
Lecture	8	–	Computational	
Number	Theory

COMPSCI-466,	Adam	O’Neill	
Adapted	from	
	http://cseweb.ucsd.edu/~mihir/cse107/

A	Basic	Problem:	Key	Exchange
Problem: Obtain a joint secret key via interaction over a public channel:

Alice Bob

x
$
 ...; X ...

X
������!

y
$
 ...; Y ...

Y
 ������

KA FA(x ,Y) KB FB(y ,X)

Desired properties of the protocol:

• KA = KB , meaning Alice and Bob agree on a key

• Adversary given X ,Y can’t compute KA

Key	Exchange
Secret Key Exchange

Can you build a secret key exchange protocol?

Symmetric cryptography has existed for thousands of years.

But no secret key exchange protocol was found in that time.

Many people thought it was impossible.

In 1976, Di�e and Hellman proposed one.

This was the birth of public-key (asymmetric) cryptography.

Mihir Bellare UCSD 5

DH Secret Key Exchange

The following are assumed to be public: A large prime p and a number g
called a generator mod p. Let Zp�1 = {0, 1, . . . , p � 2}.

Alice Bob

x
$
 Zp�1; X g

x mod p

X
������!

y
$
 Zp�1; Y g

y mod p

Y
 ������

KA Y
x mod p KB X

y mod p

• Y
x = (g y)x = g

xy = (g x)y = X
y modulo p, so KA = KB

• Adversary is faced with computing g
xy mod p given g

x mod p and
g
y mod p, which nobody knows how to do e�ciently for large p.

Mihir Bellare UCSD 6

DH Key Exchange Video

http://www.youtube.com/watch?v=3QnD2c4Xovk

Mihir Bellare UCSD 7

DH Secret Key Exchange

The following are assumed to be public: A large prime p and a number g
called a generator mod p. Let Zp�1 = {0, 1, . . . , p � 2}.

Alice Bob

x
$
 Zp�1; X g

x mod p

X
������!

y
$
 Zp�1; Y g

y mod p

Y
 ������

KA Y
x mod p KB X

y mod p

• Y
x = (g y)x = g

xy = (g x)y = X
y modulo p, so KA = KB

• Adversary is faced with computing g
xy mod p given g

x mod p and
g
y mod p, which nobody knows how to do e�ciently for large p.

Mihir Bellare UCSD 8

Diffie-Hellman
The following are assumed to be public: A large prime p and a number g
called a generator mod p. Let Zp�1 = {0, 1, . . . , p � 2}.

Alice Bob

x
$
 Zp�1; X g

x mod p

X
������!

y
$
 Zp�1; Y g

y mod p

Y
 ������

KA Y
x mod p KB X

y mod p

• Y
x = (g y)x = g

xy = (g x)y = X
y modulo p, so KA = KB

• Adversary is faced with computing g
xy mod p given g

x mod p and
g
y mod p, which nobody knows how to do e�ciently for large p.

-8
•

-

If

- •

•

gx.gs#5g+Y(computational Diffie-Hellman
.)

assumption

Questions…
DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7! g
x mod p?

• How can Bob quickly compute y 7! g
y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7! g
xy mod p?

• . . .

To answer all that and more, we will forget about DH secret key exchange
for a while and take a trip into computational number theory ...

Mihir Bellare UCSD 9

Notation

Z = {. . . ,�2,�1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N 2 Z let gcd(a,N) be the largest d 2 Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.

Mihir Bellare UCSD 10

Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 =

{1, 5, 7, 11}

• '(12) = 4

Mihir Bellare UCSD 11

Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 = {1, 5, 7, 11}

• '(12) =

4

Mihir Bellare UCSD 12

Notation

Notation

Z = {. . . ,�2,�1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N 2 Z let gcd(a,N) be the largest d 2 Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.

Mihir Bellare UCSD 10

I

IN

%

-

g
id Ca ,

b) =/

A
,

b are
relatively

prime

Integers	mod	N

DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7! g
x mod p?

• How can Bob quickly compute y 7! g
y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7! g
xy mod p?

• . . .

To answer all that and more, we will forget about DH secret key exchange
for a while and take a trip into computational number theory ...

Mihir Bellare UCSD 9

Notation

Z = {. . . ,�2,�1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N 2 Z let gcd(a,N) be the largest d 2 Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.

Mihir Bellare UCSD 10

Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 =

{1, 5, 7, 11}

• '(12) = 4

Mihir Bellare UCSD 11

Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 = {1, 5, 7, 11}

• '(12) =

4

Mihir Bellare UCSD 12

*
a047hm → tee - even -

"

I Ip
'* I =p - I

star

{ 1,2 , . . . ,P -15

am

4

Division	and	MOD
Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 = {1, 5, 7, 11}

• '(12) = 4

Mihir Bellare UCSD 13

Division and mod

INT-DIV(a,N) returns (q, r) such that

• a = qN + r

• 0 r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r 2 ZN

is the remainder when a is divided by N.

Example: INT-DIV(17, 3) = (5, 2) and 17 mod 3 = 2.

Def: a ⌘ b (mod N) if a mod N = b mod N.

Example: 17 ⌘ 14 (mod 3)

Mihir Bellare UCSD 14

Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b 2 G , a value a · b is defined.

Example: G = Z
⇤
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N is a group.

Mihir Bellare UCSD 15

Groups: Closure

Closure: For every a, b 2 G we have a · b is also in G .

Example: G = Z12 with a · b = ab does not have closure because
7 · 5 = 35 62 Z12.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies closure,

meaning

gcd(a,N) = gcd(b,N) = 1 implies gcd(ab mod N,N) = 1

Example: Let G = Z
⇤
12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 2 Z
⇤
12

Exercise: Prove the above Fact.

Mihir Bellare UCSD 16

a

-
Congruent

Groups
Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b 2 G , a value a · b is defined.

Example: G = Z
⇤
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N is a group.

Groups:	Closure
Groups: Closure

Closure: For every a, b 2 G we have a · b is also in G .

Example: G = Z12 with a · b = ab does not have closure because
7 · 5 = 35 62 Z12.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies closure,

meaning

gcd(a,N) = gcd(b,N) = 1 implies gcd(ab mod N,N) = 1

Example: Let G = Z
⇤
12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 2 Z
⇤
12

Exercise: Prove the above Fact.

Mihir Bellare UCSD 16

÷:::::
←

La

Groups:	AssociativityGroups: Associativity

Associativity: For every a, b, c 2 G we have (a · b) · c = a · (b · c).

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies

associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1

5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1

Exercise: Given an example of a set G and a natural operation
a, b 7! a · b on G that satisfies closure but not associativity.

Mihir Bellare UCSD 17

Cable albu)EE

order

Toesn
't

matter

Groups:	Identity	Element

Groups: Identity element

Identity element: There exists an element 1 2 G such that
a · 1 = 1 · a = a for all a 2 G .

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then 1 is the identity

element because a · 1 mod N = 1 · a mod N = a for all a.

Mihir Bellare UCSD 18

a
-

G

Groups:	Inverses

Groups: Inverses

Inverses: For every a 2 G there exists a unique b 2 G such that
a · b = b · a = 1.

This b is called the inverse of a and is denoted a
�1 if G is understood.

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then

8a 2 Z
⇤
N 9b 2 Z

⇤
N such that a · b mod N = 1.

We denote this unique inverse b by a
�1 mod N.

Example: 5�1 mod 12 is the b 2 Z
⇤
12 satisfying 5b mod 12 = 1, so b =

5

Mihir Bellare UCSD 19

.

Computational	Shortcuts

Exercises

Let N 2 Z+ and let G = ZN . Prove that G is a group under the operation
a · b = (a+ b) mod N.

Let n 2 Z+ and let G = {0, 1}n. Prove that G is a group under the
operation a · b = a � b.

Let n 2 Z+ and let G = {0, 1}n. Prove that G is not a group under the
operation a · b = a ^ b. (This is bit-wise AND, for example
0110 ^ 1101 = 0100.)

Mihir Bellare UCSD 21

Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16

Mihir Bellare UCSD 22

Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 =

16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16

Mihir Bellare UCSD 23

Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16

Mihir Bellare UCSD 24

Exponentiation
Exponentiation

Let G be a group and a 2 G . We let a0 = 1 be the identity element and
for n � 1, we let

a
n = a · a · · · a| {z }

n

.

Also we let
a
�n = a

�1
· a

�1
· · · a

�1
| {z }

n

.

This ensures that for all i , j 2 Z,

• a
i+j = a

i
· a

j

• a
ij = (ai)j = (aj)i

• a
�i = (ai)�1 = (a�1)i

Meaning we can manipulate exponents “as usual”.

Mihir Bellare UCSD 25

r

I

Examples
Examples

Let N = 14 and G = Z
⇤
N . Then modulo N we have

53 =

5 · 5 · 5 ⌘ 25 · 5 ⌘ 11 · 5 ⌘ 55 ⌘ 13

and
5�3 = 5�1

· 5�1
· 5�1

⌘ 3 · 3 · 3 ⌘ 27 ⌘ 13

Mihir Bellare UCSD 26

Examples

Let N = 14 and G = Z
⇤
N . Then modulo N we have

53 = 5 · 5 · 5 ⌘ 25 · 5 ⌘ 11 · 5 ⌘ 55 ⌘ 13

and
5�3 =

5�1
· 5�1

· 5�1
⌘ 3 · 3 · 3 ⌘ 27 ⌘ 13

Mihir Bellare UCSD 28

multiplicative group

13

13

Group	Orders
Group Orders

The order of a group G is its size |G |, meaning the number of elements in
it.

Example: The order of Z⇤
21 is 12 because

Z
⇤
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Fact: Let G be a group of order m and a 2 G . Then, am = 1.

Examples: Modulo 21 we have

• 512 ⌘ (53)4 ⌘ 204 ⌘ (�1)4 ⌘ 1

• 812 ⌘ (82)6 ⌘ (1)6 ⌘ 1

Mihir Bellare UCSD 33

to

Simplifying	ExponentiationSimplifying exponentiation

Fact: Let G be a group of order m and a 2 G . Then, am = 1.

Corollary: Let G be a group of order m and a 2 G . Then for any i 2 Z,

a
i = a

i mod m.

Proof: Let (q, r) INT-DIV(i ,m), so that i = mq + r and r = i mod m.
Then

a
i = a

mq+r = (am)q · ar

But am = 1 by Fact.

Mihir Bellare UCSD 34

0
-

I

Corollary	and	Example
Simplifying exponentiation

Corollary: Let G be a group of order m and a 2 G . Then for any i 2 Z,

a
i = a

i mod m.

Example: What is 574 mod 21?

Solution: Let G = Z
⇤
21 and a = 5. Then, m = 12, so

574 mod 21 = 574 mod 12 mod 21

= 52 mod 21

= 4.

Mihir Bellare UCSD 35

.fm
→

11*2,1=12 go
574 mod 21=57

" " d
"mod

21

(74 mod 12=2]

⇒ 52 mod 21 = 4

Algorithms	&	Running-Time
Measuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024, 22048.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

Mihir Bellare UCSD 38

is

Algorithms on numbers

Algorithm Input Output Time
ADD a, b a+ b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a0,N 0) quadratic
MOD-INV a 2 Z

⇤
N , N a

�1 mod N quadratic
MOD-EXP a, n, N a

n mod N cubic
EXPG a, n a

n
2 G O(|n|) G -ops

Mihir Bellare UCSD 39

Extended	GCD

Extended gcd

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Example: EXT-GCD(12, 20) = (4, 2,�3) because

4 = gcd(12, 20) = 12 · (�3) + 20 · 2 .

Mihir Bellare UCSD 41

EXT-GCD	AlgorithmExtended gcd Algorithm

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Alg EXT-GCD(a,N) // (a,N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else
(q, r) INT-DIV(a,N); (d , x , y) EXT-GCD(N, r)
a
0
 y ; N 0

 x � qy

return (d , a0,N 0)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| · |N|). So the extended gcd can be computed
in quadratic time.

Mihir Bellare UCSD 42

no

a = AN tr
-
"

Don
't need

to

the
Know . I 9

detainee

--_

Modular	InverseModular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a
�1 mod N,

meaning the unique a
0
2 Z

⇤
N satisfying aa

0
⌘ 1 (mod N).

But if we let (d , a0,N 0) EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a
0 + N · N

0

But N · N
0
⌘ 0 (mod N) so aa

0
⌘ 1 (mod N)

Alg MOD-INV(a,N)
(d , a0,N 0) EXT-GCD(a,N)
return a

0 mod N

Modular inverse can be computed in quadratic time.

Mihir Bellare UCSD 43

= ×

-

Exponentiation

Modular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a
�1 mod N,

meaning the unique a
0
2 Z

⇤
N satisfying aa

0
⌘ 1 (mod N).

But if we let (d , a0,N 0) EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a
0 + N · N

0

But N · N
0
⌘ 0 (mod N) so aa

0
⌘ 1 (mod N)

Alg MOD-INV(a,N)
(d , a0,N 0) EXT-GCD(a,N)
return a

0 mod N

Modular inverse can be computed in quadratic time.

Mihir Bellare UCSD 37

Modular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y 1
for i = 1, . . . , n do y y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.

Mihir Bellare UCSD 38

Modular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y 1
for i = 1, . . . , n do y y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.

Mihir Bellare UCSD 39

Fast exponentiation idea

We can compute

a �! a
2
�! a

4
�! a

8
�! a

16
�! a

32

in just 5 steps by repeated squaring. So we can compute a
n in i steps

when n = 2i .

But what if n is not a power of 2?

Mihir Bellare UCSD 40

If n large

{ this alg is too slow

Want an at
g running in time

proportional .
to Int Cbinaryengen of a)

Fast	Exponentiation	Idea

Modular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a
�1 mod N,

meaning the unique a
0
2 Z

⇤
N satisfying aa

0
⌘ 1 (mod N).

But if we let (d , a0,N 0) EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a
0 + N · N

0

But N · N
0
⌘ 0 (mod N) so aa

0
⌘ 1 (mod N)

Alg MOD-INV(a,N)
(d , a0,N 0) EXT-GCD(a,N)
return a

0 mod N

Modular inverse can be computed in quadratic time.

Mihir Bellare UCSD 37

Modular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y 1
for i = 1, . . . , n do y y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.

Mihir Bellare UCSD 38

Modular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y 1
for i = 1, . . . , n do y y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.

Mihir Bellare UCSD 39

Fast exponentiation idea

We can compute

a �! a
2
�! a

4
�! a

8
�! a

16
�! a

32

in just 5 steps by repeated squaring. So we can compute a
n in i steps

when n = 2i .

But what if n is not a power of 2?

Mihir Bellare UCSD 40

Square-and-MultiplySquare-and-Multiply Exponentiation Example

Suppose the binary length of n is 5, meaning the binary representation of
n has the form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute a
n. Our exponentiation algorithm will proceed to

compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = 1

y4 = y
2
5 · a

b4 = a
b4

y3 = y
2
4 · a

b3 = a
2b4+b3

y2 = y
2
3 · a

b2 = a
4b4+2b3+b2

y1 = y
2
2 · a

b1 = a
8b4+4b3+2b2+b1

y0 = y
2
1 · a

b0 = a
16b4+8b3+4b2+2b1+b0 .

Mihir Bellare UCSD 41

Square-and-Multiply Exponentiation Algorithm

Let bin(n) = bk�1 . . . b0 be the binary representation of n, meaning

n =
k�1X

i=0

bi2
i

Alg EXPG (a, n) // a 2 G , n � 1

bk�1 . . . b0 bin(n)
y 1
for i = k � 1 downto 0 do y y

2
· a

bi

return y

The running time is O(|n|) group operations.

MOD-EXP(a, n,N) returns an mod N in time O(|n| · |N|
2), meaning is

cubic time.

Mihir Bellare UCSD 42

Exercise

Consider the following computational problem:

Input: N, a, b, x , y where N � 1 is an integer, a, b 2 Z
⇤
N and

x , y are integers with 0 x , y < N

Output: a
x
b
y mod N

Let k = |N|.

1. Consider the algorithm that first computes X = a
x mod N, then

computes Y = b
y mod N, and returns XY mod N. Explain why this

has worst case cost of 4k + 1 multiplications modulo N.

2. Design an alternative, faster algorithm for this problem that uses at
most 2k + 1 multiplications modulo N.

Mihir Bellare UCSD 43

Algorithms on numbers

Algorithm Input Output Time
ADD a, b a+ b O(|a|+ |b|)
MULT a, b ab O(|a| · |b|)
INT-DIV a, N q,r O(|a| · |N|)
MOD a, N a mod N O(|a| · |N|)
EXT-GCD a, N (d , a0,N 0) O(|a| · |N|)
MOD-INV a 2 Z

⇤
N , N a

�1 mod N O(|N|
2)

MOD-EXP a 2 ZN , n, N a
n mod N O(|n| · |N|

2)
EXPG a 2 G , n a

n
2 G O(|n|) G -ops

Mihir Bellare UCSD 44

met
I 0 I I O

*

Fao-f.•F#

Square-and-Multiply
Square-and-Multiply Exponentiation Algorithm

Let bin(n) = bk�1 . . . b0 be the binary representation of n, meaning

n =
k�1X

i=0

bi2
i

Alg EXPG (a, n) // a 2 G , n � 1

bk�1 . . . b0 bin(n)
y 1
for i = k � 1 downto 0 do y y

2
· a

bi

return y

The running time is O(|n|) group operations.

MOD-EXP(a, n,N) returns an mod N in time O(|n| · |N|
2), meaning is

cubic time.

Mihir Bellare UCSD 48

-

\
- EXPONENT;Ataturk TIME -

I

Subgroups
Subgroups

Definition: Let G be a group and S ✓ G . Then S is called a subgroup of
G if S is itself a group under G ’s operation.

Example: Let G = Z
⇤
11 and S = {1, 2, 3}. Then S is not a subgroup

because

• 2 · 3 mod 11 = 6 62 S , violating Closure.

• 3�1 mod 11 = 4 62 S , violating Inverse.

But {1, 3, 4, 5, 9} is a subgroup, as you can check.

Fact: S is a subgroup of G i↵ S 6= ; and 8x , y 2 S : xy�1
2 S

Mihir Bellare UCSD 45

Generators and cyclic groups

Let G be a group of order m and let g 2 G . We let

hgi = { g
i : i 2 Z } .

Fact: hgi = { g
i : i 2 Zm }

Exercise: Prove the above Fact.

Fact: hgi is a subgroup of G .

And hence the size |hgi| of the set hgi is a divisor of m.

Note: |hgi| need not equal m!

Definition: g 2 G is a generator (or primitive element) of G if hgi = G ,
meaning |hgi| = m.

Definition: G is cyclic if it has a generator, meaning there exists g 2 G

such that g is a generator of G .

Mihir Bellare UCSD 46

Generators and cyclic groups: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8 5 10 9 7 3 6 1
5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

h2i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

h5i = {1, 3, 4, 5, 9}

• 2 a generator because h2i = Z
⇤
11.

• 5 is not a generator because h5i 6= Z
⇤
11.

• Z
⇤
11 is cyclic because it has a generator.

Mihir Bellare UCSD 47

Exercise

Let G be the group Z
⇤
10 under the operation of multiplication modulo 10.

1. List the elements of G

2. What is the order of G?

3. Determine the set h3i

4. Determine the set h9i

5. Is G cyclic? Why or why not?

Mihir Bellare UCSD 48

-
-

ed

g

-

Generators	and	Cyclic	Groups
Generators and cyclic groups

Let G be a group of order m and let g 2 G . We let

hgi = { g
i : i 2 Z } .

Fact: hgi = { g
i : i 2 Zm }

Exercise: Prove the above Fact.

Fact: The size |hgi| of the set hgi is a divisor of m

Note: |hgi| need not equal m!

Definition: g 2 G is a generator (or primitive element) of G if hgi = G ,
meaning |hgi| = m.

Definition: G is cyclic if it has a generator, meaning there exists g 2 G

such that g is a generator of G .

Mihir Bellare UCSD 51

Subgroup of

- G generatedgm = to .

by 9

If I (g) I k

so

then KIM .

• a-

ExampleGenerators and cyclic groups: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8 5 10 9 7 3 6 1
5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

h2i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

h5i = {1, 3, 4, 5, 9}

• 2 a generator because h2i = Z
⇤
11.

• 5 is not a generator because h5i 6= Z
⇤
11.

• Z
⇤
11 is cyclic because it has a generator.

Mihir Bellare UCSD 52

.

Exercise

Subgroups

Definition: Let G be a group and S ✓ G . Then S is called a subgroup of
G if S is itself a group under G ’s operation.

Example: Let G = Z
⇤
11 and S = {1, 2, 3}. Then S is not a subgroup

because

• 2 · 3 mod 11 = 6 62 S , violating Closure.

• 3�1 mod 11 = 4 62 S , violating Inverse.

But {1, 3, 4, 5, 9} is a subgroup, as you can check.

Fact: S is a subgroup of G i↵ S 6= ; and 8x , y 2 S : xy�1
2 S

Mihir Bellare UCSD 45

Generators and cyclic groups

Let G be a group of order m and let g 2 G . We let

hgi = { g
i : i 2 Z } .

Fact: hgi = { g
i : i 2 Zm }

Exercise: Prove the above Fact.

Fact: hgi is a subgroup of G .

And hence the size |hgi| of the set hgi is a divisor of m.

Note: |hgi| need not equal m!

Definition: g 2 G is a generator (or primitive element) of G if hgi = G ,
meaning |hgi| = m.

Definition: G is cyclic if it has a generator, meaning there exists g 2 G

such that g is a generator of G .

Mihir Bellare UCSD 46

Generators and cyclic groups: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8 5 10 9 7 3 6 1
5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

h2i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

h5i = {1, 3, 4, 5, 9}

• 2 a generator because h2i = Z
⇤
11.

• 5 is not a generator because h5i 6= Z
⇤
11.

• Z
⇤
11 is cyclic because it has a generator.

Mihir Bellare UCSD 47

Exercise

Let G be the group Z
⇤
10 under the operation of multiplication modulo 10.

1. List the elements of G

2. What is the order of G?

3. Determine the set h3i

4. Determine the set h9i

5. Is G cyclic? Why or why not?

Mihir Bellare UCSD 48

HWF

Discrete	Logarithms
Discrete Logarithms

If G = hgi is a cyclic group of order m then for every a 2 G there is a
unique exponent i 2 Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function:

DLogG ,g (g
i) = i for all i 2 Zm

g
DLogG ,g (a) = a for all a 2 G .

Mihir Bellare UCSD 54

-0
Usual properties of logarithms

Example
Discrete Logarithms

If G = hgi is a cyclic group of order m then for every a 2 G there is a
unique exponent i 2 Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function:

DLogG ,g (g
i) = i for all i 2 Zm

g
DLogG ,g (a) = a for all a 2 G .

Mihir Bellare UCSD 49

Discrete Logarithms: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order

m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent
i 2 Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9
2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
DLogG ,2(a)

Mihir Bellare UCSD 50

Discrete Logarithms: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order

m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent
i 2 Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9
2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
DLogG ,2(a) 0 1 8 2 4 9 7 3 6 5

Mihir Bellare UCSD 51

Exercise

Let G be the group Z
⇤
10 under the operation of multiplication modulo 10.

1. Show that 3 and 7 are generators of G

2. What is DLogG ,3(7)?

3. What is DLogG ,7(9)?

Mihir Bellare UCSD 52

✓

N

⑥
018

Finding	Cyclic	Groups

Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z
⇤
p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z⇤
p| = p � 1 is not prime, so Fact 2 doesn’t imply Fact 1!

Fact 3: If F is a finite field then F \ {0} is a cyclic group under the
multiplicative operation of F .

Mihir Bellare UCSD 53

Computing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm?

It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 54

Computing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer)

, but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 55

Computing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 56

g

AES-

*
-

Computing	Discrete	Logs

Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z
⇤
p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z⇤
p| = p � 1 is not prime, so Fact 2 doesn’t imply Fact 1!

Fact 3: If F is a finite field then F \ {0} is a cyclic group under the
multiplicative operation of F .

Mihir Bellare UCSD 53

Computing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm?

It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 54

Computing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer)

, but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 55

Computing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X)

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm? It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.

Mihir Bellare UCSD 56

Iml

Chavotoo slow qImlg
- ops
(square &

O (m expontentiaons)
must)

Current	Best	Algorithms
Computing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z
⇤
p e

1.92(ln p)1/3(ln ln p)2/3

ECp
p
p = e

ln(p)/2

Here p is a prime and ECp represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1.92(ln q)
1/3(ln ln q)2/3

where q is the largest prime factor of p � 1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.

Mihir Bellare UCSD 62

T
faster

ordepr, , C- -0 g- esvz - exponential

order R
← ⑦ G- exponential

-

Why	ECC?EC: More bang for the buck

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280. Then

• If we work in Z
⇤
p (p a prime) we need to set |Z⇤

p| = p � 1 ⇡ 21024

• But if we work on an elliptic curve group of prime order p then it
su�ces to set p ⇡ 2160.

Why? Because

e
1.92(ln 21024)1/3(ln ln 21024)2/3

⇡

p

2160 = 280

But now:

Group Size Cost of Exponentiation
2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!

Mihir Bellare UCSD 64

-

⇒Tt

go - bit security is kind of

outdated

Why	ECC?

Computing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z
⇤
p e

1.92(ln p)1/3(ln ln p)2/3

ECp
p
p = e

ln(p)/2

Here p is a prime and ECp represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1.92(ln q)
1/3(ln ln q)2/3

where q is the largest prime factor of p � 1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.

Mihir Bellare UCSD 57

Discrete logarithm computation records

In Z
⇤
p:

|p| in bits When

431 2005
530 2007
596 2014

For elliptic curves, current record seems to be for |p| around 113.

Mihir Bellare UCSD 58

EC: More bang for the buck

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280. Then

• If we work in Z
⇤
p (p a prime) we need to set |Z⇤

p| = p � 1 ⇡ 21024

• But if we work on an elliptic curve group of prime order p then it
su�ces to set p ⇡ 2160.

Why? Because

e
1.92(ln 21024)1/3(ln ln 21024)2/3

⇡

p

2160 = 280

But now:

Group Size Cost of Exponentiation
2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!

Mihir Bellare UCSD 59

DL Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize

x
$
 Zm;X g

x

return X

procedure Finalize(x 0)
return (x = x

0)

The dl-advantage of A is

Adv
dl
G ,g (A) = Pr

h
DLA

G ,g) true
i

Mihir Bellare UCSD 60

DL	Problem
DL Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize

x
$
 Zm;X g

x

return X

procedure Finalize(x 0)
return (x = x

0)

The dl-advantage of A is

Adv
dl
G ,g (A) = Pr

h
DLA

G ,g) true
i

Mihir Bellare UCSD 65

CDH	ProblemCDH: The Computational Di�e-Hellman Problem

Let G = hgi be a cyclic group of order m with generator g 2 G . The CDH
problem is:

Input: X = g
x
2 G and Y = g

y
2 G

Desired Output: g xy
2 G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x DLogG ,g (X); Return Y
x .

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.

Mihir Bellare UCSD 61

CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X g
x ;Y g

y

return X ,Y

procedure Finalize(Z)
return (Z = g

xy)

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g) true
i

Mihir Bellare UCSD 62

Building cyclic groups

We will need to build (large) groups over which our cryptographic schemes
can work, and find generators in these groups.

How do we do this e�ciently?

Mihir Bellare UCSD 63

Building cyclic groups

To find a suitable prime p and generator g of Z⇤
p:

• Pick numbers p at random until p is a prime of the desired form

• Pick elements g from Z
⇤
p at random until g is a generator

For this to work we need to know

• How to test if p is prime

• How many numbers in a given range are primes of the desired form

• How to test if g is a generator of Z⇤
p when p is prime

• How many elements of Z⇤
p are generators

Mihir Bellare UCSD 64

CDH	Problem
CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X g
x ;Y g

y

return X ,Y

procedure Finalize(Z)
return (Z = g

xy)

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g) true
i

Mihir Bellare UCSD 67

Building	Cyclic	Groups

CDH: The Computational Di�e-Hellman Problem

Let G = hgi be a cyclic group of order m with generator g 2 G . The CDH
problem is:

Input: X = g
x
2 G and Y = g

y
2 G

Desired Output: g xy
2 G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x DLogG ,g (X); Return Y
x .

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.

Mihir Bellare UCSD 61

CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X g
x ;Y g

y

return X ,Y

procedure Finalize(Z)
return (Z = g

xy)

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g) true
i

Mihir Bellare UCSD 62

Building cyclic groups

We will need to build (large) groups over which our cryptographic schemes
can work, and find generators in these groups.

How do we do this e�ciently?

Mihir Bellare UCSD 63

Building cyclic groups

To find a suitable prime p and generator g of Z⇤
p:

• Pick numbers p at random until p is a prime of the desired form

• Pick elements g from Z
⇤
p at random until g is a generator

For this to work we need to know

• How to test if p is prime

• How many numbers in a given range are primes of the desired form

• How to test if g is a generator of Z⇤
p when p is prime

• How many elements of Z⇤
p are generators

Mihir Bellare UCSD 64

CDH: The Computational Di�e-Hellman Problem

Let G = hgi be a cyclic group of order m with generator g 2 G . The CDH
problem is:

Input: X = g
x
2 G and Y = g

y
2 G

Desired Output: g xy
2 G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x DLogG ,g (X); Return Y
x .

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.

Mihir Bellare UCSD 61

CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X g
x ;Y g

y

return X ,Y

procedure Finalize(Z)
return (Z = g

xy)

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g) true
i

Mihir Bellare UCSD 62

Building cyclic groups

We will need to build (large) groups over which our cryptographic schemes
can work, and find generators in these groups.

How do we do this e�ciently?

Mihir Bellare UCSD 63

Building cyclic groups

To find a suitable prime p and generator g of Z⇤
p:

• Pick numbers p at random until p is a prime of the desired form

• Pick elements g from Z
⇤
p at random until g is a generator

For this to work we need to know

• How to test if p is prime

• How many numbers in a given range are primes of the desired form

• How to test if g is a generator of Z⇤
p when p is prime

• How many elements of Z⇤
p are generators

Mihir Bellare UCSD 64

Finding	Primes
Finding primes

Desired: An e�cient algorithm that given an integer k returns a prime
p 2 {2k�1, . . . , 2k � 1} such that q = (p � 1)/2 is also prime.

Alg Findprime(k)
do
p

$
 {2k�1, . . . , 2k � 1}

until (p is prime and (p � 1)/2 is prime)
return p

• How do we test primality?

• How many iterations do we need to succeed?

Mihir Bellare UCSD 65

Primality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , d
p
Ne do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|
3) time randomized algorithms

• Even a O(|N|
8) time deterministic algorithm

Mihir Bellare UCSD 66

Primality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , d
p
Ne do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|
3) time randomized algorithms

• Even a O(|N|
8) time deterministic algorithm

Mihir Bellare UCSD 67

Density of primes

Let ⇡(N) be the number of primes in the range 1, . . . ,N. So if

p
$
 {1, . . . ,N} then

Pr [p is a prime] =
⇡(N)

N

Fact: ⇡(N) ⇠
N

ln(N)

So

Pr [p is a prime] ⇠
1

ln(N)

If N = 21024 this is about 0.001488 ⇡ 1/1000.

So the number of iterations taken by our algorithm to find a prime is not
too big.

Mihir Bellare UCSD 68

Finding	generatorsFinding generators: Randomly pick and check

repeat
g

$
 G � {1}

until (TEST-GENG (g) = true)

• How do we design TEST-GENG?

• How many iterations does the algorithm take?

We are addressing the two questions for the case that p is a SG prime.

Mihir Bellare UCSD 89

Finding generators modulo SG primes

Suppose p is a SG prime with p � 1 = 2q.

repeat
g

$
 G � {1}

until (g2
6⌘ 1 (mod p)and g

q
6⌘ 1 (mod p))

The probability that a generator is found in a given step is

q � 1

2q � 1
⇡

1

2

so the expected number of iterations of the algorithm is about 2.

Mihir Bellare UCSD 90

Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x
$
 Zp�1; X g

x mod p

X
������!

y
$
 Zp�1; Y g

y mod p

Y
 ������

KA Y
x mod p KB X

y mod p

• Y
x = (g y)x = g

xy = (g x)y = X
y modulo p, so KA = KB

• Adversary is faced with the CDH problem.

Mihir Bellare UCSD 91

DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7! g
x mod p?

• How can Bob quickly compute y 7! g
y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7! g
xy mod p?

• . . .

Exercise: Answer as many of these questions as you can based on the
content of this chapter.

Mihir Bellare UCSD 92

Diffie-Hellman	Key	ExchangeRecall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x $
 Zp�1; X g x mod p

X
������!

y $
 Zp�1; Y g y mod p

Y
 ������

KA Y x mod p KB X y mod p

• Y x = (g y)x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with the CDH problem.

Mihir Bellare UCSD 12

