Lecture 4 – Pseudorandom Functions

CS466 - Applied Cryptography Adam O'Neill

adapted from http://cseweb.ucsd.edu/~mihir/cse107/

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

One idea is to list requirements:

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

One idea is to list requirements:

• Key recovery is hard.

BAD APPR OACIT! What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

One idea is to list requirements:

- Key recovery is hard.
- Message recovery is hard.

- XOR of the the inputs

What if we want to define the notion of "intelligent" for a computer program?

What if we want to define the notion of "intelligent" for a computer program? Again, one idea is to list requirements:

What if we want to define the notion of "intelligent" for a computer program?

Again, one idea is to list requirements:

• It can be happy.

What if we want to define the notion of "intelligent" for a computer program?

Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers

What if we want to define the notion of "intelligent" for a computer program?

Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers
- ... but only small numbers.

Turing's Answer

A program is "intelligent" if its input/output behavior is indistinguishable from that of a human.

The Turing Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.

$R = \frac{30}{13}$ Random Functions

Game Rand_{{0,1}³} **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \xleftarrow{} \{0, 1\}^3$ return T[x]

adversary
$$A$$

 $y \leftarrow Fn(01)$
return $(y = 000)$

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] = \frac{1}{8}$$

Random Functions

Game
$$\operatorname{Rand}_{\{0,1\}^3}$$
adversary A procedure $\operatorname{Fn}(x)$ $y_1 \leftarrow \operatorname{Fn}(00)$ if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^3$ $y_2 \leftarrow \operatorname{Fn}(11)$ return $T[x]$ return $(y_1 = 010 \land y_2 = 011)$

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \mathsf{true}\right] = \frac{\mathcal{V}/\mathcal{G}}{\mathcal{G}}$$

Random Functions

Game
$$\operatorname{Rand}_{\{0,1\}^3}$$
adversary A procedure $\operatorname{Fn}(x)$ $y_1 \leftarrow \operatorname{Fn}(00)$ if $\operatorname{T}[x] = \bot$ then $\operatorname{T}[x] \xleftarrow{\hspace{0.5mm}} \{0,1\}^3$ $y_2 \leftarrow \operatorname{Fn}(11)$ return $\operatorname{T}[x]$ return $(y_1 \oplus y_2 = 101)$

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \operatorname{true}\right] = \frac{1}{9}$$

Function Families

A family of functions $F : \text{Keys}(F) \times \text{Dom}(F) \rightarrow \text{Range}(F)$ is a two-argument map. For $K \in \text{Keys}(F)$ we let $F_K : \text{Dom}(F) \rightarrow \text{Range}(F)$ be defined by

$$\forall x \in \mathsf{Dom}(F) : F_K(x) = F(K, x)$$

Examples:

- DES: Keys = $\{0,1\}^{56}$, D = R = $\{0,1\}^{64}$
- Any block cipher: D = R and each F_K is a permutation

We want to codify the definition Intuition Now...

Notion	Real object	Ideal object
PRF	Family of functions (eg. a block cipher)	

F is a PRF if the input-output behavior of F_K looks to a tester like the input-output behavior of a random function.

Tester does not get the key K!

Steps to show E isnot a PKF: 1) give adversary A (A can call Fn) 2 Give lower bound on Pr[Lame-Real A =71] prove it. 2) Live upper bound on Pr[Lame-Rand A =71] prove it. \Rightarrow $Ad_{E}(A) =$ Pi [bame-Real &=71] - Pi [bame-Rand &=71]

PRF advantage

To snow a function family Fisnot a PRF, we need to give an adversary A st.

Adv = (A) := P-[REAL=]]-P-[RANP=]] is LARGE.

Steps: D'Give pseudocode for A. 2 LOWER-BOUND 🥌 3 UPPER-BOUND

E: 20,13* × 10,13° - 20,13° $E_{k}(x) = x \cdot G_{K,x}$ Claim. E is NO a PRE. proof. Adversary A Wants ro guess whether Fn=Ex of F= give adversary Else r (2) Pr[REAL = >1] = 1ΨK, proof: If Fn = Ek nen F-n(0^e)= Ex(0¹)=0¹ by def of E. Pr[RANDE => 1]= - 24. (3)

proof of 3: $f = \frac{1}{Pr[F_n(0^2)=0^2]^2} = \frac{1}{2}$ En implements 🗱

Examples

"bot " error or empty symbo

Define $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \rightarrow \{0,1\}^{\ell}$ by $F_{\mathcal{K}}(x) = \mathcal{K} \oplus x$ for all $\mathcal{K}, x \in \{0,1\}^{\ell}$. Is F a secure PRF?

Game Real_{*F*} **procedure Initialize** $K \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} \{0,1\}^{\ell}$ **procedure Fn**(*x*) Return $K \oplus x$ Game Rand $(0,1)^{\ell}$ procedure /Fn(x)if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$ Return T[x]

So we are asking: Can we design a low-resource A so that

$$\mathsf{Adv}_F^{\mathrm{prf}}(A) = \mathsf{Pr}\left[\mathrm{Real}_F^A \Rightarrow 1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^A \Rightarrow 1\right]$$

is close to 1?

def

Examples

Exploitable weakness of F: For all K we have

$$F_{\mathcal{K}}(0^{\ell}) \oplus F_{\mathcal{K}}(1^{\ell}) = (\mathcal{K} \oplus 0^{\ell}) \oplus (\mathcal{K} \oplus 1^{\ell}) = 1^{\ell}$$

$$F_{\mathcal{K}}(0^{\ell}) \oplus F_{\mathcal{K}}(1^{\ell}) = 1^{\ell}$$

$$F_{\mathcal{K}}(0^{\ell}) \oplus F_{\mathcal{K}}(1^{\ell}) = 1^{\ell}$$

 $C_{i} = F_{n}(OI)$ 01010 is it 012 $-\pi$ Fn(C,) KEY RECOVERY ATTACK () Adversory A K- Fn(0e) $C \leftarrow Fn(1^{\ell})$ TF C= K' 01e return 1 Else return O. $(P_V [REAL =)]] = 1.$ by definition of F. (3) Pr [RAN D. ==>1] = 2-1

Real game analysis

 $F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

Game Real_{*F*} **procedure Initialize** $K \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell}$ **procedure Fn**(*x*) Return $K \oplus x$

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] = 1$$

Putting It Together

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \to \{0,1\}^{\ell} \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

Then

$$\begin{aligned} \mathsf{Adv}_F^{\mathrm{prf}}(A) &= \underbrace{\mathsf{Pr}\left[\mathrm{Real}_F^A \Rightarrow 1\right]}_{=} - \underbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^A \Rightarrow 1\right]}_{=} \\ &= 1 - 2^{-\ell} \end{aligned}$$
and A is efficient .

Conclusion: F is not a secure PRF.

Blockciphers as PRFs

Let $E \colon \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher.

Game Real_{E} **procedure Initialize** $K \xleftarrow{\hspace{0.1cm}} \{0, 1\}^k$ **procedure Fn**(x) Return $E_K(x)$ Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \xleftarrow{} \{0,1\}^{\ell}$ Return T[x]

Can we design A so that

$$\mathsf{Adv}_E^{\mathrm{prf}}(A) = \mathsf{Pr}\left[\mathrm{Real}_E^A {\Rightarrow} 1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^\ell}^A {\Rightarrow} 1\right]$$

is close to 1?

Generic Attacks on blockciphers as PRFs

Generic Attacks on blockciphers as PRFs

Exhaustive Key Search Attack

Generic Attacks on blockciphers as PRFs

Generic Attacks on blockciphers as PRFs

Birthday Attack

Birthday Attack

We have q people $1, \ldots, q$ with birthdays $y_1, \ldots, y_q \in \{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

> $C(365, q) = \Pr[2 \text{ or more persons have same birthday}]$ = $\Pr[y_1, \dots, y_q \text{ are not all different}]$

What is the value of (C(365, q)?)

• How large does q have to be before C(365, q) is at least 1/2?

Naive intuition:

- $C(365, q) \approx q/365$
- *q* has to be around 365

The reality

- $C(365, q) \approx q^2/365$
- q has to be only around 23

C(n, q) is the probability of collision when q values are chosen from domain of size n.

Birthday Collision Bounds

C(365, q) is the probability that some two people have the same birthday in a room of q people with random birthdays

	q	C(365, q)	
•	15	0.253	
•	18	0.347	
•	20	0.411	
•	21	0.444	1/
•	23	0.507	2
	25	0.569	
•	27	0.627	
•	30	0.706	
	35	0.814	
	40	0.891	
	50	0.970	50
		1	0

Birthday problem

Pick
$$y_1, \ldots, y_q \xleftarrow{} \{1, \ldots, N\}$$
 and let
 $C(N, q) = \Pr[y_1, \ldots, y_q \text{ not all distinct}]$

Birthday setting:
$$N = 365$$

Fact: $C(N, q) \approx \frac{q^2}{2N}$

Birthday collision formula

Let $y_1, \ldots, y_a \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$. Then $1 - C(N, q) = \Pr[y_1, \dots, y_q \text{ all distinct}]$ $= 1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \cdots \cdot \frac{N-(q-1)}{N}$ $= \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$ SO $C(N,q) = 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$ $1-\chi \leq e^{-\chi}$

Birthday bounds

Birthday attack adversary

Defining property of a block cipher: E_K is a permutation for every K

So if x_1, \ldots, x_q are distinct then

- $\mathbf{Fn} = E_{\mathcal{K}} \Rightarrow \mathbf{Fn}(x_1), \dots, \mathbf{Fn}(x_q)$ distinct
- Fn random \Rightarrow $Fn(x_1), \dots, Fn(x_q)$ not necessarily distinct

This leads to the following attack:

adversary A // bday attack adversary Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

What's the advantage of A?

Real game analysis

Let $E: \{0,1\}^k imes \{0,1\}^\ell o \{0,1\}^\ell$ be a block cipher

Game Real_{E} **procedure Initialize** $K \stackrel{\hspace{0.1em}\hspace{0.1em}}\leftarrow \{0,1\}^k$ **procedure Fn**(x) Return $E_K(x)$

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$Pr\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right] = 2$$

Since E_{k} is a permutation
for every K .

Rand game analysis

Let E: $\{0,1\}^K \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$ Return T[x]

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{\mathcal{A}} \Rightarrow 1\right] = \Pr\left[y_1, \ldots, y_q \text{ all distinct}\right] = 1 - C(2^{\ell}, q)$$

because y_1, \ldots, y_q are randomly chosen from $\{0, 1\}^{\ell}$.

$C(n,q) \approx \frac{q(q-1)}{2^{\ell}}$ Birthday attack conclusion

 $E: \{0,1\}^k imes \{0,1\}^\ell o \{0,1\}^\ell$ a block cipher

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

$$\mathbf{Adv}_{E}^{\mathrm{prf}}(A) = \underbrace{\mathsf{Pr}\left[\mathrm{Real}_{E}^{A} \Rightarrow 1\right]}_{e} - \underbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}_{e} + \underbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}_{e} = C(2^{\ell}, q) \ge \underbrace{0.3}_{e} \underbrace{\frac{q(q-1)}{2^{\ell}}}_{e}$$

SO

$$qpprox 2^{\ell/2}\Rightarrow \mathsf{Adv}_E^{\mathrm{prf}}(A)pprox 1$$
 .

Conclusion: If $E : \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell/2}$ queries.

Depends on block length, not key length!

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

E.g., we can show that PRF-security implies security against key-recovery.

KR security vs PRF security

We have seen two possible metrics of security for a block cipher E

- (T)KR-security: It should be hard to find the target key, or a key consistent with input-output examples of a hidden target key.
- PRF-security: It should be hard to distinguish the input-output behavior of E_K from that of a random function.
- Fact: PRF-security of *E* implies
 - KR (and hence TKR) security of E
 - Many other security attributes of E

This is a validation of the choice of PRF security as our main metric.

Reduction Sketch

 We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
 - Exhaustive key-search.

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
 - Exhaustive key-search.
 - Birthday attack.

Exercise

We are given a PRF $F: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^k$ and want to build a PRF $G: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^{2k}$. Which of the following work?

- 1. Function G(K, x) $y_1 \leftarrow F(K, x)$; $y_2 \leftarrow F(K, \overline{x})$; Return $y_1 || y_2$
- 2. Function G(K, x) $y_1 \leftarrow F(K, x)$; $y_2 \leftarrow F(K, y_1)$; Return $y_1 || y_2$
- **3.** $\frac{\text{Function } G(K, x)}{L \leftarrow F(K, x) ; y_1} \leftarrow F(L, 0^k) ; y_2 \leftarrow F(L, 1^k) ; \text{Return } y_1 \| y_2$
- 4. Function G(K, x)[Your favorite code here]