
Lecture	9	–	Public-Key	Encryption	

COSC-466	Applied	Cryptography	
Adam	O’Neill	

Adapted	from	
	http://cseweb.ucsd.edu/~mihir/cse107/



Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.



Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.

• If	Alice	wants	to	also	communicate	with	Charlie	
they	need	a	shared	key	KAC.	



Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.

• If	Alice	wants	to	also	communicate	with	Charlie	
they	need	a	shared	key	KAC.	

• If	Alice	generates	KAB	and	KAC	they	must	be	
communicated	to	Bob	and	Charlie	over	secure	
channels.		How	can	this	be	done?



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.

• Public	key	is	like	a	phone	number:	Anyone	can	
look	it	up	in	a	phone	book.



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.

• Public	key	is	like	a	phone	number:	Anyone	can	
look	it	up	in	a	phone	book.

• Senders	don’t	need	secrets;	there	are	no	shared	
secrets



Syntax	and	Correctness	of	PKE
Public Key Encryption

• Alice has a secret key that is shared with nobody, and an associated
public key that is known to everybody.

• Anyone (Bob, Charlie, . . .) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

• Senders don’t need secrets

• There are no shared secrets

Mihir Bellare UCSD 5

Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E ,D) consists
of three algorithms, where

EM D M or ?

sk

K

C C

pk

A
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Correct decryption requirement

Let AE = (K, E ,D) be an asymmetric encryption scheme. The correct
decryption requirement is that

Pr[D(sk, E(pk,M)) = M] = 1

for all (pk, sk) that may be output by K and all messages M in the
message space of AE . The probability is over the random choices of E .

This simply says that decryption correctly reverses encryption to recover
the message that was encrypted. When we specify schemes, we indicate
what is the message space.
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How it works

Step 1: Key generation
Alice locally computers (pk, sk) $

 K and stores sk.

Step 2: Alice enables any prospective sender to get pk.

Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don’t require privacy of pk but we do require authenticity: the sender
should be assured pk is really Alice’s key and not someone else’s. One
could

• Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

• Use certificates as we will see later.
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IND-CPAThe games for IND-CPA

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game LeftAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M0)

Game RightAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M1)

Associated to AE ,A are the probabilities

Pr
h
LeftAAE)1

i
Pr

h
RightAAE)1

i

that A outputs 1 in each world. The ind-cpa advantage of A is

Adv
ind-cpa
AE (A) = Pr

h
RightAAE)1

i
� Pr

h
LeftAAE)1

i
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Explanations

Security of PKE Schemes

Same as for symmetric encryption, except for one new element: The
adversary needs to be given the public key.

We formalize IND-CPA accordingly.

Mihir Bellare UCSD 9

The games for IND-CPA

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game LeftAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M0)

Game RightAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M1)

Associated to AE ,A are the probabilities

Pr
h
LeftAAE)1

i
Pr

h
RightAAE)1

i

that A outputs 1 in each world. The ind-cpa advantage of A is

Adv
ind-cpa
AE (A) = Pr

h
RightAAE)1

i
� Pr

h
LeftAAE)1

i

Mihir Bellare UCSD 10

IND-CPA: Explanations

The “return pk” statement in Initialize means the adversary A gets the
public key pk as input. It does not get sk.

It can call LR with any equal-length messages M0,M1 of its choice to get
back an encryption C $

 Epk(Mb) of Mb under sk, where b = 0 in game
LeftAE and b = 1 in game RightAE . Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages M0,M1 of unequal length. Any
such A is considered invalid and its advantage is undefined or 0.

It outputs a bit, and wins if this bit equals b.

Mihir Bellare UCSD 11

Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = hgi is a cyclic group. Let’s
let the encryption of x be g x . Then

g x

|{z}
Eg (x)

hard
��! x

so to recover x , adversary must compute discrete logarithms, and we know
it can’t, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!
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Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x $
 Zp�1; X  g x mod p

X
������!

y $
 Zp�1; Y  g y mod p

Y
 ������

KA  Y x mod p KB  X y mod p

• Y x = (g y )x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with the CDH problem.
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From key exchange to PKE

We can turn DH key exchange into a public key encryption scheme via

• Let Alice have public key g x and secret key x
• If Bob wants to encrypt M for Alice, he

• Picks y and sends g y to Alice
• Encrypts M under g xy = (g x)y and sends ciphertext to Alice.

• But Alice can recompute g xy = (g y )x because
• g y is in the received ciphertext
• x is her secret key

Thus she can decrypt and adversary is still faced with CDH .
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The DHIES scheme

Let G = hgi be a cyclic group of order m and H: G ! {0, 1}k a (public)
hash function. The DHIES PKE scheme AE = (K, E ,D) is defined for
messages M 2 {0, 1}k via

Alg K

x $
 Zm

X  g x

return (X , x)

Alg EX (M)

y $
 Zm;Y  g y

K  X y

W  H(K ) � M
return (Y ,W )

Alg Dx(Y ,W )

K  Y x

M  H(K ) �W
return M

Correct decryption is assured because K = X y = g xy = Y x

Note: This is a simplified version of the actual scheme.

Mihir Bellare UCSD 16
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Security	of	DHIES
Security of DHIES

The DHIES scheme AE = (K, E ,D) associated to cyclic group G = hgi
and (public) hash function H can be proven IND-CPA assuming

• CDH is hard in G , and

• H is a “random oracle,” meaning a “perfect” hash function.

In practice, H(K ) could be the first k bits of the sequence

SHA256(08kK )kSHA256(071kK )k · · ·
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ECIES

ECIES is DHIES with the group being an elliptic curve group.

ECIES features:

Operation Cost

encryption 2 160-bit exp
decryption 1 160-bit exp

ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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Exercise

Let p � 3 be a prime, g 2 Z
⇤
p a generator of Z⇤

p and H: G ! {0, 1}k a
hash function. (These are all public.) Consider the key-generation and
encryption algorithms below, where M 2 {0, 1}k :

Alg K

x $
 Z

⇤
p�1

X  g x mod p
return (X , x)

Alg E(X ,M)

y $
 Zp�1; Y  g y mod p

Z  X y mod p ; W  H(Y ) � M
Return (Z ,W )

Specify a O(|p|3 + k)-time decryption algorithm D such that
AE = (K, E ,D) is an asymmetric encryption scheme satisfying the correct
decryption property, and prove this is the case.
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RSA Math

Recall that '(N) = |Z
⇤
N |.

Claim: Suppose e, d 2 Z
⇤
'(N) satisfy ed ⌘ 1 (mod '(N)). Then for any

x 2 Z
⇤
N we have

(xe)d ⌘ x (mod N)

Proof:

(xe)d ⌘ xed mod '(N)
⌘ x1 ⌘ x

modulo N

Mihir Bellare UCSD 20
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The	RSA	functionThe RSA function

A modulus N and encryption exponent e define the RSA function
f : Z⇤

N ! Z
⇤
N defined by

f (x) = xe mod N

for all x 2 Z
⇤
N .

A value d 2 Z ⇤
'(N) satisfying ed ⌘ 1 (mod '(N)) is called a decryption

exponent.

Claim: The RSA function f : Z⇤
N ! Z

⇤
N is a permutation with inverse

f �1 : Z⇤
N ! Z

⇤
N given by

f �1(y) = yd mod N

Proof: For all x 2 Z
⇤
N we have

f �1(f (x)) ⌘ (xe)d ⌘ x (mod N)

by previous claim.
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Example

Let N = 15. So

Z
⇤
N = {1, 2, 4, 7, 8, 11, 13, 14}

'(N) = 8

Z
⇤
'(N) = {1, 3, 5, 7}

Let e = 3 and d = 3. Then

ed ⌘ 9 ⌘ 1 (mod 8)

Let

f (x) = x3 mod 15

g(y) = y3 mod 15

x f (x) g(f (x))

1 1 1
2 8 2
4 4 4
7 13 7
8 2 8
11 11 11
13 7 13
14 14 14
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Exercise

1. List all possible encryption exponents for RSA modulus 35:

2. The decryption exponent corresponding to RSA modulus 187 and
encryption exponent 107 is

Mihir Bellare UCSD 24
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The RSA function
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⇤
N defined by
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⇤
N .

A value d 2 Z ⇤
'(N) satisfying ed ⌘ 1 (mod '(N)) is called a decryption
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⇤
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RSA	usage
RSA usage

• pk = N, e; sk = N, d

• Epk(x) = xe mod N = f (x)

• Dsk(y) = yd mod N = f �1(y)

Security will rely on it being hard to compute f �1 without knowing d .

RSA is a trapdoor, one-way permutation:

• Easy to invert given trapdoor d

• Hard to invert given only N, e

Mihir Bellare UCSD 25

RSA generators

An RSA generator with security parameter k is an algorithm Krsa that
returns N, p, q, e, d satisfying

• p, q are distinct odd primes

• N = pq and is called the (RSA) modulus

• |N| = k , meaning 2k�1
 N  2k

• e 2 Z
⇤
'(N) is called the encryption exponent

• d 2 Z
⇤
'(N) is called the decryption exponent

• ed ⌘ 1 (mod '(N))

Mihir Bellare UCSD 26

Plan

• Building RSA generators

• Basic RSA security

• Encryption with RSA

Mihir Bellare UCSD 27

A formula for Phi

Fact: Suppose N = pq for distinct primes p and q. Then

'(N) = (p � 1)(q � 1) .

Example: Let N = 15 = 3 · 5. Then the Fact says that

'(15) = (3� 1)(5� 1) = 8

. As a check, Z⇤
15 = {1, 2, 4, 7, 8, 11, 13, 14} indeed has size 8.

Mihir Bellare UCSD 28
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There can be many possible RSA

generators

-
←

key length
-

I

Example : pig random

e
- chosen at random



Next…

• Building	RSA	generators	
• Basic	RSA	security	
• Encryption	with	RSA
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The	general	formulaA more general formula for Phi

Fact: Suppose N � 1 factors as

N = p↵1
1 · p↵2

2 · . . . · p↵n
n

where p1 < p2 < . . . < pn are primes and ↵1, . . . ,↵n � 1 are integers.
Then

'(N) = p↵1�1
1 (p1 � 1) · p↵2�1

2 (p2 � 1) · . . . · p↵n�1
n (pn � 1) .

Note prior Fact is a special case of the above. (Make sure you understand
why!)

Example: Let N = 45 = 32 · 51. Then the Fact says that

'(45) = 31(3� 1) · 50(5� 1) = 24

Mihir Bellare UCSD 29

Recall

Given '(N) and e 2 Z
⇤
'(N), we can compute d 2 Z

⇤
'(N) satisfying ed ⌘ 1

(mod '(N)) via

d  MOD-INV(e,'(N)).

We have algorithms to e�ciently test whether a number is prime, and a
random number has a pretty good chance of being a prime.

Mihir Bellare UCSD 30

Building RSA generators

Say we wish to have e = 3 (for e�ciency). The generator K3
rsa with (even)

security parameter k :

repeat

p, q $
 {2k/2�1, . . . , 2k/2 � 1}; N  pq; M  (p � 1)(q � 1)

until
N � 2k�1 and p, q are prime and gcd(e,M) = 1

d  MOD-INV(e,M)
return N, p, q, e, d

Mihir Bellare UCSD 31

One-wayness of RSA

The following should be hard:

Given: N, e, y where y = f (x) = xe mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.

Mihir Bellare UCSD 32
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Building	RSA	generators
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One-wayness	of	RSA	formallyOne-wayness of RSA, formally

Let Krsa be a RSA generator and I an adversary.

Game OWKrsa

procedure Initialize

(N, p, q, e, d) $
 Krsa

x $
 Z

⇤
N ; y  xe mod N

return N, e, y

procedure Finalize(x 0)
return (x = x 0)

The ow-advantage of I is

Adv
ow
Krsa

(I ) = Pr
h
OWI

Krsa
) true

i
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

Mihir Bellare UCSD 34

Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d

EASY because d = e�1 mod '(N)

Know '(N)
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d

EASY because d = e�1 mod '(N)

Know '(N)

EASY because '(N) = (p � 1)(q � 1)

Know p, q

?

Know N
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Factoring Problem

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the converse
is true, meaning whether or not one can invert RSA without factoring.
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A factoring algorithm

Alg FACTOR(N) // N = pq where p, q are primes

for i = 2, . . . ,
lp

N
m
do

if N mod i = 0 then
p  i ; q  N/i ; return p, q

This algorithm works but takes time

O(
p

N) = O(e0.5 lnN)

which is prohibitive.

Mihir Bellare UCSD 40
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A	factoring	algorithm
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Factoring	algorithms

Factoring algorithms

Algorithm Time taken to factor N

Naive O(e0.5 lnN)

Quadratic Sieve (QS) O(ec(lnN)1/2(ln lnN)1/2)

Number Field Sieve (NFS) O(e1.92(lnN)1/3(ln lnN)2/3)
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Factoring records

Number bit-length Factorization alg

RSA-400 400 1993 QS
RSA-428 428 1994 QS
RSA-431 431 1996 NFS
RSA-465 465 1999 NFS
RSA-515 515 1999 NFS
RSA-576 576 2003 NFS
RSA-768 768 2009 NFS
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How big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus

80-bit security: Factoring takes 280 time.

Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.
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RSA Video

http://www.youtube.com/watch?v=wXB-V_Keiu8
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Key	size
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RSA	Cheat	SheetRSA: what to remember

The RSA function f (x) = xe mod N is a trapdoor one way permutation:

• Easy forward: given N, e, x it is easy to compute f (x)

• Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f �1(y) = yd mod N

• Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f �1(y)
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Plain-RSA encryption

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e) ; sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

Decryption correctness: The “easy-backwards with trapdoor” property
implies that for all M 2 Z

⇤
N we have Dsk(Epk(M)) = M.

Note: The message space is Z⇤
N . Messages are assumed to be all encoded

as strings of the same length, for example length 4 if N = 15.
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Plain-RSA encryption security

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e) ; sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

Getting sk from pk involves factoring N.

But E is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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Plain-RSA encryption security
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IND-CPA secure.
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Plain	RSA	Encryption
RSA: what to remember
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Plain-RSA encryption security

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e) ; sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

Getting sk from pk involves factoring N.

But E is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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“Simple	RSA”	(SRSA)
The SRSA scheme

Encrypt M unde pk = N, e via:

• x $
 Z

⇤
N ; Ca  xe mod N;

• K  H(x)

• Cs  K � M

• Ciphertext is (Ca,Cs)

Decrypt (Ca,CS) under sk = N, d via:

• x  Cd
a mod N

• K  H(x)

• M  Cs � K
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The SRSA scheme

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa

and (public) hash function H: {0, 1}⇤ ! {0, 1}k encrypts k-bit messages
via:

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e)
sk  (N, d)
return (pk , sk)

Alg EN,e(M)

x $
 Z

⇤
N

K  H(x)
Ca  xe mod N
Cs  K � M
return (Ca,Cs)

Alg DN,d(Ca,Cs)

x  Cd
a mod N

K  H(x)
M  Cs � K
return M
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Security of SRSA

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa

and (public) hash function H: {0, 1}⇤ ! {0, 1}k can be proven IND-CPA
assuming

• Krsa is one-way

• H is a “random oracle,” meaning a “perfect” hash function.

In practice, H(K ) could be the first k bits of the sequence

SHA256(08kK )kSHA256(071kK )k · · ·
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OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G : {0, 1}128 ! {0, 1}894 and H: {0, 1}894 ! {0, 1}128

Algorithm EN,e(M) // |M|  765

r
$ {0, 1}128; p  765� |M|

128 894

r

ts

0128 kM k 10p

H

G

x  s||t
C  x

e mod N

return C

Algorithm DN,d(C ) // C 2 Z⇤
N

x  C
d mod N

s||t  x

128 894

t

r

s

H

G

a kM k 10p

if a = 0128 then return M

else return ?
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OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G : {0, 1}128 ! {0, 1}894 and H: {0, 1}894 ! {0, 1}128

Algorithm EN,e(M) // |M|  765

r
$ {0, 1}128; p  765� |M|

128 894

r

ts

0128 kM k 10p

H

G

x  s||t
C  x

e mod N

return C

Algorithm DN,d(C ) // C 2 Z⇤
N

x  C
d mod N

s||t  x

128 894

t

r

s

H

G

a kM k 10p

if a = 0128 then return M

else return ?
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OAEP	UsageRSA OAEP usage

Protocols:

• SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1

• SSH ver 1.0, 2.0

• . . .

Standards:

• RSA PKCS #1 versions 1.5, 2.0

• IEEE P1363

• NESSIE (Europe)

• CRYPTREC (Japan)

• . . .
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Exercise

Let m, k , ` be integers such that 2  m < k and k � 2048 and
` = k �m� 1 and ` is even. Let Krsa be a RSA generator with associated
security parameter k . Consider the key-generation and encryption
algorithms below, where M 2 {0, 1}m:

Alg K

(N, e, d , p, q) $
 Krsa

return ((N, e), (N, d))

Alg E((N, e),M)

Pad $
 {0, 1}` ; x  0 k Pad kM

C  xe mod N ; return C

1. Specify a O(k3)-time decryption algorithm D such that
AE = (K, E ,D) is an asymmetric encryption scheme satisfying the
correct decryption property.

2. Specify an adversary A making at most 2`/2 queries to its LR oracle
and achieving Adv

ind-cpa
AE (A) � 1/4. Your adversary should have

O(` · 2`/2) running time, not counting the time taken by game
procedures to execute.
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PKE summary

Scheme IND-CPA?

DHIES Yes
Plain RSA No
SRSA Yes

RSA OAEP Yes
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PKE summary

Scheme IND-CPA?

DHIES Yes
Plain RSA No
SRSA Yes

RSA OAEP Yes
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