Lecture 4 -
 Pseudorandom Functions

CS466 - Applied Cryptography Adam O'Neill

adapted from http://cseweb.ucsd.edu/~mihir/cse107/

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.
One idea is to list requirements:

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.
One idea is to list requirements:

- Key recovery is hard.

BAD APPROACIT!
 What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.
One idea is to list requirements:

- Key recovery is hard.
- xor of
- Message recovery is hard.

- But... What if it's easy to recover "most" of the input
- one bit of the input

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
like a human

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

- It can be happy.

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers
- ... but only small numbers.

Turing's Answer

A program is "intelligent" if its input/output behavior is indistinguishable from that of a human.

The Turing Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.
real-ideal paradigm
The Analogy

pseudo random function
new notion of security for a blockcipher

Output of Rand is output of Random Functions adversary

Game $^{\operatorname{Rand}}{ }_{R} \quad / /$ here R is a set procedure $\operatorname{Fn}(x)$ if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\varsigma}{\leftarrow} R$ return $\mathrm{T}[x]$

Adversary A

- Make queries to Fr
- Eventually halts with some output

We denote by

$$
\operatorname{Pr}\left[\operatorname{Rand}_{R}^{A} \Rightarrow d\right]
$$

the probability that A outputs d
$d=1$ "t think I'm itateracking w/ dene veal bloc cipher"

$R=\{0,1\}^{3}$
 Random Functions

${\text { Game } \operatorname{Rand}_{\{0,1\}^{3}}}^{\text {procedure } \operatorname{Fn}(x)}$adversary A if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \hookleftarrow^{\S}\{0,1\}^{3}$ return $\mathrm{T}[x]$	$y \leftarrow \mathbf{F n}(01)$ return $(y=000)$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=\frac{1}{8}
$$

Random Functions

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
procedure $\mathbf{F n}(x)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{3}$ return $\mathrm{T}[x]$

adversary A

$y_{1} \leftarrow \mathbf{F n}(00)$
$y_{2} \leftarrow \mathbf{F n}(11)$
return $\left(y_{1}=010 \wedge y_{2}=011\right)$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=\pi / 64
$$

uses independence

Random Functions

Game $^{\operatorname{Rand}}\{0,1\}^{3}$	adversary A
procedure $\mathbf{F n}(x)$	$y_{1} \leftarrow \mathbf{F n}(00)$
if $T[x]=\perp$ then $T[x] \leftarrow\{0,1\}^{3}$	$y_{2} \leftarrow \mathbf{F n}(11)$
return $T[x]$	return $\left(y_{1} \oplus y_{2}=101\right)$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \text { true }\right]=1 / 8
$$

Function Families

A family of functions $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ is a two-argument map. For $K \in \operatorname{Keys}(F)$ we let $F_{K}: \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ be defined by

$$
\forall x \in \operatorname{Dom}(F): F_{K}(x)=F(K, x)
$$

Examples:

- DES: Keys $=\{0,1\}^{56}, \mathrm{D}=\mathrm{R}=\{0,1\}^{64}$
- Any block cipher: $\mathrm{D}=\mathrm{R}$ and each F_{K} is a permutation
but not just block ciplass ie when the function induced by
a key is not a permutation

We want to codify the definition Intuition
 now...

Notion	Real object	Ideal object
PRF	Family of functions (eg. a block cipher)	Random function

F is a PRF if the input-output behavior of F_{K} looks to a tester like the input-output behavior of a random function.

Tester does not get the key K !
for block cipher

Associated to F, A are the probabilities

$$
\rightarrow \operatorname{Pr}[\operatorname{Rea}(\underset{F}{A} \neq 1] \rightarrow \operatorname{Pr}[\operatorname{Rand} \underset{\operatorname{Range}(F)}{A} \Rightarrow 1]
$$

that A outputs 1 in each world. The advantage of A is

Steps to show E isnot a PRF:
(1) give adversary A (A can call F_{n})
(2) Give lower bound on

$$
\operatorname{Pr}\left[\text { Varme-Real }_{\text {prove it. }}^{A} \Rightarrow 1\right]
$$

(2) Give upper bound on

$$
\operatorname{Pr}\left[\text { Game -Rand }_{E}^{A} \Rightarrow 1\right]
$$

prove it.

$$
\begin{aligned}
\Rightarrow & A d \cup E(A)= \\
& \operatorname{Pr}_{1}\left[\text { Game -Real } E_{E}^{A} \Rightarrow 1\right] \\
& -P_{r}\left[\text { Game - Rand }{ }_{E}^{A}=1\right]
\end{aligned}
$$

PRF advantage

A's output d	Intended meaning: I think I am in game
1	Real
1	Random
0	Random

$\operatorname{Adv}_{F}^{\operatorname{prf}}(A) \approx 1$ means A is doing well and F is not prf-secure.
$\overline{\mathbf{A d V}_{F}^{\mathrm{prI}}(A) \approx 0} 0$ means A is doing poorly and F resists the attack A is mounting.

Intuitive statement

PRF Security

bits of

Adversary advantage depends on its

- strategy
- resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if $\operatorname{Adv}_{F}^{\operatorname{prf}}(A)$ is "small" for $\operatorname{ALL} A$ that use "practical" amounts of resources.

Example: 80-bit security could mean that for all $n=1, \ldots, 80$ we have

$$
\operatorname{Adv}_{F}^{\text {prf }}(A) \leq 2_{F}^{-n}
$$

for any A with time and number of oracle queries at most 2^{80-n}
Insecurity: F is insecure (not a PRF) if we can specify an A using "few" resources that achieves "high" advantage.

To show a function family F is not a prof, we need to give an adversary A st.

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{Frf}} \operatorname{prf}^{\mathrm{F}}(A):= \\
& \operatorname{Pr}\left[R E A L_{F}^{A} \Rightarrow I\right]-\operatorname{PV}\left[\operatorname{RANP_{F}^{A}\Rightarrow 1]}\right. \\
& \text { is } \angle A R G E .
\end{aligned}
$$

Steps:
(1) Give psendocode for A.
(2) LOWER-BOUND
(3) UPPER-BOUND

$$
\begin{aligned}
& E:\left\{0,13^{k} \times\{0, \nexists\}^{e} \rightarrow\{0,1\}^{\ell}\right. \\
& E_{k}(x)=x \cdot \forall K_{1} x^{*}
\end{aligned}
$$

Claim, E is no a PRF Wants proot.
(1) $\frac{y \leftarrow F_{n}\left(O^{k}\right)}{\text { If } y=O^{l}}$ ret I adversor Else r
(2) $\frac{\operatorname{pr}\left[R E A L_{E}^{A} \Rightarrow 1\right]}{\forall K,}=1$ proot: If $F_{n}=E_{k}$ nen

$$
F_{n}\left(0^{l}\right)=\overline{E_{k}}\left(0^{l}\right)=0^{l}
$$

$$
\text { by def of } E \text {. }
$$

(3) $\left.\operatorname{Pr} \operatorname{Trand}_{E}^{A} \Rightarrow 1\right]=\frac{1}{2^{2}}$.
proof of 3 :
If $F_{n}=\$$ then

$$
\begin{aligned}
& \text { If } F_{n}=\mathbb{B} \text { then } \\
& \operatorname{Pr}\left[F_{n}\left(0^{l}\right)=0^{l}\right]=\frac{1}{2^{l}} \\
& \text { Fr implements } *
\end{aligned}
$$

Examples

P $\left\{\right.$ Define $F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ by $F_{K}(x)=K \oplus x$ for all $K, x \in\{0,1\}^{\ell}$. Is F a secure PRF?

```
Game RealF
procedure Initialize
K}\mp@subsup{\leftarrow}{\leftarrow}{{}{0,1}\mp@subsup{}}{}{\ell
procedure Fn(x)
Return K}\oplus
```

Game Rand $\{0,1\}^{\ell}$
procedure $/ \mathbf{F n}(x)$
 Return Tx]

So we are asking: Can we design a low-resource A so that

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Examples

Exploitable weakness of F : For all K we have

$$
\frac{\left(\begin{array}{l}
F_{K}\left(0^{\ell}\right) \oplus F_{K}\left(1^{\ell}\right) \\
\text { proof of }(l) \oplus\left(0^{\ell}\right)
\end{array}\left(K \not 1^{\ell}\right)=1^{\ell}\right)}{l}
$$

Examples

$$
e . g \cdot l=2
$$

Exploitable weakness of F : For all K we have

$$
\begin{aligned}
F_{K}\left(0^{\ell}\right) \oplus F_{K}\left(1^{\ell}\right)=\left(K / \oplus\left(0^{\ell}\right) \oplus\left(b_{k} \oplus 1^{\ell}\right)\right. & \left.=1^{\ell}\right) \\
10 & =11 \oplus 01 \\
& =10
\end{aligned}
$$

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.

adversary A

if $\mathbf{F n}\left(0^{\ell}\right) \oplus \oplus \mathcal{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

$$
c_{1}=F_{n}(01) \quad 01 \otimes k
$$

$F_{n}\left(c_{1}\right)$ is it ob?
KEY RECOVERY ATTACK
(1) Adversary A

$$
\begin{aligned}
& 1+F_{n}\left(0^{l}\right) \\
& \text { If }(C)=K_{n}\left(1^{l}\right) \\
& \text { return } 1 \\
& \text { Else return } 0 .
\end{aligned}
$$

(1) $\operatorname{Pr}\left[\right.$ REAL $\left.L_{F}^{A} \Rightarrow 1\right]=1$. by definition of F.
(3) $\operatorname{Pr}[\operatorname{RAND.A.\hat {k}} \Rightarrow 1]=2^{-l}$

Real game analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

> | ${\text { Game } \operatorname{Real}_{F}}^{\text {procedure Initialize }}$ |
| :--- |
| $K \hookleftarrow^{\S}\{0,1\}^{\ell}$ |
| procedure $\operatorname{Fn}(x)$ |
| Return $K \oplus x$ |

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=1
$$

Rand game analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
\rightarrow if $\mathbf{F n}\left(0^{\ell}\right) \mathbf{F}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]=\frac{1}{2^{\ell}}
$$

Putting It Together

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Then

$$
\begin{aligned}
\operatorname{Adv}_{F}^{\operatorname{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}^{2^{-\ell}} \\
& =1-2^{-\ell}
\end{aligned}
$$

and A is efficient.
Conclusion: F is not a secure PRF.

Blockciphers as PRFs

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher.

```
Game Reale
procedure Initialize
K}\mp@subsup{\leftarrow}{}{\S}{0,1\mp@subsup{}}{}{k
procedure Fn(x)
Return EK}(x
```

Can we design A so that

$$
\operatorname{Adv}_{E}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Generic Attacks on blockciphers as PRFs

Generic Attacks on blockciphers as PRFs

Exhaustive Key Search Attack

Generic Attacks on blockciphers as PRFs

Generic Attacks on blockciphers as PRFs

Birthday Attack

Birthday Attack

We have q people $1, \ldots, q$ with birthdays $y_{1}, \ldots, y_{q} \in\{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

$$
\begin{aligned}
C(365, q) & =\operatorname{Pr}[2 \text { or more persons have same birthday }] \\
& =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { are not all different }\right]
\end{aligned}
$$

- What is the value of $\langle\overline{C(365, q)}$?
- How large does q have to be before $C(365, q)$ is at least $1 / 2$?

Naive intuition:

- $C(365, q) \approx q / 365$
- q has to be around 365

The reality

- $C(365, q) \approx q^{2} / 365$
- q has to be only around 23
$C(n, q), s$
the probability of collision when
q values are chosen from domain of size n.

Birthday Collision Bounds

$C(365, q)$ is the probability that some two people have the same birthday in a room of q people with random birthdays

q	$C(365, q)$
15	0.253
18	0.347
20	0.411
21	0.444
23	0.507
25	0.569
27	0.627
30	0.706
35	0.814
40	0.891
50	0.970

Birthday problem

Pick $y_{1}, \ldots, y_{q} \stackrel{\S}{\leftarrow}\{1, \ldots, N\}$ and let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Birthday setting: $N=365$
Fact: $C(N, q) \approx \frac{q^{2}}{2 N}$

Birthday collision formula

Let $y_{1}, \ldots, y_{q} \leftarrow\{1, \ldots, N\}$. Then

$$
\begin{aligned}
1-C(N, q) & =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { all distinct }\right] \\
& =1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdots \cdots \cdot \frac{N-(q-1)}{N} \\
& =\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right)
\end{aligned}
$$

so

$$
C(N, q)=1-\frac{\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right)}{1-x} \leq e^{-x}
$$

Birthday bounds

Let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Fact: Then

$$
0.3 \cdot \frac{q(q-1)}{N} \leq C(N, q) \leq 0.5 \cdot \frac{q(q-1)}{N}
$$

where the lower bound holds for $1 \leq q \leq \sqrt{2 N}$.

Birthday attack adversary

Defining property of a block cipher: E_{K} is a permutation for every K
So if x_{1}, \ldots, x_{q} are distinct then

- $\mathbf{F n}=E_{K} \Rightarrow \mathbf{F n}\left(x_{1}\right), \ldots, \boldsymbol{F n}\left(x_{q}\right)$ distinct
- Fin random $\Rightarrow \boldsymbol{F n}\left(x_{1}\right), \ldots, \boldsymbol{F n}\left(x_{q}\right)$ not necessarily distinct

This leads to the following attack:
adversary A /belay attack adversary
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct
for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$
$\frac{\text { if } y_{1}, \ldots, x_{q} \text { are all distinct then return } 1}{\text { else return } 0}$
What's the advantage of A ?

Real game analysis

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

```
Game Reale
procedure Initialize
K}\mp@subsup{\leftarrow}{\leftarrow}{{}{0,1\mp@subsup{}}{}{k
procedure Fn(x)
Return EK
```

adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, \boldsymbol{q}$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct
then return 1 else return 0

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]=1
$$

Since E_{k} is a permutation
for every k

Rand game analysis

Let $E:\{0,1\}^{K} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

$$
\begin{aligned}
& {\text { Game } \operatorname{Rand}_{\{0,1\}^{\ell}}}_{\text {procedure } \operatorname{Fn}(x)} \\
& \text { if } \mathrm{T}[x]=\perp \text { then } \mathrm{T}[x] \leftarrow^{s}\{0,1\}^{\ell} \\
& \text { Return } \mathrm{T}[x]
\end{aligned}
$$

adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \boldsymbol{\operatorname { F n }}\left(x_{i}\right)$ if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

Then

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { all distinct }\right]=1-C\left(2^{\ell}, q\right)
$$

because y_{1}, \ldots, y_{q} are randomly chosen from $\{0,1\}^{\ell}$.

$C(n, q) \approx \frac{q(q-1)}{2 x}$ Birthday attack cônclusion

$E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ a block cipher
adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

$$
\begin{aligned}
\operatorname{Adv}_{E}^{\operatorname{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}^{1-C\left(2^{\ell}, q\right)} \\
& =C\left(2^{\ell}, q\right) \geq 0 . \frac{\overbrace{\frac{q(q-1)}{2^{\ell}}}^{c}}{}
\end{aligned}
$$

SO

$$
q \approx 2^{\ell / 2} \Rightarrow \mathbf{A d v}_{E}^{\mathrm{prf}}(A) \approx 1
$$

Conclusion: If $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell / 2}$ queries.

Depends on block length, not key length!

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.
E.g., we can show that PRF-security implies security against key-recovery.

KR security vs PRF security

We have seen two possible metrics of security for a block cipher E

- (T)KR-security: It should be hard to find the target key, or a key consistent with input-output examples of a hidden target key.
- PRF-security: It should be hard to distinguish the input-output behavior of E_{K} from that of a random function.

Fact: PRF-security of E implies

- KR (and hence TKR) security of E
- Many other security attributes of E

This is a validation of the choice of PRF security as our main metric.

Reduction Sketch

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
- Exhaustive key-search.

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
- Exhaustive key-search.
- Birthday attack.

Exercise

We are given a PRF F: $\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ and want to build a PRF $G:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}^{2 k}$. Which of the following work?

1. Function $G(K, x)$
$y_{1} \leftarrow F(K, x) ; y_{2} \leftarrow F(K, \bar{x}) ;$ Return $y_{1} \| y_{2}$
2. Function $G(K, x)$
$y_{1} \leftarrow F(K, x) ; y_{2} \leftarrow F\left(K, y_{1}\right)$; Return $y_{1} \| y_{2}$
3. Function $G(K, x)$
$\overline{L \leftarrow F(K, x) ; y_{1}} \leftarrow F\left(L, 0^{k}\right) ; y_{2} \leftarrow F\left(L, 1^{k}\right)$; Return $y_{1} \| y_{2}$
4. Function $G(K, x)$
[Your favorite code here]
