t—’l» UM J

Let G = (g) be a cyclic group of order m and H: G — {0,1}* a (public)
hash function. The DHIES PKE scheme AE = (K, me is defined for

k o ' WU < drvebplo ¢l
messages M € {0,1}* via (1) ¢ e wpr H/L-P 2 USYS

rwd.amvwxs
() Yengha s - mal—bs 6
Alg SX(/\/Ig ”
Alg K Alg D, (Y, W) H e
$ yEZm Y — g . —
X &2 Pl)’<"y K<Y

X +— g~ M<+— H(K)® W
return (X, x) WHK) o M retur
return (Y, W)

Y Wep‘/‘\fuuﬁﬁw\)

. ; — .
Correct decryption is assured because K = XY = g¥ = Y~X

Note: This is a simplified version of the actual scheme.)
ety x
QLo (L O+ [H""’M&-
cor &0 -k
DI TS (024 + (Ax ¢ aC-

Security of DHIES

The DHIES scheme AE = (K, &, D) associated to cyclic group G = (g)
and (public) hash function H can be proven IND-CPA assuming

e CDH is hard in G, and

m——
e His a “random oracle,” meaning a “perfect” hash function.
\/_—'\\ B L J— ~—————

In practice, H(K) could be the first k bits of the sequence
SHA256(0°%||K)||SHA256(0" 1| K)]| - - -

ECIES

The DHIES schemeAE = (K, E, D) associated to cyclic gfoup6 —
b7 =z —

n IND-CEA=assuming

.G'/ tiog A1 ‘/,:f;v. WOV

In préetice, could-be the't h€ sequence

SHA25610%1TK YHSHA 25610 1||K

DU IES in e e 0=4e? Y5 an
A_po Vo grvake e lliphc e grove-

(&)

CHVES Yeabrwes (for %0 bit Sfcu.nk,\

Operabon | (osh

ncvyphon 5> fbo-Lik 2.0 ponenbickae~
decry o bon [160-\%'F <xp.

|

e P e bexb Q¥ p m 5ton =
lenath ob cipwer Lc.xl' \-twgtw o
N p) v
\O\Obl\ﬂ\—b(

= GO biks

VYV mo‘\é\v S ne2d
11§~k seerny

e 1Ru=lit 40 0

RSA Math

Recall that p(N) = |Z}].

Claim: Suppose e, d € Z7,)\, satisfy ed = 1 (mod ¢(N)). Then for any
x € L}, we have

(x4)? = x (mod N)
Proof:
(Xe)dE ed mod p(N)

_X =

modulo N

The RSA function M~ " ¢

P4 primeS

A modulus N and encryption exponent e define the RSA function
f:Zy — Z) defined by

2
f(x) =x° mod N RSANFC({') - %mccl/‘/
for all x € Z},.

A value d € Z7) satisfying ed = 1 (mod (N)) is called a decryption
exponent.

Claim: The RSA function f : Z3, — Z}, is a permutation with inverse
f il Ly — Z}, given by
F1(y)=y? mod N
Proof: For all x € Z}, we have
FLf(x) = (x$)Y =x (mod N)

by previous claim.

Example

Let N =15. So

Zy = {1,2,4,7,8,11,13,14}

p(N) = 8
:;(N) {1737577}
x | f(x f(x
Let e=3 and d = 3. Then T (1) g(l()
ed=9=1 (mod 8) > 3 5
4 | 4 4
Let 7] 13 7
8 2 8
f(X) — X3 mod 15 11 11 11
3 13 7 13
gly) = y mod15
) 14 | 14 14

RSA usage
Paby SR

o pk =N e; sk =N,d ey o
o pk(X):Xe mod N = f(x) A \,Jl“ Set .,
e Dy(y)=y? mod N = f"1(y) “\p[m% A

Security will rely on it being hard to compute f~! without knowing d.

RSA is a trapdoor, one-way permutation:

e Easy to invert given trapdoor d [,\a/ A eSS
e Hard to invert given only N, e <SS v Ph‘uﬂ

o RSH .

RSA generators
T hevt Cun de oY Vos;iblt {Z/Sﬂ

(D_e,n(,m\"()“ff
An RSA generator with security parameter k is an algorithm /C,s; that

returns N, p, g, e, d satisfying T
— Ry 4 hC)PL

e p, g are distinct odd primes —

e N = pg and is called the (RSA) m(;dy
o |N| =k, meaning 2k-1 < N < 2K

e e € Z;(N) is called the encryption exponent

e dc Z:;(N) is called the decryption exponent

e ed =1 (mod ¢(N))
E%O\w\,p\L" \D\DL C O~

e - chesen b taadoas

Next...

* Building RSA generators
* Basic RSA security
* Encryption with RSA

A formula

Fact: Suppose N = pq for distinct primes p and g. Then

@: (p—1)(g—1).

Example: Let N =15 = 3-5. Then the Fact says that

o(15) = (3—1)(5—1) = 8

. As a check, Z7; ={1,2,4,7,8,11,13, 14} indeed has size 8.

The general formula

Fact: Suppose N > 1 factors as

N =pit-py?-...-py"
where p;1 < pp < ... < pp are primes and a1,...,a, > 1 are integers.
Then <4 VA prev . Cast N =9
<
o(N) =(pi* YL — 1) -go‘z_}l(pz — 1) pa— 1)
R ——

Note prior Fact is a special case of the above. (Make sure you understand
why!)

Example: Let N = 45 = 32.51. Then the Fact says that

p(45) = 3 (3 1) - 5%(5 — 1) = 24

Recall

(Givecr; gp((ll\\ll)))arrd e € Z;(N), we can compute d € Z;(N) satisfying ed = 1
mod ¢ via 1
ele £ LYV =]
d + MOD-INV(e, o(N)). =
ColMls EXT < P

We have algorithms to efficiently test whether a number is prime, and a
random number has a pretty good chance of being a prime.

Building RSA generators
6:/2““1 1977,

Say we wish to have e = 3 (for efficiency). The generator K>, with (even)
security parameter k:

NSk mo dwlns Y%%Hﬂ e

repeat
p,q < {2K2=1 2k2 _1}: N« pg; M+~ (p—1)(q — 1)
until -
N > 2k=1 and p, q are prime and gcd(e, M) =1
d < MOD-INV (e, M)
return N, p,qg, e, d

0 vﬁl‘fce}

dom
vy U0 \o
% T&\“\/‘VUW PN\MQ,\)‘

One-wayness of RSA

v
P

Sa/f\

o+

The following should be hard:
Given: N, e,y where y = f(x) = x¢ mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.
r 2

—

One-wayness of RSA formally

Let IC,., be a RSA generator and / an adversary.

Game OWy_

procedure Initialize

$
(N,p,qg,e,d) < K,
xéZj‘V; y < x¢ mod N
return N, e, y

procedure Finalize(x’)
return (x = x’)

The ow-advantage of / is

Advy”

rsa

(1) = Pr [()W,’C = true}

rsa

Inverting RSA

Inverting RSA : given N e,y find x such that x¢ =y (mod N)

T EASY because f~1(y) = y9 mod N

Know d

T EASY because d = e~! mod p(N)
Know ¢(N)

T EASY because o(N) = (p—1)(g — 1)
Know p, g

1

Know N

Factoring problem

Given: N where N = pg and p, g are prime

Find: p,q

If we can factor we can invert RSA. We do not know whether the converse
is true, meaning whether or not one can invert RSA without factoring.

A factoring algorithm

Alg FACTOR(N) // N = pq where p, g are primes

for /':2,...,{\/N_‘ do
if N mod i = 0 then
p<«i;q< N/i; return p,q

This algorithm works but takes time
O(\/N) _ O(eO.SIn N)

which is prohibitive.

€4 - Yoy ~vik N

Factoring algorithms

Algorithm Time taken to factor N
Naive O(e%>!n)
Quadratic Sieve (QS) O(eclin NY/2(InIn ,\,)1/2)
Number Field Sieve (NFS) | O(el-92(n N)!/3(InIn N)2/3)

‘;2:'7 Need 20YB-Lik vodunlas
Lo \2 € b sec.

(wovgi)
EOMD» \\5\/}100 Fin " g bl

LY 6 { XOH'M'@ Cu chor

Key size

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus
80-bit security: Factoring takes 289 time.
Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.

RSA Cheat Sheet

The RSA function f(x) = x¢ mod N is a trapdoor one way permutation:

o Easy forward: given N, e, x it is easy to compute f(x)

e Easy back with trapdoor: Given N,d and y = f(x) it is easy to
compute x = f 1(y) = y9 mod N

e Hard back without trapdoor: Given N, e and y = f(x) it is hard to
compute x = f~1(y)

RSP oae—-won

No~t

Plain RSA Encryption swayer

EXVEE S

The plain RSA PKE scheme AE = (K, £, D) associated to RSA generator

K

rsa IS

Alg

(N.p, g, e,d) ¢ Ky
pk < (N,e) ; sk < (N, d)
return (pk, sk)

Alg &, (M)

Alg Dsk(C)

C+— M mod N| M+ C9 mod N

return C

return M

Decryption correctness: The “easy-backwards with trapdoor” property
implies that for all M € Z}, we have Dg(Ep(M)) = M.

Note: The message space is Z},. Messages are assumed to be all encoded
as strings of the same length, for example length 4 if N = 15.

/Q(;\-%‘O\Q\CS’Y» (V) V\S(Aﬂ\t

@) enceyyb

Y onr\ & i N

WH’A\(V 0N

det enC.

c
t e ol f A AN MW\V

“Simple RSA” (SRSA)

The SRSA PKE scheme AE = (K, £, D) associated to RSA generator

rsa

and (public) hash function H: {0,1}* — {0,1}% encrypts k-bit messages

Via.

Alg K
(N,p.q,e.d) < K
pk < (N, e)

sk + (N, d)
return (pk, sk)

]C\vuc S

Alg gN,e(M)

rsa XﬁZ’,"V

K < H(x)
C, + x® mod
Cs+— K M

return (C,, Cs

N

S

Alg Dy ,d(Ca, G)

x < C% mod N
K « H(x)
M+— C d K
return M

conldd (se AE

M\ PVOQ[@MS‘ 19(7

C,\ Voonarom 1‘2:%«5 ~_nc .

Y tsomy o~ hoslh Fuwefim .
(ND=CPE ' O moedel.

(1) 5 INIS the dpherrt o teagin

@yj LSt S 'F@\'ﬁ\‘ffc\)A

o n-&S

ot

EP

Nod U5

QN (MD-CcPA (~n RO (of st !’I/\.DOLLL7

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G: {0,1}!%® — {0,1}%%* and H: {0,1}%°* — {0,1}!%®

Algorithm Ey (M) /] M| < 765
r<{0,1}%; p « 765 — | M|

128 894
r 0% || M || 107
(6) 0
S t
x < s||t
C+— x*mod N
return C

[<noW Rdumbzecs | A

x < C¥mod N
s||t < x

128

Algorithm Dy 4(C)

894

/] C €Ly

S

5 (H)

N

N

B

r

al| M| 107

if 2 =0'%8

else return L

L}C{.\/ﬁm‘—?\ﬁ

then return M

es A

R s -l acedt Bind) Dv‘so\gfé*. .

OAEP Usage

Protocols:
o SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
e SSH ver 1.0, 2.0

Standards:
e RSA PKCS #1 versions 1.5, 2.0
IEEE P1363
NESSIE (Europe)
CRYPTREC (Japan)

Security Results

Scheme IND-CPA?

DHIES Yes
Plain RSA No
SRSA Yes

RSA OAEP Yes

