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A Basic Problem: Key Exchange

Problem: Obtain a joint secret key via interaction over a public channel:

Alice Bob
x & - X
X \
y E LY .
) Y
KA — FA(X, Y) KB — FB(y,X)

Desired properties of the protocol:
e K4 = Kpg, meaning Alice and Bob agree on a key
e Adversary given X, Y can't compute Ky



Key Exchange

Can you build a secret key exchange protocol?

Symmetric cryptography has existed for thousands of years.

But no secret key exchange protocol was found in that time.
Many people thought it was impossible.

In 1976, Diffie and Hellman proposed one.

This was the birth of public-key (asymmetric) cryptography.



Diffie-Hellman

The following are assumed to be public: A large prime p and a number g
called a generator mod p. Let Z,_; = {0,1,...,p —2}.

Alice Bob

x4 Zy 1; X+ g¥mod p

=
inp_l; Y < g¥ mod p
v o .
Ka < Y mod p - Kg < XY mod p

o YX=(g¥) =g =(g%) = XY modulo p, so Ky = Kz
e Adversary is faced with computing g mod p given g* mod p and
gy mod p, which nobody knows how to do efficiently for large p.
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Questions...

e How do we pick a large prime p, and how large is large enough?
e What does it mean for g to be a generator modulo p?

e How do we find a generator modulo p?

e How can Alice quickly compute x — g* mod p?

e How can Bob quickly compute y — g¥ mod p?

e Why is it hard to compute (g* mod p, g¥ mod p) — g™ mod p?

To answer all that and more, we will forget about DH secret key exchange
for a while and take a trip into computational number theory ...



Notation

Z={..,-2-1012.3}
N=1{0,1,2,..} N
z,=1{1,23..} I,

For a, N € Z let gcd(a, N) be the largest d € Z such that d divides both
a and N.

Example: ged(30,70) = 10.
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Integers mod N

For Ne Z,, let
L4 e Zy=1{0,1,....N—1}
0 MJW —p o Zh ={acZy : gcd(a,N) =1} Dl}—&é —Lnn—
o p(N)=1Z}] 5 o
[z x| = el

Example: N =12 b \,L\.\.,P“lz)
e Z,, =1{0,1,2,3,4,5,6,7,8,9,10,11}
e 77, ={1,5,7,11}

AN

° p(12) = Y
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Division and MOD

INT-DIV(a, N) returns (g, r) such that
e a=gN+r
e 0<r<N
Refer to g as the quotient and r as the remainder. Then
amod N=reZy

is the remainder when a is divided by N.

Example: INT-DIV(17,3)

(5,2) and 17 mod 3 = 2.

Def: a= b (mod N) if amod N = b mod N.

K’E_X—am/p,lve: 17 = 14 (mod 3)
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Groups

Let G be a non-empty set, and let - be a binary operation on G. This
means that for every two points a, b € G, a value a- b is defined.

Example: G = Z7, and “" is multiplication modulo 12, meaning

a-b=abmod12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N € Z then G = Z}, with a- b= abmod N is a group.



Groups Closure

V\ p\\ L OGNV
/

Closure: For every a,b € G we have a- b is also in G.
T

Example: G = Z15 with a- b = ab does not have closure because
7-5=35¢& 2.

W\(A

Fact: If N € Z, then G = Z}, with a- b = ab mod N satisfies closure,
meaning

ged(a, N) = ged(b, N) = 1 implies gcd(ab mod N, N) =1
Example: Let G = Z}, = {1,5,7,11}. Then
5-7mod 12 =35 mod 12 =11 € Z],

Exercise: Prove the above Fact.
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Groups: Associativity

Associativity: For every a,b,c € G we have (a-b)-c=a-(b-c).

Fact: If N € Z then G = Z}, with a- b = ab mod N satisfies
associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5-7 mod 12) - 11 mod 12 = (35 mod 12) - 11 mod 12
=11-11 mod 12 =1

5-(7-11 mod 12) mod 12 =5 (77 mod 12) mod 12
=5.-bmod12=1

Exercise: Given an example of a set G and a natural operation
a,br a-bon G that satisfies closure but not associativity.



Groups: ldentity Element

4
Identity element: There exists an element 1 € G such that &
a-1=1.-a=aforall acG.

Fact: If N € Z, and G = Z}, with a- b = ab mod N then 1 is the identity
element because a- 1 mod N =1 -amod N = a for all a.



Groups: Inverses

Inverses: For every a € G there exists a unique b € G such that
a-b=b-a=1.

This b is called the inverse of a and is denoted a~! if G is understood.

Fact: If Ne Z, and G = Z}, with a- b = ab mod N then
Vae Zy dbe Zj suchthata-bmod N =1.

We denote this unique inverse b by a~! mod N.

Example: 57! mod 12 is the b € Z%, satisfying 5b mod 12 = 1, so b =



Computational Shortcuts

What is 5-8-10- 16 mod 217
Slow way: First compute

5.8-10-16 =40-10-16 =400 16 = 6400
and then compute 6400 mod 21 = 16

Fast way:
e 5-8mod 21 =40 mod 21 =19
e 19-10 mod 21 =190 mod 21 =1
e 1-16 mod 21 =16



Exponentiation

Let G be a group and a € G. We let a° = 1 be the identity element and

for n > 1, we let
a :\aaé

Also we let

This ensures that for all i,j € Z,
o T =45 .4
+ ail = () = ()
° a—i — (ai)—l — (a—l)i

Meaning we can manipulate exponents “as usual’.



Examples

M T [t eptnve 9«/0‘/?’
Let N =14 and G = Z},. Then modulo N we have

and



Group Orders

The order of a group G is its size |G|, meaning the number of elements in
it.

Example: The order of Z5; is 12 because
_?'

Z5, = {1,2,4,5,8,10,11,13,16, 17, 19,20}

Fact: Let G be a group of order mand a € G. Then, 3" =1.

Examples: Modulo 21 we have
o 512 =(53)* =20t = (-1)*=1
e 812=(82=(1)° =1



Simplifying Exponentiation

Fact: Let G be a group of order mand a € G. Then, 3" = 1.

Corollary: Let G be a group of order m and a € G. Then for any | E@

o= 7.

Proof: Let (q,r) < INT-DIV(i, m), so that i = mq + r and r = i mod m.

Then '
al = amItr Z@"T)q ' ﬂ

But a” = 1 by Fact.



Corollary and Example

e

e

Corollary: Let G be a group of order mand a € G. Then for any j € Z,

ai _ ai mod m
- / e
. 1 74 ?
~—¥PExample: What is 5’4 mod 217 . et o V2
]7L'J;r\ = WX 5 med 2] =5 mocé(



Algorithms & Running-Time

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024 2048

Numbers are provided to algorithms in binary. The length of a, denoted
| _is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.



Algorithm Input Output Time

ADD a, b a+ b linear

MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N amod N | quadratic
EXT-GCD | a, N (d,a’, N') | quadratic
MOD-INV | a € Zj}, a—! mod N | quadratic
MOD-EXP | a, n, N a" mod N | cubic

EXPg a, n a" € G O(|n|) G-ops



Extended GCD

EXT-GCD(a, N) — (d,a’, N) such that
d=gcd(a,N)=a-a +N-N".

Example: EXT-GCD(12,20) = (4,2, —3) because
4 = gcd(12,20) = 12 (=3) +20-2 .



EXT-GCD Algorithm

EXT-GCD(a, N) — (d, a’, N') such that
d=gcd(a,N)=a-a +N-N".

—* Lemma: Let (g, r) = INT-DIV(a, N). Then, gcd(a, N) = gcd(N, r)

w= aN v ~—
Alg EXT-GCD(a, N)  // (a,N) # (0,0) Y S
it N'= 0 then return (a, 1,0) on't ™
else 7 -G
(q,r) < INT-DIV(a, N): (d, x, y) « EXT-GCD(N, r) A

a <+ vy, N+ x—qy
return (d,a’, N)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| - |[N|). So the extended gcd can be computed

in quadratic time.
P o



Modular Inverse

For a, N such that gcd(a, N) = 1, we want to compute a~! mod N,
meaning the unique a’ € Z}, satisfying aa’ =1 (mod N).

But if we let (d,a’, N') «+ EXT-GCD(a, N) then

d:1:gcd(a,N):a-a’+A§<’
But N- N'=0 (mod N) so aa’ =1 (mod N)

.—f—’

Alg MOD-INV (a, N)
(d,a’, N') «+ EXT-GCD(a, N)
return a’ mod N

Modular inverse can be computed in quadratic time.




Exponentiation

Let G be a group and a € G. For n € N, we want to compute a" € G.

We know that

n
Consider: 45 n large
_y%]. LV\(\S Q'(S \~S l’DO S\,DU" '/(
fori=1,....ndoy <+ y-a
return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2!") so it is exponential time. For n a 2512 it is prohibitively

expensive. N :
[,\)Oul\" an CL\@ ruaadnqg \"\ME‘,
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Fast Exponentiation Idea

We can compute
a— a° — a* — % — al® — 3%

in just 5 steps by repeated squaring. So we can compute a” in / steps
when n = 2.

But what if nis not a power of 27



Square-and-Multiply

Suppose the binary length of nis 5, meaning the binary representation of
n has the form bgbsbrbiby. Then Yol \VO

W

n = 2%, +23bs + 22b2 4ol b1 un 2°bo
= 16b4 + 8bs +4by + 2b1 + bo

We want to compute a". Our exponentiation algorithm will proceed to
compute the values ys, ya, v3, V2, v1, Yo in turn, as follows:

ys. = 1

ya = y5-a» = a™

y3 = yf Lgbs = g2batbs

Yo = y32 .352 —  Abat2b3+b;

yi = )/22 L gbt —  38batAabz+2by+by

2 bo

_ 16b4+8b3+4b>+2b1+b
Yo = yi-a alS 4—1—*3—1- o+ 1—|—0.

-~
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Square-and-Multiply

Let bin(n) = bx_1... by be the binary representation of n, meaning

k—1
n = b,'2l

=0
Alg EXP¢g(a,n) //ae G, n>1
bk—l ce bo < bin(n)
y 1
for i = k — 1 downto 0 do y « y? - aP
return y

The running time is O(|n|) group operations.

MOD-EXP(a, n, N) returns a” mod N in time (’)(\n[ -|N|?), meaning is
cubic time.

oS
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Subgroups

Definition: Let G be a group and S C G. Then S is called a subgroup of
G if S is itself a group under G's operation.

Example: Let G = Z7; and S = {1,2,3}. Then S is not a subgroup

because -
e 2-3 mod1ll1=6¢35, violating Closure.—
e 371 mod 11 =4¢ S, violating Inverse.—

But {1,3,4,5,9} is a subgroup, as you can check.

-~

Fact: Sis a subgroup of Giff SA0andVx,y €S: xyteS

-




Generators and Cyclic Groups

Let G be a group of order m and let g € G. We let
g)={g iezZ}. Suhqrovg of—
: — I ‘f"\ (> exm.a/fa/{fu‘
Fact: (g)=1{g' :i€Zn} a :/Lu o

Exercise: Prove the above Fact. bf 4
Fact: The size |(g)| of the set (g) is a divisor of m T [< %}> | = k
Note: |(g)| need not equal mi men \ vt

Definition: g € G is a generator (or primitive element) of G if (g) = G,
meaning |(g)| = m.

Definition: G is cyclic if it has a generator, meaning there exists g € G
such that g is a generator of G.



Example

Let G =27, =1{1,2,3,4,5,6,7,8,9,10}, which has order m = 10.

ifo0|l1]213|4] 5/6|7[/8|9]10
2 mod11||1]2[4|8]5]|10
5 mod11||1]/5[3/4|9| 1[5[|3[4|9]| 1

O
\l
(O8
(@)
|

SO

2) = {1,2,3,4,5,6,7,8,9,10}
5) = {1,3,4,5,9}

e 2 a generator because (2) = Z7;.
e 5is not a generator because (5) # Z7;.

o Z7, is cyclic because it has a generator.



Exercise
kW F

Let G be the group Z7, under the operation of multiplication modulo 10.
1. List the elements of G

What is the order of G7

Determine the set (3)

Determine the set (9)

o & LD

Is G cyclic? Why or why not?



Discrete Logarithms

If G = (g) is a cyclic group of order m then for every a € G there is a
unique exponent |/ € Z,, such that g’ = a. We call / the discrete logarithm
of a to base g and denote it by

DLogG,g(a)

The discrete log function is the inverse of the exponentiation function:

= | forallieZ,

a forall ae.

\/\Suat dwupq}/h'cf »+t \ogmn’\“‘«wﬂ%



/ Example

Let G =27, =1{1,2,3,4,5,6,7,8,9,10}, which is a cyclic group of order
m = 10. We know that 2 is a generator, so DLog ,(a) is the exponent
i € Z1o such that 2’ mod 11 = a.

i10[1/2!3|4] 5|/6[7]8!09
2 mod11 1248|5109 |7 /3|6

DLoggo(a) || | |9




Finding Cyclic Groups

Fact 1. Let p be a prime. Then Z is cyclic. @&

==

Fact 2: Let G be any group whose order m = |G| is a prime number.
Then G is cyclic.

Note: |Z7| = p — 1 is not prime, so Fact 2 doesn't imply Fact 1!

S——mn?

Fax3: If F is a finite field then F \ {0} is a cyclic group under the
multiplicative operation of F.



|

Computing Discrete Logs

Let G = (g) be a cyclic group of order m with generator g € G.

Input: X € G
Desired Output: DLog¢ ,(X)

That is, we want x such that g~ = X.

for x=10,...,m—1do A
— if g¥ = X then return x

Is this a good algorithm? It is

o Correct (always returns the right answer)

¥oo  5\ow / (square '€>



. s
Current Best Algorithmms =

Group | Time to find discretedogarithms
0(()\1:0// ( é/— Z;’; \_,é el°92(|n p)1/3(|n In P)2/3 &— Suh - .g')(‘oov\(.lk ]—mﬂ
NNV — EC, {\/ﬁ — ¢n(p)/2 G— Q_,zo\fone,w{-ml
o' x

Here p is a prime and EC, represents an elliptic curve group of order p.

Note: In the first case the actual running time is el-92(In@)"/*(inin q)/3

where g is the largest prime factor of p — 1.

In neither case is a polynomial-time algorithm known.

—

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.



Why ECC?

Say we want 80-bits of security, meaning discrete log computation by the

best known algorithm should take time 280, Then
o If we work in Z% (p a prime) we need to set |Z}| = p — 1 ~ 2192

e But if we work on an elliptic curve group of prime order p then it
suffices to set p ~ 2100,

Why? Because
1024\1/3 1024\2/3
£1.92(In 21024) /3(InIn21024)2/3 \/2160 — 280

& 0- biy Secwet v Kgad of
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Why ECC?

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280, Then

o If we work in Z% (p a prime) we need to set |Z}| = p — 1 ~ 210%4

e But if we work on an elliptic curve group of prime order p then it
suffices to set p ~ 2160,

Why? Because
1024\1/3 1024y\2/3
e1:92(In2 )1/3(InIn21024)2/3 /2160 — 780

But now:

Group Size ‘ Cost of Exponentiation
2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!



DL Problem

Let G = (g) be a cyclic group of order m, and A an adversary.

Game DLg 4
procedure Finalize(x’)

procedure Initialize
return (x = x’)

X Zm X — g%
return X

The dl-advantage of A is

Adv{ _(A) = Pr|DL% , = true



CDH Problem

Let G = (g) be a cyclic group of order m with generator g € G. The CDH
problem is:

Input: X=g*e€ Gand Y =g"€G
Desired Output: g € G

This underlies security of the DH Secret Key Exchange Protocol.
Obvious algorithm: x < DLogg ,(X); Return Y.

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.



CDH Problem

Let G = (g) be a cyclic group of order m, and A an adversary.

Game CDHg 4

proce$dure Initialize procedure Finalize(Z2)
X,y & Znm return (Z = g*)

X<+ g5 Yegr

return X, Y

The cdh-advantage of A is

Advigh(A) = Pr [CDHZ , = true



Building Cyclic Groups

We will need to build (large) groups over which our cryptographic schemes
can work, and find generators in these groups.

How do we do this efficiently?

To find a suitable prime p and generator g of Z:
e Pick numbers p at random until p is a prime of the desired form

e Pick elements g from Z at random until g is a generator

For this to work we need to know
e How to test if p is prime
e How many numbers in a given range are primes of the desired form
e How to test if g is a generator of Z;, when p is prime

e How many elements of Z7 are generators



Finding Primes

Desired: An efficient algorithm that given an integer k returns a prime
pe {2k=1 ..., 2Kk —1} such that g = (p — 1)/2 is also prime.

Alg Findprime(k)
do
p& {2kt 2k 1}
until (p is prime and (p — 1)/2 is prime)
return p

e How do we test primality?
e How many iterations do we need to succeed?



Finding generators

repeat
g« G—{1}
until (TEST-GENg(g) = true)

e How do we design TEST-GENg?

e How many iterations does the algorithm take?



Diffie-Hellman Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z7%.
p

Alice Bob
x@Zp_l; X < g*“modp
X
inp_l; Y < g¥ modp
LY
Ka < Y mod p Kg < XY mod p

o YX=(g¥) =g =(g¥)” = XY modulo p, so Ky = Kg
e Adversary is faced with the CDH problem.



