Lecture 8 - Computational Number Theory

COMPSCI-466, Adam O'Neill

Adapted from
http://cseweb.ucsd.edu/~mihir/cse107/

A Basic Problem: Key Exchange

Problem: Obtain a joint secret key via interaction over a public channel:

Desired properties of the protocol:

- $K_{A}=K_{B}$, meaning Alice and Bob agree on a key
- Adversary given X, Y can't compute K_{A}

Key Exchange

Can you build a secret key exchange protocol?
Symmetric cryptography has existed for thousands of years.
But no secret key exchange protocol was found in that time.
Many people thought it was impossible.
In 1976, Diffie and Hellman proposed one.
This was the birth of public-key (asymmetric) cryptography.

Diffie-Hellman

The following are assumed to be public: A large prime p and a number g called a generator $\bmod p$. Let $\mathbf{Z}_{p-1}=\{0,1, \ldots, p-2\}$.

- $Y^{x}=\left(g^{y}\right)^{x}=g^{x y}=\left(g^{x}\right)^{y}=X^{y}$ modulo p, so $K_{A}=K_{B}$
- Adversary is faced with computing $g^{x y} \bmod p$ given $g^{x} \bmod p$ and $g^{y} \bmod p$, which nobody knows how to do efficiently for large p. $=g^{x}, g^{y} \xrightarrow{\text { hard }} g^{x y}\left(\right.$ Computational piffie-Hellman $\begin{array}{r}\text { assumption }\end{array}$

Questions...

- How do we pick a large prime p, and how large is large enough?
- What does it mean for g to be a generator modulo p ?
- How do we find a generator modulo p ?
- How can Alice quickly compute $x \mapsto g^{x} \bmod p$?
- How can Bob quickly compute $y \mapsto g^{y} \bmod p$?
- Why is it hard to compute $\left(g^{x} \bmod p, g^{y} \bmod p\right) \mapsto g^{x y} \bmod p$?

To answer all that and more, we will forget about DH secret key exchange for a while and take a trip into computational number theory ...

Notation

$$
\begin{aligned}
& \mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \\
& \mathbf{N}=\{0,1,2, \ldots\} \quad \mathbb{N} \\
& \mathbf{Z}_{+}=\{1,2,3, \ldots\} \quad \mathbb{Z}_{+}
\end{aligned}
$$

For $a, N \in \mathbf{Z}$ let $\operatorname{gcd}(a, N)$ be the largest $d \in \mathbf{Z}_{+}$such that d divides both a and N.

Example: $\operatorname{gcd}(30,70)=10$.

$$
\begin{aligned}
& \operatorname{gid}(a, b)=1 \\
& \quad a, b \text { are relatively } \\
& \text { prime }
\end{aligned}
$$

Integers $\bmod N$

For $N \in \mathbf{Z}_{+}$, let
$0 \& 7 L_{N}^{*}$

- $\mathbf{Z}_{N}=\{0,1, \ldots, N-1\}$
- $\mathbf{Z}_{N}^{*}=\left\{a \in \mathbf{Z}_{N}: \operatorname{gcd}(a, N)=1\right\} \quad Z \ell \ell-e n n{ }^{\prime}$,
- $\varphi(N)=\left|\mathbf{Z}_{N}^{*}\right|$

$$
\left|\psi_{p}\right| \leq p-1
$$

Example: $N=12$

$$
\{1,2, \ldots, p-1\}
$$

- $\mathbf{Z}_{12}=\{0,1,2,3,4,5,6,7,8,9,10,11\}$
- $\mathbf{Z}_{12}^{*}=\{1,5,7,11\}$
- $\varphi(12)=4$

Division and MOD

INT-DIV (a, N) returns (q, r) such that

- $a=q N+r$
- $0 \leq r<N$

Refer to q as the quotient and r as the remainder. Then

$$
a \bmod N=r \in \mathbf{Z}_{N}
$$

is the remainder when a is divided by N.
Example: $\operatorname{INT}-\operatorname{DIV}(17,3)=(5,2)$ and $17 \bmod 3=2$.
Def: $a \equiv b(\bmod N)$ if $a \bmod N=b \bmod N$.
Example: $17 \equiv 14(\bmod 3)$

Groups

Let G be a non-empty set, and let - be a binary operation on G. This means that for every two points $a, b \in G$, a value $a \cdot b$ is defined.

Example: $G=\mathbf{Z}_{12}^{*}$ and "." is multiplication modulo 12, meaning

$$
a \cdot b=a b \bmod 12
$$

Def: We say that G is a group if it has four properties called closure, associativity, identity and inverse that we present next.

Fact: If $N \in \mathbf{Z}_{+}$then $G=\mathbf{Z}_{N}^{*}$ with $a \cdot b=a b \bmod N$ is a group.

Closure: For every $a, b \in G$ we have $a \cdot b$ is also in G.
Example: $G=\mathbf{Z}_{12}$ with $a \cdot b=a b$ does not have closure because $7 \cdot 5=35 \notin \mathbf{Z}_{12}$.

Fact: If $N \in \mathbf{Z}_{+}$then $G=\mathbf{Z}_{N}^{*}$ with $a \cdot b=a b \bmod N$ satisfies closure, meaning

$$
\operatorname{gcd}(a, N)=\operatorname{gcd}(b, N)=1 \text { implies } \operatorname{gcd}(a b \bmod N, N)=1
$$

Example: Let $G=\mathbf{Z}_{12}^{*}=\{1,5,7,11\}$. Then

$$
5 \cdot 7 \bmod 12=35 \bmod 12=11 \in \mathbf{Z}_{12}^{*}
$$

Exercise: Prove the above Fact.
$(a b) c a(b c) \Leftrightarrow \pi$

Groups: Associativity

Associativity: For every $a, b, c \in G$ we have $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
Fact: If $N \in \mathbf{Z}_{+}$then $G=\mathbf{Z}_{N}^{*}$ with $a \cdot b=a b \bmod N$ satisfies associativity, meaning

$$
((a b \bmod N) c) \bmod N=(a(b c \bmod N)) \bmod N
$$

Example:

$$
\begin{aligned}
(5 \cdot 7 \bmod 12) \cdot 11 \bmod 12 & =(35 \bmod 12) \cdot 11 \bmod 12 \\
& =11 \cdot 11 \bmod 12=1 \\
5 \cdot(7 \cdot 11 \bmod 12) \bmod 12 & =5 \cdot(77 \bmod 12) \bmod 12 \\
& =5 \cdot 5 \bmod 12=1
\end{aligned}
$$

Exercise: Given an example of a set G and a natural operation $a, b \mapsto a \cdot b$ on G that satisfies closure but not associativity.

Groups: Identity Element

Identity element: There exists an element $\mathbf{1} \in G$ such that
 $a \cdot \mathbf{1}=\mathbf{1} \cdot a=a$ for all $a \in G$.

Fact: If $N \in \mathbf{Z}_{+}$and $G=\mathbf{Z}_{N}^{*}$ with $a \cdot b=a b \bmod N$ then 1 is the identity element because $a \cdot 1 \bmod N=1 \cdot a \bmod N=a$ for all a.

Groups: Inverses

Inverses: For every $a \in G$ there exists a unique $b \in G$ such that $a \cdot b=b \cdot a=\mathbf{1}$.
This b is called the inverse of a and is denoted a^{-1} if G is understood.
Fact: If $N \in \mathbf{Z}_{+}$and $G=\mathbf{Z}_{N}^{*}$ with $a \cdot b=a b \bmod N$ then
$\forall a \in \mathbf{Z}_{N}^{*} \quad \exists b \in \mathbf{Z}_{N}^{*}$ such that $a \cdot b \bmod N=1$.
We denote this unique inverse b by $a^{-1} \bmod N$.
Example: $5^{-1} \bmod 12$ is the $b \in \mathbf{Z}_{12}^{*}$ satisfying $5 b \bmod 12=1$, so $b=$

Computational Shortcuts

What is $5 \cdot 8 \cdot 10 \cdot 16 \bmod 21$?
Slow way: First compute

$$
5 \cdot 8 \cdot 10 \cdot 16=40 \cdot 10 \cdot 16=400 \cdot 16=6400
$$

and then compute $6400 \bmod 21=16$
Fast way:

- $5 \cdot 8 \bmod 21=40 \bmod 21=19$
- $19 \cdot 10 \bmod 21=190 \bmod 21=1$
- $1 \cdot 16 \bmod 21=16$

Exponentiation

Let G be a group and $a \in G$. We let $a^{0}=\mathbf{1}$ be the identity element and for $n \geq 1$, we let

$$
a^{n}=\underbrace{a \cdot a \cdots a}_{n} .
$$

Also we let

$$
a^{-n}=\underbrace{a^{-1} \cdot a^{-1} \cdots a^{-1}}_{n} .
$$

This ensures that for all $i, j \in \mathbf{Z}$,

- $a^{i+j}=a^{i} \cdot a^{j}$
- $a^{i j}=\left(a^{i}\right)^{j}=\left(a^{j}\right)^{i}$
- $a^{-i}=\left(a^{i}\right)^{-1}=\left(a^{-1}\right)^{i}$

Meaning we can manipulate exponents "as usual".

Examples

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { multiplicative group } \\
\text { Let } N=14 \text { and } G=\mathbf{Z}_{N}^{*} \text {. Then modulo } N \text { we have } \\
\qquad 5^{3}=13 \\
\text { and } \\
\qquad 5^{-3}=13
\end{array}
\end{aligned}
$$

Group Orders

The order of a group G is its size $|G|$, meaning the number of elements in it.

Example: The order of \mathbf{Z}_{21}^{*} is 12 because

$$
\mathbf{Z}_{21}^{*}=\{1,2,4,5,8,10,11,13,16,17,19,20\}
$$

Fact: Let G be a group of order m and $a \in G$. Then, $a^{m}=\mathbf{1}$.
Examples: Modulo 21 we have

- $5^{12} \equiv\left(5^{3}\right)^{4} \equiv 20^{4} \equiv(-1)^{4} \equiv 1$
- $8^{12} \equiv\left(8^{2}\right)^{6} \equiv(1)^{6} \equiv 1$

Simplifying Exponentiation

Fact: Let G be a group of order m and $a \in G$. Then, $a^{m}=\mathbf{1}$.
Corollary: Let G be a group of order m and $a \in G$. Then for any $i \in(\mathbf{Z}$,

$$
a^{i}=a^{i \bmod m} .
$$

Proof: Let $(q, r) \leftarrow \operatorname{INT}-\operatorname{DIV}(i, m)$, so that $i=m q+r$ and $r=i \bmod m$. Then

$$
a^{i}=a^{m q+r}=\left(a_{a}^{m}\right)^{q} \cdot a^{r}
$$

But $a^{m}=\mathbf{1}$ by Fact.

Corollary and Example

Corollary: Let G be a group of order m and $a \in G$. Then for any $i \in \mathbf{Z}$,

$$
a^{i}=a^{i \bmod m}
$$

- Example: What is $5^{74} \bmod 21$?

$$
\begin{aligned}
& \left|\mathbb{L}_{2+}^{*}\right|=12 \text { go } 5^{74} \bmod 2 \mid=5^{74 \bmod 12} \bmod 21 \\
& \quad[74 \bmod 12=2] \\
& \Rightarrow 5^{2} \bmod 21=4
\end{aligned}
$$

Algorithms \& Running-Time

In an algorithms course, the cost of arithmetic is often assumed to be $\mathcal{O}(1)$, because numbers are small. In cryptography numbers are
very, very BIG!

Typical sizes are $2^{512}, 2^{1024}, 2^{2048}$.
Numbers are provided to algorithms in binary. The length of a, denoted $|a|$, is the number of bits in the binary encoding of a.

Example: $|7|=3$ because 7 is 111 in binary.
Running time is measured as a function of the lengths of the inputs.

Algorithm	Input	Output	Time
ADD	a, b	$a+b$	linear
MULT	a, b	$a b$	quadratic
INT-DIV	a, N	q, r	quadratic
MOD	a, N	$a \bmod N$	quadratic
EXT-GCD	a, N	$\left(d, a^{\prime}, N^{\prime}\right)$	quadratic
MOD-INV	$a \in \mathbf{Z}_{N}^{*}, N$	$a^{-1} \bmod N$	quadratic
MOD-EXP $^{\text {MOD }}, ~ a, n$	$a^{n} \bmod N$	cubic	
EXP $_{G}$	a, n	$a^{n} \in G$	$\mathcal{O}(\|n\|) G$-ops

Extended GCD

$\operatorname{EXT}-\mathrm{GCD}(a, N) \mapsto\left(d, a^{\prime}, N^{\prime}\right)$ such that

$$
d=\operatorname{gcd}(a, N)=a \cdot a^{\prime}+N \cdot N^{\prime}
$$

Example: EXT-GCD $(12,20)=(4,2,-3)$ because

$$
4=\operatorname{gcd}(12,20)=12 \cdot(-3)+20 \cdot 2
$$

EXT-GCD Algorithm

EXT-GCD $(a, N) \mapsto\left(d, a^{\prime}, N^{\prime}\right)$ such that

$$
d=\operatorname{gcd}(a, N)=a \cdot a^{\prime}+N \cdot N^{\prime}
$$

\rightarrow Lemma: Let $(q, r)=\operatorname{INT}-\operatorname{DIV}(a, N)$. Then, $\operatorname{gcd}(a, N)=\operatorname{gcd}(N, r)$

$$
a=a N+r
$$

$\operatorname{Alg} \operatorname{EXT}-\operatorname{GCD}(a, N) \quad / /(a, N) \neq(0,0)$
if $N=0$ then return $(a, 1,0)$
else
$(q, r) \leftarrow \operatorname{INT}-\operatorname{DIV}(a, N) ;(d, x, y) \leftarrow \operatorname{EXT}-\operatorname{GCD}(N, r)$

$a^{\prime} \leftarrow y ; N^{\prime} \leftarrow x-q y$
return $\left(d, a^{\prime}, N^{\prime}\right)$
Running time analysis is non-trivial (worst case is Fibonacci numbers) and shows that the time is $\mathcal{O}(|a| \cdot|N|)$. So the extended gcd can be computed in quadratic time.

Modular Inverse

For a, N such that $\operatorname{gcd}(a, N)=1$, we want to compute $a^{-1} \bmod N$, meaning the unique $a^{\prime} \in \mathbf{Z}_{N}^{*}$ satisfying $a a^{\prime} \equiv 1(\bmod N)$.

But if we let $\left(d, a^{\prime}, N^{\prime}\right) \leftarrow$ EXT-GCD (a, N) then

$$
d=\underline{1=\operatorname{gcd}(a, N)}=a \cdot a^{\prime}+N / N^{\prime}
$$

But $N \cdot N^{\prime} \equiv 0(\bmod N)$ so $a a^{\prime} \equiv 1(\bmod N)$
Alg MOD-INV (a, N)
$\left(d, a^{\prime}, N^{\prime}\right) \leftarrow \operatorname{EXT}-G C D(a, N)$
return $a^{\prime} \bmod N$
Modular inverse can be computed in quadratic time.

Exponentiation

Let G be a group and $a \in G$. For $n \in \mathbf{N}$, we want to compute $a^{n} \in G$.
We know that

$$
a^{n}=\underbrace{a \cdot a \cdots a}_{n}
$$

Consider:
$\pm f$ large
this alg is too slow \because for $i=1, \ldots, n$ do $y \leftarrow y \cdot a$ return y

Question: Is this a good algorithm?
Answer: It is correct but VERY SLOW. The number of group operations is $\mathcal{O}(n)=\mathcal{O}\left(2^{|n|}\right)$ so it is exponential time. For $n \approx 2^{512}$ it is prohibitively expensive.

Want an alg running in time length of n l

Fast Exponentiation Idea

We can compute

$$
a \longrightarrow a^{2} \longrightarrow a^{4} \longrightarrow a^{8} \longrightarrow a^{16} \longrightarrow a^{32}
$$

in just 5 steps by repeated squaring. So we can compute a^{n} in i steps when $n=2^{i}$.

But what if n is not a power of 2 ?

Square-and-Multiply

Suppose the binary length of n is 5 , meaning the binary representation of n has the form $b_{4} b_{3} b_{2} b_{1} b_{0}$. Then

$$
\begin{aligned}
n & =\frac{2^{4} b_{4}+2^{3} b_{3}+2^{2} b_{2}+2^{1} b_{1}+2^{0} b_{0}}{16 b_{4}+8 b_{3}+4 b_{2}+2 b_{1}+b_{0}} \\
& =
\end{aligned}
$$

We want to compute a^{n}. Our exponentiation algorithm will proceed to compute the values $y_{5}, y_{4}, y_{3}, y_{2}, y_{1}, y_{0}$ in turn, as follows:

$$
\begin{aligned}
& y_{5}=1 \\
& y_{4}=y_{5}^{2} \cdot a^{b_{4}}=a^{b_{4}} \\
& y_{3}=y_{4}^{2} \cdot a^{b_{3}}=a^{2 b_{4}+b_{3}} \\
& y_{2}=y_{3}^{2} \cdot a^{b_{2}}=a^{4 b_{4}+2 b_{3}+b_{2}} \\
& y_{1}=y_{2}^{2} \cdot a^{b_{1}}=a^{8 b_{4}+4 b_{3}+2 b_{2}+b_{1}} \\
& y_{0}=y_{1}^{2} \cdot a^{b_{0}}=a^{16 b_{4}+8 b_{3}+4 b_{2}+2 b_{1}+b_{0}}
\end{aligned}
$$

Square-and-Multiply

Let $\operatorname{bin}(n)=b_{k-1} \ldots b_{0}$ be the binary representation of n, meaning

$$
n=\sum_{i=0}^{k-1} b_{i} 2^{i}
$$

$\operatorname{Alg}_{\operatorname{EXP}}^{G}(a, n) \quad / / a \in G, n \geq 1$
$b_{k-1} \ldots b_{0} \leftarrow \operatorname{bin}(n)$
$y \leftarrow 1$
for $i=k-1$ downto 0 do $y \leftarrow y^{2} \cdot a^{b_{i}}$
return y
The running time is $\mathcal{O}(|n|)$ group operations.
MOD-EXP (a, n, N) returns $a^{n} \bmod N$ in time $\mathcal{O}\left(|n| \cdot|N|^{2}\right)$, meaning is cubic time.

$$
\begin{aligned}
& \text { EXPONENTIATION } \\
& \text { IS CUBIC TIME }\}
\end{aligned}
$$

Subgroups

Definition: Let G be a group and $S \subseteq G$. Then S is called a subgroup of G if S is itself a group under G 's operation.

Example: Let $G=\mathbf{Z}_{11}^{*}$ and $S=\{1,2,3\}$. Then S is not a subgroup because

- $2 \cdot 3 \bmod 11=6 \notin S$, violating Closure. -
- $3^{-1} \bmod 11=4 \notin S$, violating Inverse. -

But $\{1,3,4,5,9\}$ is a subgroup, as you can check.
Fact: S is a subgroup of G iff $S \neq \emptyset$ and $\forall x, y \in S: x y^{-1} \in S$

Generators and cycicicuroup

Let G be a group of order m and let $g \in G$. We let

$$
\langle g\rangle=\left\{g^{i}: i \in \mathbf{Z}\right\} . \quad \text { Subgroup of }
$$

Fact: $\langle g\rangle=\left\{g^{i}: i \in \mathbf{Z}_{m}\right\} \quad g^{g^{m}}=1_{G} \quad$ G generated
Exercise: Prove the above Fact. \quad by g
Fact: The size $|\langle g\rangle|$ of the set $\langle g\rangle$ is a divisor of m Jf $\quad|\langle g\rangle|=k$ Note: $|\langle g\rangle|$ need not equal $m!$ then $k \mid n$.

Definition: $g \in G$ is a generator (or primitive element) of G if $\langle g\rangle=G$, meaning $|\langle\bar{g}\rangle|=m$.
Definition: G is cyclic if it has a generator, meaning there exists $g \in G$ such that g is a generator of G.

Example

Let $G=\mathbf{Z}_{11}^{*}=\{1,2,3,4,5,6,7,8,9,10\}$, which has order $m=10$.

	i	0	1	2	3	4	5	6	7	8	9

SO

$$
\begin{aligned}
\langle 2\rangle & =\{1,2,3,4,5,6,7,8,9,10\} \\
\langle 5\rangle & =\{1,3,4,5,9\}
\end{aligned}
$$

- 2 a generator because $\langle 2\rangle=\mathbf{Z}_{11}^{*}$.
- 5 is not a generator because $\langle 5\rangle \neq \mathbf{Z}_{11}^{*}$.
- \mathbf{Z}_{11}^{*} is cyclic because it has a generator.

Exercise

$$
1+w 7
$$

Let G be the group \mathbf{Z}_{10}^{*} under the operation of multiplication modulo 10 .

1. List the elements of G
2. What is the order of G ?
3. Determine the set $\langle 3\rangle$
4. Determine the set $\langle 9\rangle$
5. Is G cyclic? Why or why not?

Discrete Logarithms

If $G=\langle g\rangle$ is a cyclic group of order m then for every $a \in G$ there is a unique exponent $i \in \mathbf{Z}_{m}$ such that $g^{i}=a$. We call i the discrete logarithm of a to base g and denote it by

$$
\operatorname{DLog}_{G, g}(a)
$$

The discrete log function is the inverse of the exponentiation function:

$$
\begin{aligned}
\operatorname{DLog}_{G, g}\left(g^{i}\right) & =i \quad \text { for all } i \in \mathbf{Z}_{m} \\
g^{\operatorname{DLog}_{G, g}(a)} & =a \quad \text { for all } a \in G .
\end{aligned}
$$

Usual properties of logarithms

Example

Let $G=\mathbf{Z}_{11}^{*}=\{1,2,3,4,5,6,7,8,9,10\}$, which is a cyclic group of order $m=10$. We know that 2 is a generator, so $\operatorname{DLog}_{G, 2}(a)$ is the exponent $i \in \mathbf{Z}_{10}$ such that $2^{i} \bmod 11=a$.

If | i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| $2^{i} \bmod 11$ | 1 | 2 | 4 | 8 | 5 | 10 | 9 | 7 | 3 | 6 |

(1)||c|c|c|c|c|c|c|c|c|c| | a | 1 | 2 | 3 | 4 |
| ---: | :---: | :---: | :---: | :---: |
| $\operatorname{DLog}_{G, 2}(a)$ | 0 | 1 | 8 | |
| | | | | |

Finding Cyclic Groups

Fact 1: Let p be a prime. Then \mathbf{Z}_{p}^{*} is cyclic.
Fact 2: Let G be any group whose order $m=|G|$ is a prime number. Then G is cyclic.

Note: $\left|\mathbf{Z}_{p}^{*}\right|=p-1$ is not prime, so Fact 2 doesn't imply Fact 1 ! Fa If F is a finite field then $F \backslash\{0\}$ is a cyclic group under the multiplicative operation of F.

Computing Discrete Logs

Let $G=\langle g\rangle$ be a cyclic group of order m with generator $g \in G$.
Input: $X \in G$
Desired Output: $\operatorname{DLog}_{G, g}(X)$
That is, we want x such that $g^{x}=X$.
for $x=0, \ldots, m-1$ do
\rightarrow if $g^{x}=X$ then return x
Is this a good algorithm? It is

- Correct (always returns the right answer)

$$
\begin{aligned}
& \text { too slow } \begin{array}{c}
\text { (square } \& \\
\text { (must) }
\end{array} \\
& O(m \text { exponterticons })
\end{aligned}
$$

Current Best Algorithms

Group Time to find discrete logarithms

Here p is a prime and EC_{p} represents an elliptic curve group of order p.
Note: In the first case the actual running time is $e^{1.92(\ln q)^{1 / 3}(\ln \ln q)^{2 / 3}}$ where q is the largest prime factor of $p-1$.

In neither case is a polynomial-time algorithm known.
This (apparent, conjectured) computational intractability of the discrete log problem makes it the basis for cryptographic schemes in which breaking the scheme requires discrete log computation.

Why ECC?

Say we want 80-bits of security, meaning discrete log computation by the best known algorithm should take time 2^{80}. Then

- If we work in \mathbf{Z}_{p}^{*} (p a prime) we need to set $\left|\mathbf{Z}_{p}^{*}\right|=p-1 \approx \underline{2^{1024}}$
- But if we work on an elliptic curve group of prime order p then it suffices to set $p \approx 2^{160}$.
Why? Because

$$
\begin{aligned}
& e^{1.92\left(\ln 2^{1024}\right)^{1 / 3}\left(\ln \ln 2^{1024}\right)^{2 / 3}} \approx \sqrt{2^{160}}=2^{80} \\
& 80 \text {-bit } \begin{array}{c}
\text { Security is kind of } \\
\text { Outdated }
\end{array}
\end{aligned}
$$

Why ECC?

Say we want 80 -bits of security, meaning discrete log computation by the best known algorithm should take time 2^{80}. Then

- If we work in \mathbf{Z}_{p}^{*} (p a prime) we need to set $\left|\mathbf{Z}_{p}^{*}\right|=p-1 \approx 2^{1024}$
- But if we work on an elliptic curve group of prime order p then it suffices to set $p \approx 2^{160}$.
Why? Because

$$
e^{1.92\left(\ln 2^{1024}\right)^{1 / 3}\left(\ln \ln 2^{1024}\right)^{2 / 3}} \approx \sqrt{2^{160}}=2^{80}
$$

But now:

Group Size	Cost of Exponentiation
2^{160}	1
2^{1024}	260

Exponentiation will be 260 times faster in the smaller group!

DL Problem

Let $G=\langle g\rangle$ be a cyclic group of order m, and A an adversary.

$$
\begin{array}{ll}
\hline \text { Game } \mathrm{DL}_{G, g} & \\
\text { procedure Initialize } & \text { procedure Finalize }\left(x^{\prime}\right) \\
x \stackrel{\&}{\leftarrow} \mathbf{Z}_{m} ; X \leftarrow g^{x} & \text { return }\left(x=x^{\prime}\right) \\
\text { return } X & \\
\hline
\end{array}
$$

The dl-advantage of A is

$$
\operatorname{Adv}_{G, g}^{\mathrm{dl}}(A)=\operatorname{Pr}\left[\mathrm{DL}_{G, g}^{A} \Rightarrow \operatorname{true}\right]
$$

CDHPDronem

Let $G=\langle g\rangle$ be a cyclic group of order m with generator $g \in G$. The CDH problem is:
Input: $X=g^{x} \in G$ and $Y=g^{y} \in G$
Desired Output: $g^{x y} \in G$
This underlies security of the DH Secret Key Exchange Protocol.
Obvious algorithm: $x \leftarrow \operatorname{DLog}_{G, g}(X)$; Return Y^{x}.
So if one can compute discrete logarithms then one can solve the CDH problem.

The converse is an open question. Potentially, there is a way to quickly solve CDH that avoids computing discrete logarithms. But no such way is known.

CDH Problem

Let $G=\langle g\rangle$ be a cyclic group of order m, and A an adversary.

$$
\begin{array}{ll}
\text { Game } \mathrm{CDH}_{G, g} & \\
\text { procedure Initialize } & \text { procedure Finalize }(Z) \\
x, y \leftarrow \mathbf{Z}_{m} & \text { return }\left(Z=g^{\times y}\right) \\
X \leftarrow g^{x} ; Y \leftarrow g^{y} & \\
\text { return } X, Y & \\
\hline
\end{array}
$$

The cdh-advantage of A is

$$
\operatorname{Adv}_{G, g}^{\mathrm{cdh}}(A)=\operatorname{Pr}\left[\mathrm{CDH}_{G, g}^{A} \Rightarrow \text { true }\right]
$$

Building Cyclic Groups

We will need to build (large) groups over which our cryptographic schemes can work, and find generators in these groups.

How do we do this efficiently?

To find a suitable prime p and generator g of \mathbf{Z}_{p}^{*} :

- Pick numbers p at random until p is a prime of the desired form
- Pick elements g from \mathbf{Z}_{p}^{*} at random until g is a generator

For this to work we need to know

- How to test if p is prime
- How many numbers in a given range are primes of the desired form
- How to test if g is a generator of \mathbf{Z}_{p}^{*} when p is prime
- How many elements of \mathbf{Z}_{p}^{*} are generators

Finding prines

Desired: An efficient algorithm that given an integer k returns a prime $p \in\left\{2^{k-1}, \ldots, 2^{k}-1\right\}$ such that $q=(p-1) / 2$ is also prime.
Alg Findprime (k)
do
$p \stackrel{\$}{\leftarrow}\left\{2^{k-1}, \ldots, 2^{k}-1\right\}$
until (p is prime and $(p-1) / 2$ is prime)
return p

- How do we test primality?
- How many iterations do we need to succeed?

Finding generators

```
repeat
    g\leftarrow
until (TEST-GEN}\mp@subsup{G}{G}{}(g)=\mathrm{ true)
```

- How do we design TEST-GEN ${ }_{G}$?
- How many iterations does the algorithm take?

Diffie-Hellman Key Exchange

The following are assumed to be public: A large prime p and a generator g of \mathbf{Z}_{p}^{*}.

- $Y^{x}=\left(g^{y}\right)^{x}=g^{x y}=\left(g^{x}\right)^{y}=X^{y}$ modulo p, so $K_{A}=K_{B}$
- Adversary is faced with the CDH problem.

