
Lecture	9	–	Public-Key	Encryption	

COSC-466	Applied	Cryptography	
Adam	O’Neill	

Adapted	from	
	http://cseweb.ucsd.edu/~mihir/cse107/



Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.



Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.

• If	Alice	wants	to	also	communicate	with	Charlie	
they	need	a	shared	key	KAC.	



Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.

• If	Alice	wants	to	also	communicate	with	Charlie	
they	need	a	shared	key	KAC.	

• If	Alice	generates	KAB	and	KAC	they	must	be	
communicated	to	Bob	and	Charlie	over	secure	
channels.		How	can	this	be	done?



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.

• Public	key	is	like	a	phone	number:	Anyone	can	
look	it	up	in	a	phone	book.



Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	nobody,	
and	a	public	key	that	is	shared	with	everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.

• Public	key	is	like	a	phone	number:	Anyone	can	
look	it	up	in	a	phone	book.

• Senders	don’t	need	secrets;	there	are	no	shared	
secrets



Syntax	and	Correctness	of	PKE
Public Key Encryption

• Alice has a secret key that is shared with nobody, and an associated
public key that is known to everybody.

• Anyone (Bob, Charlie, . . .) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

• Senders don’t need secrets

• There are no shared secrets

Mihir Bellare UCSD 5

Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E ,D) consists
of three algorithms, where

EM D M or ?

sk

K

C C

pk

A
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Correct decryption requirement

Let AE = (K, E ,D) be an asymmetric encryption scheme. The correct
decryption requirement is that

Pr[D(sk, E(pk,M)) = M] = 1

for all (pk, sk) that may be output by K and all messages M in the
message space of AE . The probability is over the random choices of E .

This simply says that decryption correctly reverses encryption to recover
the message that was encrypted. When we specify schemes, we indicate
what is the message space.
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How it works

Step 1: Key generation
Alice locally computers (pk, sk) $

 K and stores sk.

Step 2: Alice enables any prospective sender to get pk.

Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don’t require privacy of pk but we do require authenticity: the sender
should be assured pk is really Alice’s key and not someone else’s. One
could

• Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

• Use certificates as we will see later.
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IND-CPAThe games for IND-CPA

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game LeftAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M0)

Game RightAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M1)

Associated to AE ,A are the probabilities

Pr
h
LeftAAE)1

i
Pr

h
RightAAE)1

i

that A outputs 1 in each world. The ind-cpa advantage of A is

Adv
ind-cpa
AE (A) = Pr

h
RightAAE)1

i
� Pr

h
LeftAAE)1

i
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Explanations

Security of PKE Schemes

Same as for symmetric encryption, except for one new element: The
adversary needs to be given the public key.

We formalize IND-CPA accordingly.

Mihir Bellare UCSD 9

The games for IND-CPA

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game LeftAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M0)

Game RightAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M1)

Associated to AE ,A are the probabilities

Pr
h
LeftAAE)1

i
Pr

h
RightAAE)1

i

that A outputs 1 in each world. The ind-cpa advantage of A is

Adv
ind-cpa
AE (A) = Pr

h
RightAAE)1

i
� Pr

h
LeftAAE)1

i

Mihir Bellare UCSD 10

IND-CPA: Explanations

The “return pk” statement in Initialize means the adversary A gets the
public key pk as input. It does not get sk.

It can call LR with any equal-length messages M0,M1 of its choice to get
back an encryption C $

 Epk(Mb) of Mb under sk, where b = 0 in game
LeftAE and b = 1 in game RightAE . Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages M0,M1 of unequal length. Any
such A is considered invalid and its advantage is undefined or 0.

It outputs a bit, and wins if this bit equals b.

Mihir Bellare UCSD 11

Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = hgi is a cyclic group. Let’s
let the encryption of x be g x . Then

g x

|{z}
Eg (x)

hard
��! x

so to recover x , adversary must compute discrete logarithms, and we know
it can’t, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!
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Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x $
 Zp�1; X  g x mod p

X
������!

y $
 Zp�1; Y  g y mod p

Y
 ������

KA  Y x mod p KB  X y mod p

• Y x = (g y )x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with the CDH problem.
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From key exchange to PKE

We can turn DH key exchange into a public key encryption scheme via

• Let Alice have public key g x and secret key x
• If Bob wants to encrypt M for Alice, he

• Picks y and sends g y to Alice
• Encrypts M under g xy = (g x)y and sends ciphertext to Alice.

• But Alice can recompute g xy = (g y )x because
• g y is in the received ciphertext
• x is her secret key

Thus she can decrypt and adversary is still faced with CDH .
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The DHIES scheme

Let G = hgi be a cyclic group of order m and H: G ! {0, 1}k a (public)
hash function. The DHIES PKE scheme AE = (K, E ,D) is defined for
messages M 2 {0, 1}k via

Alg K

x $
 Zm

X  g x

return (X , x)

Alg EX (M)

y $
 Zm;Y  g y

K  X y

W  H(K ) � M
return (Y ,W )

Alg Dx(Y ,W )

K  Y x

M  H(K ) �W
return M

Correct decryption is assured because K = X y = g xy = Y x

Note: This is a simplified version of the actual scheme.

Mihir Bellare UCSD 16
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = hgi is a cyclic group. Let’s
let the encryption of x be g x . Then

g x

|{z}
Eg (x)

hard
��! x

so to recover x , adversary must compute discrete logarithms, and we know
it can’t, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!

Mihir Bellare UCSD 13

Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x $
 Zp�1; X  g x mod p

X
������!

y $
 Zp�1; Y  g y mod p

Y
 ������

KA  Y x mod p KB  X y mod p

• Y x = (g y )x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with the CDH problem.

Mihir Bellare UCSD 14

From key exchange to PKE

We can turn DH key exchange into a public key encryption scheme via

• Let Alice have public key g x and secret key x
• If Bob wants to encrypt M for Alice, he

• Picks y and sends g y to Alice
• Encrypts M under g xy = (g x)y and sends ciphertext to Alice.

• But Alice can recompute g xy = (g y )x because
• g y is in the received ciphertext
• x is her secret key

Thus she can decrypt and adversary is still faced with CDH .

Mihir Bellare UCSD 15

The DHIES scheme

Let G = hgi be a cyclic group of order m and H: G ! {0, 1}k a (public)
hash function. The DHIES PKE scheme AE = (K, E ,D) is defined for
messages M 2 {0, 1}k via

Alg K

x $
 Zm

X  g x

return (X , x)

Alg EX (M)

y $
 Zm;Y  g y

K  X y

W  H(K ) � M
return (Y ,W )

Alg Dx(Y ,W )

K  Y x

M  H(K ) �W
return M

Correct decryption is assured because K = X y = g xy = Y x

Note: This is a simplified version of the actual scheme.

Mihir Bellare UCSD 16

Diffie-Hellman Integrated Encryption Scheme

g¥Hom,gotg a

EYES ¥ I

a) conygrtrmuan.fnrewdsigtabi.li

Maez uses
(2) length mis - match of

there

£qqw-AEµncMIs
e-

Eats : 160*1ml etietngtn

+ Imf Tht for 80 -
bit

D HIES : 1024 s.ec .



Security	of	DHIES
Security of DHIES

The DHIES scheme AE = (K, E ,D) associated to cyclic group G = hgi
and (public) hash function H can be proven IND-CPA assuming

• CDH is hard in G , and

• H is a “random oracle,” meaning a “perfect” hash function.

In practice, H(K ) could be the first k bits of the sequence

SHA256(08kK )kSHA256(071kK )k · · ·
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ECIES

ECIES is DHIES with the group being an elliptic curve group.

ECIES features:

Operation Cost

encryption 2 160-bit exp
decryption 1 160-bit exp

ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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Exercise

Let p � 3 be a prime, g 2 Z
⇤
p a generator of Z⇤

p and H: G ! {0, 1}k a
hash function. (These are all public.) Consider the key-generation and
encryption algorithms below, where M 2 {0, 1}k :

Alg K

x $
 Z

⇤
p�1

X  g x mod p
return (X , x)

Alg E(X ,M)

y $
 Zp�1; Y  g y mod p

Z  X y mod p ; W  H(Y ) � M
Return (Z ,W )

Specify a O(|p|3 + k)-time decryption algorithm D such that
AE = (K, E ,D) is an asymmetric encryption scheme satisfying the correct
decryption property, and prove this is the case.
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RSA Math

Recall that '(N) = |Z
⇤
N |.

Claim: Suppose e, d 2 Z
⇤
'(N) satisfy ed ⌘ 1 (mod '(N)). Then for any

x 2 Z
⇤
N we have

(xe)d ⌘ x (mod N)

Proof:

(xe)d ⌘ xed mod '(N)
⌘ x1 ⌘ x

modulo N

Mihir Bellare UCSD 20
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The	RSA	functionThe RSA function

A modulus N and encryption exponent e define the RSA function
f : Z⇤

N ! Z
⇤
N defined by

f (x) = xe mod N

for all x 2 Z
⇤
N .

A value d 2 Z ⇤
'(N) satisfying ed ⌘ 1 (mod '(N)) is called a decryption

exponent.

Claim: The RSA function f : Z⇤
N ! Z

⇤
N is a permutation with inverse

f �1 : Z⇤
N ! Z

⇤
N given by

f �1(y) = yd mod N

Proof: For all x 2 Z
⇤
N we have

f �1(f (x)) ⌘ (xe)d ⌘ x (mod N)

by previous claim.
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Example

Let N = 15. So

Z
⇤
N = {1, 2, 4, 7, 8, 11, 13, 14}

'(N) = 8

Z
⇤
'(N) = {1, 3, 5, 7}

Let e = 3 and d = 3. Then

ed ⌘ 9 ⌘ 1 (mod 8)

Let

f (x) = x3 mod 15

g(y) = y3 mod 15

x f (x) g(f (x))

1 1 1
2 8 2
4 4 4
7 13 7
8 2 8
11 11 11
13 7 13
14 14 14
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Exercise

1. List all possible encryption exponents for RSA modulus 35:

2. The decryption exponent corresponding to RSA modulus 187 and
encryption exponent 107 is

Mihir Bellare UCSD 24
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The RSA function
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⇤
N defined by
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⇤
N .

A value d 2 Z ⇤
'(N) satisfying ed ⌘ 1 (mod '(N)) is called a decryption
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⇤
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RSA	usage
RSA usage

• pk = N, e; sk = N, d

• Epk(x) = xe mod N = f (x)

• Dsk(y) = yd mod N = f �1(y)

Security will rely on it being hard to compute f �1 without knowing d .

RSA is a trapdoor, one-way permutation:

• Easy to invert given trapdoor d

• Hard to invert given only N, e

Mihir Bellare UCSD 25

RSA generators

An RSA generator with security parameter k is an algorithm Krsa that
returns N, p, q, e, d satisfying

• p, q are distinct odd primes

• N = pq and is called the (RSA) modulus

• |N| = k , meaning 2k�1
 N  2k

• e 2 Z
⇤
'(N) is called the encryption exponent

• d 2 Z
⇤
'(N) is called the decryption exponent

• ed ⌘ 1 (mod '(N))

Mihir Bellare UCSD 26

Plan

• Building RSA generators

• Basic RSA security

• Encryption with RSA

Mihir Bellare UCSD 27

A formula for Phi

Fact: Suppose N = pq for distinct primes p and q. Then

'(N) = (p � 1)(q � 1) .

Example: Let N = 15 = 3 · 5. Then the Fact says that

'(15) = (3� 1)(5� 1) = 8

. As a check, Z⇤
15 = {1, 2, 4, 7, 8, 11, 13, 14} indeed has size 8.

Mihir Bellare UCSD 28
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There can be many possible RSA

generators
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Next…

• Building	RSA	generators	
• Basic	RSA	security	
• Encryption	with	RSA
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The	general	formulaA more general formula for Phi

Fact: Suppose N � 1 factors as

N = p↵1
1 · p↵2

2 · . . . · p↵n
n

where p1 < p2 < . . . < pn are primes and ↵1, . . . ,↵n � 1 are integers.
Then

'(N) = p↵1�1
1 (p1 � 1) · p↵2�1

2 (p2 � 1) · . . . · p↵n�1
n (pn � 1) .

Note prior Fact is a special case of the above. (Make sure you understand
why!)

Example: Let N = 45 = 32 · 51. Then the Fact says that

'(45) = 31(3� 1) · 50(5� 1) = 24

Mihir Bellare UCSD 29

Recall

Given '(N) and e 2 Z
⇤
'(N), we can compute d 2 Z

⇤
'(N) satisfying ed ⌘ 1

(mod '(N)) via

d  MOD-INV(e,'(N)).

We have algorithms to e�ciently test whether a number is prime, and a
random number has a pretty good chance of being a prime.

Mihir Bellare UCSD 30

Building RSA generators

Say we wish to have e = 3 (for e�ciency). The generator K3
rsa with (even)

security parameter k :

repeat

p, q $
 {2k/2�1, . . . , 2k/2 � 1}; N  pq; M  (p � 1)(q � 1)

until
N � 2k�1 and p, q are prime and gcd(e,M) = 1

d  MOD-INV(e,M)
return N, p, q, e, d

Mihir Bellare UCSD 31

One-wayness of RSA

The following should be hard:

Given: N, e, y where y = f (x) = xe mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.

Mihir Bellare UCSD 32
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Building	RSA	generators
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One-wayness	of	RSA	formallyOne-wayness of RSA, formally

Let Krsa be a RSA generator and I an adversary.

Game OWKrsa

procedure Initialize

(N, p, q, e, d) $
 Krsa

x $
 Z

⇤
N ; y  xe mod N

return N, e, y

procedure Finalize(x 0)
return (x = x 0)

The ow-advantage of I is

Adv
ow
Krsa

(I ) = Pr
h
OWI

Krsa
) true

i
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

Mihir Bellare UCSD 34

Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d

EASY because d = e�1 mod '(N)

Know '(N)
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Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d

EASY because d = e�1 mod '(N)

Know '(N)

EASY because '(N) = (p � 1)(q � 1)

Know p, q

?

Know N
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Factoring Problem

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the converse
is true, meaning whether or not one can invert RSA without factoring.
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A factoring algorithm

Alg FACTOR(N) // N = pq where p, q are primes

for i = 2, . . . ,
lp

N
m
do

if N mod i = 0 then
p  i ; q  N/i ; return p, q

This algorithm works but takes time

O(
p

N) = O(e0.5 lnN)

which is prohibitive.

Mihir Bellare UCSD 40
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A	factoring	algorithm
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Factoring	algorithms

Factoring algorithms

Algorithm Time taken to factor N

Naive O(e0.5 lnN)

Quadratic Sieve (QS) O(ec(lnN)1/2(ln lnN)1/2)

Number Field Sieve (NFS) O(e1.92(lnN)1/3(ln lnN)2/3)
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Factoring records

Number bit-length Factorization alg

RSA-400 400 1993 QS
RSA-428 428 1994 QS
RSA-431 431 1996 NFS
RSA-465 465 1999 NFS
RSA-515 515 1999 NFS
RSA-576 576 2003 NFS
RSA-768 768 2009 NFS
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How big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus

80-bit security: Factoring takes 280 time.

Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.
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RSA Video

http://www.youtube.com/watch?v=wXB-V_Keiu8
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Key	size
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RSA	Cheat	SheetRSA: what to remember

The RSA function f (x) = xe mod N is a trapdoor one way permutation:

• Easy forward: given N, e, x it is easy to compute f (x)

• Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f �1(y) = yd mod N

• Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f �1(y)
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Plain-RSA encryption

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e) ; sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

Decryption correctness: The “easy-backwards with trapdoor” property
implies that for all M 2 Z

⇤
N we have Dsk(Epk(M)) = M.

Note: The message space is Z⇤
N . Messages are assumed to be all encoded

as strings of the same length, for example length 4 if N = 15.
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Plain-RSA encryption security

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e) ; sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

Getting sk from pk involves factoring N.

But E is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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Plain-RSA encryption security
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Plain	RSA	Encryption
RSA: what to remember
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Plain-RSA encryption security

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e) ; sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

Getting sk from pk involves factoring N.

But E is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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“Simple	RSA”	(SRSA)
The SRSA scheme

Encrypt M unde pk = N, e via:

• x $
 Z

⇤
N ; Ca  xe mod N;

• K  H(x)

• Cs  K � M

• Ciphertext is (Ca,Cs)

Decrypt (Ca,CS) under sk = N, d via:

• x  Cd
a mod N

• K  H(x)

• M  Cs � K
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The SRSA scheme

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa

and (public) hash function H: {0, 1}⇤ ! {0, 1}k encrypts k-bit messages
via:

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e)
sk  (N, d)
return (pk , sk)

Alg EN,e(M)

x $
 Z

⇤
N

K  H(x)
Ca  xe mod N
Cs  K � M
return (Ca,Cs)

Alg DN,d(Ca,Cs)

x  Cd
a mod N

K  H(x)
M  Cs � K
return M
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Security of SRSA

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa

and (public) hash function H: {0, 1}⇤ ! {0, 1}k can be proven IND-CPA
assuming

• Krsa is one-way

• H is a “random oracle,” meaning a “perfect” hash function.

In practice, H(K ) could be the first k bits of the sequence

SHA256(08kK )kSHA256(071kK )k · · ·
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OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G : {0, 1}128 ! {0, 1}894 and H: {0, 1}894 ! {0, 1}128

Algorithm EN,e(M) // |M|  765

r
$ {0, 1}128; p  765� |M|

128 894

r

ts

0128 kM k 10p

H

G

x  s||t
C  x

e mod N

return C

Algorithm DN,d(C ) // C 2 Z⇤
N

x  C
d mod N

s||t  x

128 894

t

r

s

H

G

a kM k 10p

if a = 0128 then return M

else return ?
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The SRSA scheme

Encrypt M unde pk = N, e via:

• x $
 Z

⇤
N ; Ca  xe mod N;

• K  H(x)

• Cs  K � M

• Ciphertext is (Ca,Cs)

Decrypt (Ca,CS) under sk = N, d via:

• x  Cd
a mod N

• K  H(x)

• M  Cs � K

Mihir Bellare UCSD 53

The SRSA scheme

The SRSA PKE scheme AE = (K, E ,D) associated to RSA generator Krsa

and (public) hash function H: {0, 1}⇤ ! {0, 1}k encrypts k-bit messages
via:

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e)
sk  (N, d)
return (pk , sk)

Alg EN,e(M)

x $
 Z

⇤
N

K  H(x)
Ca  xe mod N
Cs  K � M
return (Ca,Cs)

Alg DN,d(Ca,Cs)

x  Cd
a mod N

K  H(x)
M  Cs � K
return M

Mihir Bellare UCSD 54

Security of SRSA
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OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G : {0, 1}128 ! {0, 1}894 and H: {0, 1}894 ! {0, 1}128

Algorithm EN,e(M) // |M|  765

r
$ {0, 1}128; p  765� |M|

128 894

r

ts

0128 kM k 10p

H

G

x  s||t
C  x

e mod N

return C

Algorithm DN,d(C ) // C 2 Z⇤
N

x  C
d mod N

s||t  x

128 894

t

r

s

H

G

a kM k 10p

if a = 0128 then return M

else return ?
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OAEP	UsageRSA OAEP usage

Protocols:

• SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1

• SSH ver 1.0, 2.0

• . . .

Standards:

• RSA PKCS #1 versions 1.5, 2.0

• IEEE P1363

• NESSIE (Europe)

• CRYPTREC (Japan)

• . . .
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Exercise

Let m, k , ` be integers such that 2  m < k and k � 2048 and
` = k �m� 1 and ` is even. Let Krsa be a RSA generator with associated
security parameter k . Consider the key-generation and encryption
algorithms below, where M 2 {0, 1}m:

Alg K

(N, e, d , p, q) $
 Krsa

return ((N, e), (N, d))

Alg E((N, e),M)

Pad $
 {0, 1}` ; x  0 k Pad kM

C  xe mod N ; return C

1. Specify a O(k3)-time decryption algorithm D such that
AE = (K, E ,D) is an asymmetric encryption scheme satisfying the
correct decryption property.

2. Specify an adversary A making at most 2`/2 queries to its LR oracle
and achieving Adv

ind-cpa
AE (A) � 1/4. Your adversary should have

O(` · 2`/2) running time, not counting the time taken by game
procedures to execute.
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PKE summary

Scheme IND-CPA?

DHIES Yes
Plain RSA No
SRSA Yes

RSA OAEP Yes
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PKE summary

Scheme IND-CPA?

DHIES Yes
Plain RSA No
SRSA Yes

RSA OAEP Yes
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