# Lecture 9 - Public-Key Encryption 

## COSC-466 Applied Cryptography

## Adam O'Neill

Adapted from
http://cseweb.ucsd.edu/~mihir/cse107/

## Recall Symmetric-Key Crypto

- In this setting, if Alice wants to communicate secure with Bob they need a shared key $K_{A B}$.


## Recall Symmetric-Key Crypto

- In this setting, if Alice wants to communicate secure with Bob they need a shared key $K_{A B}$.
- If Alice wants to also communicate with Charlie they need a shared key $K_{A C}$.


## Recall Symmetric-Key Crypto

- In this setting, if Alice wants to communicate secure with Bob they need a shared key $K_{A B}$.
- If Alice wants to also communicate with Charlie they need a shared key $K_{A C}$.
- If Alice generates $K_{A B}$ and $K_{A C}$ they must be communicated to Bob and Charlie over secure channels. How can this be done?


## Public-Key Crypto

- Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.


## Public-Key Crypto

- Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.
- Anyone can use Alice's public key to send her a private message.


## Public-Key Crypto

- Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.
- Anyone can use Alice's public key to send her a private message.
- Public key is like a phone number: Anyone can look it up in a phone book.


## Public-Key Crypto

- Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.
- Anyone can use Alice's public key to send her a private message.
- Public key is like a phone number: Anyone can look it up in a phone book.
- Senders don't need secrets; there are no shared secrets


## Syntax and Correctness of PKE

A public-key (or asymmetric) encryption scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms, where


Code Obfuscation Perspective


Diffie - Hellman


## correctness

Let $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an asymmetric encryption scheme. The correct decryption requirement is that

$$
\operatorname{Pr}[\mathcal{D}(s k, \mathcal{E}(p k, M))=M]=1
$$

for all ( $p k, s k$ ) that may be output by $\mathcal{K}$ and all messages $M$ in the message space of $\mathcal{A E}$. The probability is over the random choices of $\mathcal{E}$.

This simply says that decryption correctly reverses encryption to recover the message that was encrypted. When we specify schemes, we indicate what is the message space.

## How It Works

Step 1: Key generation
Alice locally computers $(p k, s k) \stackrel{\leftrightarrows}{\leftarrow} \mathcal{K}$ and stores sk.
Step 2: Alice enables any prospective sender to get $p k$.
Step 3: The sender encrypts under pk and Alice decrypts under sk.
We don't require privacy of $p k$ but we do require authenticity: the sender should be assured $p k$ is really Alice's key and not someone else's. One could

- Put public keys in a trusted but public "phone book", say a cryptographic DNS.
- Use certificates as we will see later.


## IND-CPA

Let $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a PKE scheme and $A$ an adversary.

> Game Left $\mathcal{A E}$
> procedure Initialize
> $(p k, s k) \stackrel{\&}{\leftarrow}$; return $p k$
> procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
> Return $C \leftarrow^{\S} \mathcal{E}_{p k}\left(M_{0}\right)$

```
Game Right \({ }_{\mathcal{A E}}\)
procedure Initialize \((p k, s k) \leftarrow \mathcal{K}\); return \(p k\)
procedure \(\mathbf{L R}\left(M_{0}, M_{1}\right)\)
Return \(C \stackrel{\wp}{\leftarrow} \mathcal{E}_{p k}\left(M_{1}\right)\)
```

Associated to $\mathcal{A E}, A$ are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A E}}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A E}}^{A} \Rightarrow 1\right]
$$

that $A$ outputs 1 in each world. The ind-cpa advantage of $A$ is

$$
\operatorname{Adv}_{\mathcal{A} \mathcal{E}}^{\text {ind-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A E}}^{A} \Rightarrow 1\right]
$$

## Explanations

The "return $p k$ " statement in Initialize means the adversary $A$ gets the public key $p k$ as input. It does not get $s k$.

It can call LR with any equal-length messages $M_{0}, M_{1}$ of its choice to get back an encryption $C \stackrel{\S}{\leftarrow} \mathcal{E}_{p k}\left(M_{b}\right)$ of $M_{b}$ under sk, where $b=0$ in game Left $_{\mathcal{A} \mathcal{E}}$ and $b=1$ in game Right ${ }_{\mathcal{A} \mathcal{E}}$. Notation indicates encryption algorithm may be randomized.
$A$ is not allowed to call $\mathbf{L R}$ with messages $M_{0}, M_{1}$ of unequal length. Any such $A$ is considered invalid and its advantage is undefined or 0 .
It outputs a bit, and wins if this bit equals $b$.

## How to Build a Scheme?

We would like security to result from the hardness of computing discrete logarithms.
Let the receiver's public key be $g$ where $G=\langle g\rangle$ is a cyclic group. Let's let the encryption of $x$ be $g^{x}$. Then

$$
\underbrace{g^{x}}_{\mathcal{E}_{g}(x)} \stackrel{\text { hard }}{ } x
$$

so to recover $x$, adversary must compute discrete logarithms, and we know it can't, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!

## A More Basic Problem: Key Exchange

The following are assumed to be public: A large prime $p$ and a generator $g$ of $\mathbf{Z}_{p}^{*}$.


- $Y^{x}=\left(g^{y}\right)^{x}=g^{x y}=\left(g^{x}\right)^{y}=X^{y}$ modulo $p$, so $K_{A}=K_{B}$
- Adversary is faced with the CDH problem.


## Key Exchange to PKE

We can turn DH key exchange into a public key encryption scheme via

- Let Alice have public key $g^{x}$ and secret key $x$
- If Bob wants to encrypt $M$ for Alice, he
- Picks $y$ and sends $g^{y}$ to Alice
- Encrypts $M$ under $g^{x y}=\left(g^{x}\right)^{y}$ and sends ciphertext to Alice.
- But Alice can recompute $g^{x y}=\left(g^{y}\right)^{x}$ because
- $g^{y}$ is in the received ciphertext
- $x$ is her secret key

Thus she can decrypt and adversary is still faced with CDH .

Diffie-Hellman Integrated Encruption Scheme


Let $G=\langle g\rangle$ be a cyclic group of order $m$ and $H: G \rightarrow\{0,1\}^{k}$ a (public) hash function. The DHIES PKE scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined for messages $M \in\{0,1\}^{k}$ via (1) convert unpredictability $\Rightarrow 2$ uses
(2) length mis-match of


Correct decryption is assured because $K=X^{y}=g^{x y}=Y^{x}$
Note: This is a simplified version of the actual scheme.
EMItS:
$160+1 \mathrm{ml}$ chat length

DIFIES: $1024+1 M 1$ for $80-6$ it sec.

## Security of DHIES

The DHIES scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to cyclic group $G=\langle g\rangle$ and (public) hash function $H$ can be proven IND-CPA assuming

- CDH is hard in $G$, and
- $H$ is a "random oracle," meaning a "perfect" hash function.

In practice, $H(K)$ could be the first $k$ bits of the sequence SHA256(08 ||K) \|SHA256(071 ${ }^{7}$ K $) \| \cdots$

ECIES

The DHIES scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to cyclic $\mathcal{E}=\langle g\rangle$ and (public) hos stofunctiant car re proven IND-CDN assuming


- H is a randory oracles meaning a "perfect" hash function.


In practice, $\mathrm{H}(\mathrm{K})$ Could bet the first $k$ bits of the sequence

$$
\text { SHA } 25 \Leftrightarrow\left(0^{8} \| K\right) \# S H A 2 \xi G\left(0^{7} 1 \| K\right) \pi . .
$$

DHIES in the case $G=\langle g\rangle$ is an appropriate elliptic curve group.

ECIES features (for 80 bit security)

| Operation | Cost |
| :--- | :--- |
| encryption | 2160 -hit exponentiation |
| decryption | $1 \quad 160$-bit exp. |

ciphertext expansion =
length of cipher text - length of plaintect

$$
=160 \text { bits }
$$

Nowadays need

$$
\begin{array}{r}
128 \text {-bit security } \\
=256 \text {-bit grove elements }
\end{array}
$$

## RSA Math

Recall that $\varphi(N)=\left|\mathbf{Z}_{N}^{*}\right|$.
Claim: Suppose $e, d \in \mathbf{Z}_{\varphi(N)}^{*}$ satisfy $e d \equiv 1(\bmod \varphi(N))$. Then for any $x \in \mathbf{Z}_{N}^{*}$ we have

$$
\left(x^{e}\right)^{d} \equiv x \quad(\bmod N)
$$

Proof:

$$
\left(x^{e}\right)^{d} \equiv x^{e d} \bmod \varphi(N) \equiv x^{1} \equiv x
$$

modulo N

## The RSA function

A modulus $N$ and encryption exponent $e$ define the RSA function $f: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ defined by

$$
f(x)=x^{e} \bmod N \quad \operatorname{RS} A_{N_{1} e}(x)=x_{\bmod }^{l} N
$$

for all $x \in \mathbf{Z}_{N}^{*}$.
A value $d \in Z_{\varphi(N)}^{*}$ satisfying ed $\equiv 1(\bmod \varphi(N))$ is called a decryption exponent.

Claim: The RSA function $f: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ is a permutation with inverse $f^{-1}: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ given by

$$
f^{-1}(y)=y^{d} \quad \bmod N
$$

Proof: For all $x \in \mathbf{Z}_{N}^{*}$ we have

$$
f^{-1}(f(x)) \equiv\left(x^{e}\right)^{d} \equiv x \quad(\bmod N)
$$

by previous claim.

## Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then

$$
e d \equiv 9 \equiv 1 \quad(\bmod 8)
$$

Let

| $x$ | $f(x)$ | $g(f(x))$ |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 2 | 8 | 2 |
| 4 | 4 | 4 |
| 7 | 13 | 7 |
| 8 | 2 | 8 |
| 11 | 11 | 11 |
| 13 | 7 | 13 |
| 14 | 14 | 14 |

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

RSA usage
Baby RSA

- $p k=N, e ; s k=N, d$ encoltion
- $\mathcal{E}_{p k}(x)=x^{e} \bmod N=f(x)$ we will see
- $\mathcal{D}_{\text {sk }}(y)=y^{d} \bmod N=f^{-1}(y)$ "plash RSA"

Security will rely on it being hard to compute $f^{-1}$ without knowing $d$.
RSA is a trapdoor, one-way permutation:

- Easy to invert given trapdoor d
- Hard to invert given only $N, e$

RSA generators
There can be many possible RSA generators
An RSA generator with security parameter $k$ is an algorithm $\mathcal{K}_{\text {ra }}$ that returns $N, p, q, e, d$ satisfying

- $p, q$ are distinct odd primes

$$
\frac{\pi}{\text { key length }}
$$

- $N=p q$ and is called the (RSA) modulus
- $|N|=k$, meaning $2^{k-1} \leq N \leq 2^{k}<$
- $e \in \mathbf{Z}_{\varphi(N)}^{*}$ is called the encryption exponent
- $d \in \mathbf{Z}_{\varphi(N)}^{*}$ is called the decryption exponent
- ed $\equiv 1(\bmod \varphi(N))$

Example: $p, q$ random
e. chosen at raadon

## Next...

- Building RSA generators
- Basic RSA security
- Encryption with RSA


## A formula

Fact: Suppose $N=p q$ for distinct primes $p$ and $q$. Then

$$
\varphi(N)=(p-1)(q-1) .
$$

Example: Let $N=15=3 \cdot 5$. Then the Fact says that

$$
\varphi(15)=(3-1)(5-1)=8
$$

. As a check, $\mathbf{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$ indeed has size 8 .

## The general formula

Fact: Suppose $N \geq 1$ factors as

$$
N=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{n}^{\alpha_{n}}
$$

where $p_{1}<p_{2}<\ldots<p_{n}$ are primes and $\alpha_{1}, \ldots, \alpha_{n} \geq 1$ are integers.
Then

$$
\varphi(N)=p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right) \cdot\left(p_{2}^{\alpha_{2}-1}\right)\left(p_{2}-1\right) \cdot \ldots \cdot p_{n}^{\alpha_{n}-1}\left(p_{n}-1\right) .
$$

Note prior Fact is a special case of the above. (Make sure you understand why!)

Example: Let $N=45=3^{2} \cdot 5^{1}$. Then the Fact says that

$$
\varphi(45)=3^{1}(3-1) \cdot 5^{0}(5-1)=24
$$

## Recall

Given $\varphi(N)$ and $e \in \mathbf{Z}_{\varphi(N)}^{*}$, we can compute $d \in \mathbf{Z}_{\varphi(N)}^{*}$ satisfying ed $\equiv 1$ $(\bmod \varphi(N))$ via

$$
\begin{aligned}
& d \leftarrow \operatorname{MOD-INV}(e, \varphi(N)) . \quad e^{l} e \neq l(N) \rho(N)^{\prime}=1 \\
& \quad \text { calls EXT-GCD }
\end{aligned}
$$

We have algorithms to efficiently test whether a number is prime, and a random number has a pretty good chance of being a prime.

Building RSA generators

$$
e=2^{16}-1 \quad 99 \%
$$

Say we wish to have $e=3$ (for efficiency). The generator $\mathcal{K}_{r \text { sa }}^{3}$ with (even) security parameter $k$ : want modulus length $k$

$$
\begin{aligned}
& \text { repeat } \\
& \quad p, q \leftarrow\left\{2^{k / 2-1}, \ldots, 2^{k / 2}-1\right\} ; N \leftarrow p q ; M \leftarrow(p-1)(q-1) \\
& \text { until } \\
& \quad N \geq 2^{k-1} \text { and } p, q \text { are prime and } \operatorname{gcd}(e, M)=1 \\
& d \leftarrow \operatorname{MOD}-\operatorname{INV}(e, M) \\
& \text { return } N, p, q, e, d
\end{aligned}
$$

e fired $p, q$ random e relatiucly prime to $e(N)=(p-1) \dot{c}-1)$

## One-wayness of RSA

The following should be hard:
Given: $N, e, y$ where $y=f(x)=x^{e} \bmod N$
Find: $x$
Formalism picks $x$ at random and generates $N, e$ via an RSA generator.

## One-wayness of RSA formally

Let $\mathcal{K}_{\text {rsa }}$ be a RSA generator and I an adversary.

```
Game OW (\mathcal{K}\mp@subsup{\mathcal{Ksa}}{}{\prime}
procedure Initialize
(N,p,q,e,d)}\mp@subsup{\leftarrow}{\leftarrow}{\lessgtr}\mp@subsup{\mathcal{K}}{\mathrm{ rsa }}{
x\leftarrow}\mp@subsup{\leftarrow}{}{\S}\mp@subsup{\mathbf{Z}}{N}{*};y\leftarrow\mp@subsup{x}{}{e}\operatorname{mod}
return N,e,y
```

The ow-advantage of $I$ is

$$
\operatorname{Adv}_{\mathcal{K}_{\text {rsa }}}^{\mathrm{ow}_{y}}(I)=\operatorname{Pr}\left[\mathrm{OW}_{\mathcal{K}_{\text {rsa }}}^{\prime} \Rightarrow \text { true }\right]
$$

## Inverting RSA

Inverting RSA : given $N, e, y$ find $x$ such that $x^{e} \equiv y(\bmod N)$

EASY
Know d

EASY
Know $\varphi(N)$

EASY
Know p,q


Know N

## Factoring problem

Given: $N$ where $N=p q$ and $p, q$ are prime
Find: $p, q$
If we can factor we can invert RSA. We do not know whether the converse is true, meaning whether or not one can invert RSA without factoring.

## A factoring algorithm

$\underline{\operatorname{Alg} \operatorname{FACTOR}(N)} \quad / / N=p q$ where $p, q$ are primes for $i=2, \ldots,\lceil\sqrt{N}\rceil$ do
if $N \bmod i=0$ then

$$
p \leftarrow i ; q \leftarrow N / i ; \text { return } p, q
$$

This algorithm works but takes time

$$
\mathcal{O}(\sqrt{N})=\mathcal{O}\left(e^{0.5 \ln N}\right)
$$

which is prohibitive.

$$
\text { egg. 2048-bit } W
$$

Factoring algorithms

| Algorithm | Time taken to factor $N$ |
| :---: | :---: |
| Naive | $O\left(e^{0.5 \ln N}\right)$ |
| Quadratic Sieve (QS) | $O\left(e^{c(\ln N)^{1 / 2}(\ln \ln N)^{1 / 2}}\right)$ |
| Number Field Sieve (NFS) | $O\left(e^{1.92(\ln N)^{1 / 3}(\ln \ln N)^{2 / 3}}\right)$ |

$\Rightarrow$ need 2048-bit moduli
for 128 bit sec.
(roughly)
ECM: "Smooth" numbers
small prime factor

## Key size

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus 80-bit security: Factoring takes $2^{80}$ time.

Factorization of RSA-1024 seems out of reach at present.
Estimates vary, and for more security, longer moduli are recommended.

## RSA Cheat Sheet

The RSA function $f(x)=x^{e} \bmod N$ is a trapdoor one way permutation:

- Easy forward: given $N, e, x$ it is easy to compute $f(x)$
- Easy back with trapdoor: Given $N, d$ and $y=f(x)$ it is easy to compute $x=f^{-1}(y)=y^{d} \bmod N$
- Hard back without trapdoor: Given $N, e$ and $y=f(x)$ it is hard to compute $x=f^{-1}(y)$

RSA: one-way want IND-CPA Plain RSA Encryption stringer How???
The plain RSA PKE scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator $\mathcal{K}_{\text {ra }}$ is

| $\frac{\operatorname{Alg} \mathcal{K}}{(N, p, q, e, d)} \leftarrow \mathcal{K}_{\text {rsa }}$ | $\frac{\operatorname{Alg} \mathcal{E}_{p k}(M)}{C \leftarrow M^{e} \bmod N}$ | $\frac{\operatorname{Alg} \mathcal{D}_{\text {sk }}(C)}{M \leftarrow C^{d} \bmod N}$ |
| :--- | :--- | :--- |
| pk $\leftarrow(N, e) ; s k \leftarrow(N, d)$ <br> return $(p k, s k)$ | return $C$ | return $M$ |

Decryption correctness: The "easy-backwards with trapdoor" property implies that for all $M \in \mathbf{Z}_{N}^{*}$ we have $\mathcal{D}_{\text {sk }}\left(\mathcal{E}_{p k}(M)\right)=M$.
Note: The message space is $\mathbf{Z}_{N}^{*}$. Messages are assumed to be all encoded as strings of the same length, for example length 4 if $N=15$.

Attacks? (i) usual attak on aet enc.
(2) encrypt yourself and check if chat match
"Simple RSA" (SRSA)

The SRSA PKE scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator $\mathcal{K}_{\text {rs }}$ and (public) hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ encrypts $k$-bit messages via:

fives the problems by
(1) roundum lizing enc.
(2) using a hash function.

$$
I N D-C P A \text { is } R O \text { model. }
$$

(1) SHINES the ciphertext to length (II) uses Feisty OAEP of moguls.
(3) IND-CPA in RO (or sta model)

Receiver keys: $p k=(N, e)$ and $s k=(N, d)$ where $|N|=1024$
Hash functions: $G:\{0,1\}^{128} \rightarrow\{0,1\}^{894}$ and $H:\{0,1\}^{894} \rightarrow\{0,1\}^{128}$

Algorithm $\mathcal{E}_{N, e}(M) \quad / /|M| \leq 765$ $r \leftarrow\{0,1\}^{128} ; p \leftarrow 765-|M|$


$$
\begin{aligned}
& x \leftarrow s \| t \\
& C \leftarrow x^{e} \bmod N
\end{aligned}
$$

return $C$

Algorithm $\mathcal{D}_{N, d}(C) \quad / / C \in \mathbb{Z}_{N}^{*}$
$x \leftarrow C^{d} \bmod N$ $s|\mid t \leftarrow x$

if $a=0^{128}$ then return $M$ else return $\perp$

KNOW advantages / duavantages btw. RsA-based and DL-based enc.

## OAEP Usage

Protocols:

- SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
- SSH ver 1.0, 2.0

Standards:

- RSA PKCS \#1 versions 1.5, 2.0
- IEEE P1363
- NESSIE (Europe)
- CRYPTREC (Japan)


## Security Results

| Scheme | IND-CPA? |
| :---: | :---: |
| DHIES | Yes |
| Plain RSA | No |
| SRSA | Yes |
| RSA OAEP | Yes |

