Lecture 2 —
Blockciphers
and key
recovery
security

CS-466 Applied

Cryptography
Adam O’Neill

Perfect security => keys as long as
messages.

Setting
the Stage

Perfect security => keys as long as
messages.

Sett| ng From now on we move to the setting
of computationally-bounded

the Stage adversaries.

Perfect security => keys as long as
messages.

Set'“ ng From now on we move to the setting
of computationally-bounded

the Stage adversaries.

Today: first lower-level primitive,
blockciphers

Notation

{0,1}" is the set of n-bit strings and {0, 1}* is the set of all strings of
finite length. By £ we denote the empty string.

If S is a set then |S| denotes its size. Example: [{0,1}?| = 4.
If x is a string then |x| denotes its length. Example: [0100| = 4.
If m>1is an integer thenlet Z,, = {0,1,...,m—1}.

By x & S we denote picking an element at random from set S and
assigning it to x. Thus Pr[x = s] =1/|S| for every s € §S.

Functions

Let n > 1 be an integer. Let Xi,..., X, and Y be (non-empty) sets.

By f: X{ x--- x X, —= Y we denote that f is a function that
e Takes inputs x1,...,x,, Where x; € X; for1 </ <n
e and returns an output y = f(x1,...,x,) € Y.

We call n the number of inputs (or arguments) of f. We call
X1 X -+ xX X, the domain of f and Y the range of f.

Example: Define f: Z, x Z3 — Z3 by f(Xl,XQ) = (Xl —I—X2) mod 3. This
is a function with n = 2 inputs, domain Z, X Z3 and range Z3.

Permutations

Suppose f: X — Y is a function with one argument. We say that it is a
permutation if

e X =Y, meaning its domain and range are the same set.

e There is an inverse function f~1: Y — X such that f~1(f(x)) = x
for all x € X.

This means f must be one-to-one and onto: for every y € Y there is a
unique x € X such that f(x) =y.

Example

Consider the following two functions f: {0,1}2 — {0, 1}2, where

X =Y ={0,1}2

00

01

10

11

f(x)

01

11

00

10

X

00

01

10

11

A permutation

f(x)

01

11

11

10

00

01

10

11

F=1(x)

10

00

11

01

lts inverse

Not a permutation

Function families

A family of functions (also called a function family) is a two-input function
F : Keys x D — R. For K € Keys we let Fx : D — R be defined by
Fk(x) = F(K,x) for all x € D.

o The set Keys is called the key space. If Keys = {0,1}% we call k the
key length.

o The set D is called the input space. If D = {0,1}* we call £ the input
length.

o The set R is called the output space or range. If R = {0, 1}t we call L
the output length.

Example: Define F: Zy, x Z3 — Z3 by F(K,x) = (K - x) mod 3.
e This is a family of functions with domain Z> x Z3 and range Zs.
o If K=1then Fx: Z3 — Z3 is given by Fx(x) = x mod 3.

What is a blockcipher?

Let E: Keys x D — R be a family of functions. We say that E is a block
cipher if

e R =D, meaning the input and output spaces are the same set.

e Eix: D — D is a permutation for every key K € Keys, meaning has an
inverse E,.*: D — D such that E*(Ex(x)) = x for all x € D.

We let E~1: Keys x D — D, defined by E71(K,y) = E.*(y), be the
inverse block cipher to E.

In practice we want that E, E~! are efficiently computable.

If Keys = {0,1}* then k is the key length as before. If D = {0, 1} we call
¢ the block length.

Blockcipher Examples

Block cipher E: {0,1}? x {0,1}? — {0,1}2 (left), where the table entry
corresponding to the key in row K and input in column x is Ex(x). Its
inverse E-1: {0,1}% x {0,1}2 — {0,1}? (right).

00 | 01|10 11 00 | 01|10 11
00 || 11 | 00 | 10 | O1 00 || 01 | 11 | 10 | OO
01 11 | 10 | 01 | OO 01| 11 | 10 | 01 | OO
10 | 10 | 11 | 00 | O1 10 | 10 | 11 | 00 | O1
11 | 11 | 00 | 10 | O1 11 (|01 |11 |10 00

Row 01 of E equals Row 01 of E~1, meaning Eo; = E;;"

e Rows have no repeated entries, for both E and E~1

Column 00 of E has repeated entries, that's ok
Rows 00 and 11 of E are the same, that's ok

Other examples?

.,)= kox (o)

T;\A(X\ = (‘MHHF\

Exercise

Let E: Keys x D — D be a block cipher. Is E a permutation?

e YES
e NO

e QUESTION'DOESN'T MAKE SENSE

WHO CARES?

fPerind ‘abon hoesSn’ ¥
L\A/ WO,MQUW"_

_s: wun th‘oxr\

Another Exercise

Above we had given the following example of a family of functions:
F:Z, x Z3 — Z3 defined by F(K,x) = (K - x) mod 3.

Question: Is F a block cipher? Why or why not?

Blockcipher Usage

Let E: {0,1}* x {0,1}* — {0,1}¢ be a block cipher. It is considered
public. In typical usage

o K< {0,1}* is known to parties S, R, but not given to adversary A.
e S, R use Ex for encryption

Leads to security requirements like: Hard to get K from vy, y»....; Hard to
get x; from y;; ...

Shannon’s Design Criterion (Informal)

Shannon’s Design Criterion (Informal)

e Confusion: Each bit of the output should
depend on many bits of the input

Shannon’s Design Criterion (Informal)

e Confusion: Each bit of the output should
depend on many bits of the input

* Diffusion: Changing one bit of the input should
“re-randomize” the entire output (avalanche
effect)

Shannon’s Design Criterion (Informal)

e Confusion: Each bit of the output should
depend on many bits of the input

* Diffusion: Changing one bit of the input should
“re-randomize” the entire output (avalanche
effect)

* Not really solved (for many input-outputs) until
much later: Data Encryption Standard (DES)

History of DES

1972 — NBS (now NIST) asked for a block cipher for standardization
1974 — IBM designs Lucifer
Lucifer eventually evolved into DES.

Widely adopted as a standard including by ANSI and American Bankers
association

Used in ATM machines
Replaced (by AES) in 2001.

DES Parameters

Key Length k = 56
Block length / = 64
So,
DES: {0,1}°° x {0,1}%* — {0,1}%

DES™: {0,1}°° x {0,1}%* — {0,1}

DES Construction

function DESk(M) // |K| =56 and |M| = 64
(Ki,...,Kis) < KeySchedule(K) // |Ki|=48for1<i<16
M <« IP(M)
Parse M as Ly || R0 // |Lo| = |Ro|] = 32
for i =1 1to 16 do
Li+ Ri—1; Ri+ f(Ki,Ri—1)® Li_1
C « /P_l(L16 H R16)
return C

Round i: Invertible given Ki:

Inverse

function DESk(M) // |K| =56 and |M| = 64
(Ki,...,Kie) < KeySchedule(K) // |Ki| =48 for1<i<16
M <« IP(M)
Parse M as Lo || Ry // |Lo| = |Ro| = 32
for i =1 to 16 do
Li+ Ri_1; Ri+ f(Ki,Ri—1) & Li_1
C « IP_l(Llﬁ || R16)
return C

function DES, ' (C) // |K| =56 and |M| = 64
(Ki,...,Kie) < KeySchedule(K) // |Ki|=48for1<i<16
C «+ IP(C)
Parse C as Li¢ || Ri6
for i = 16 downto 1 do
Ri—1+ Li; L1+ f(Ki,Ri-1) @ R
M« IP7Y(Lo || Ro)
return M

Round function

function f(J,R) // |J| =48 and |R| = 32
R+ E(R); R+ R®J
Parse Ras Ry || Ra || Rs || Ra || Rs || Re [| Rz [| Rs // IRil =6
fori=1,...,8do
R; < Si(R;) // Each S-box returns 4 bits
Re—FRi|| R Rsl|l RallRs || Re || Rr [| Re // IR =32 bits
R <+ P(R) ; return R

Key-Recovery Attacks

Let E: Keys x D — R be a block cipher known to the adversary A.

— Sender Alice and receiver Bob share a target key K € Keys.

— Alice encrypts M; to get C; = Ex(M;) for 1 < i < g, and transmits
C1,...,C4 to Bob

— The adversary gets (,..., (g and also knows My, ..., M,

— Now the adversary wants to figure out K so that it can decrypt any
future ciphertext C to recover M = E*(C).

Question: Why do we assume A knows My, ..., M,?

Answer: Reasons include a posteriori revelation of data, a priori
knowledge of context, and just being conservative!

Security Metrics

We consider two measures (metrics) for how well the adversary does at
this key recovery task:

o Target key recovery (TKR)
e Consistent key recovery (KR)
In each case the definition involves a game and an advantage.

The definitions will allow E to be any family of functions, not just a block
cipher.

The definitions allow A to pick, not just know, My, ..., M,. This is called
a chosen-plaintext attack.

Target Key Recovery Game

procedure Fn(M)
Game TKRg Return E(K, M)
procedure Initialize o
K &S Kevs procedure Finalize(K’)
Y Return (K = K’)

Definition: Advi*(A) = Pr[TKRZ = true].

First Initialize executes, selecting target key K < Keys, but not giving
it to A.

Now A can call (query) Fn on any input M € D of its choice to get
back C = Ex(M). It can make as many queries as it wants.

Eventually A will halt with an output K’ which is automatically viewed
as the input to Finalize

The game returns whatever Finalize returns

The tkr advantage of A is the probability that the game returns true

Consistent Keys

Def: Let E: Keys x D — R be a family of functions. We say that key
K’ € Keys is consistent with (My, C1), ..., (Mg, Cq) if E(K', M;) = C; for
all 1 <7 <q.

Example: For E: {0,1}? x {0,1}? — {0, 1} defined by

00 |01 |10 |11
00| 11|00 | 10 |01
01 11|10 | 01| Q0

The entry in row K, column M

10 | 10 | 11| 00 | 01 s E(K, M).
11 | 11 | 00| 10 | 01

o Key 00 is consistent with (11,01)

o Key 10 is consistent with (11,01)

e Key 00 is consistent with (01,00),(11,01)

o Key 11 is consistent with (01,00), (11,01)

Consistent Key Recovery

Let E: Keys x D — R be a family of functions, and A an adversary.

Game KREg

procedure Initialize
K < Keys; i < 0

procedure Finalize(K’)
win <— true
For j=1,...,ido

procedure Fn(M) If E(K’, M;) # C; then win « false

i i+1; Mj« M If M; € {My,...,M;_1} then win < false
G < E(K, M;) Return win

Return C;

Definition: AdviF(A) = Pr[KR2 = true].

The game returns true if (1) The key K’ returned by the adversary is
consistent with (My, C1), ..., (Mg, Cy), and (2) My, ..., M, are distinct.

A is a g-query adversary if it makes g distinct queries to its Fn oracle.

A relation

Fact: Suppose that, in game KRg, adversary A makes queries My, ...,
M, to Fn, thereby defining Ci,..., (4. Then the target key K is
consistent with (Mq, Gy), ..., (Mg, Cy).

Proposition: Let E be a family of functions. Let A be any adversary all
of whose Fn queries are distinct. Then

AdviE(A) > AdviET(A) .

Why? If the K’ that A returns equals the target key K, then, by the Fact,
the input-output examples (My, C1), ..., (Mg, Cq) will of course be
consistent with K.

Exhaustive Key Search

Let E: Keys x D — R be a function family with Keys = {T1,..., Ty} and
D={x1,...,x4}. Let 1 < g < d be a parameter.

adversary Ay,
For j=1,...,q do M; + x;; C; < Fn(M;)
Fori=1,...,N do

if (Vje{l,...,q} : E(T;, M;) = C;) then return T;

Question: What is AdvZ (Aes)?

gs

Exhaustive Key Search

Let E: Keys x D — R be a function family with Keys = {T7,..., Ty} and
D={x,...,xq}. Let 1 < g < d be a parameter.

adversary Acks
For j=1,...,q do M; + x;; C; + Fn(M;)
Fori=1,...,N do

if (Vje{l,...,q} : E(T;,M;) = C) then return T;

Question: What is AdviT(Ag)?

-

14

Exhaustive Key Search

Let E: Keys x D — R be a function family with Keys = {T7,..., Ty} and
D={x,...,xq}. Let 1 < g < d be a parameter.

adversary Acks
For j=1,...,q do M; + x;; C; + Fn(M;)
Fori=1,...,N do

if (Vje{l,...,q} : E(T;,M;) = C) then return T;

Question: What is AdviT(Ag)?

Answer: Hard to say! Say K = T,, but there is a i < m such that
E(T;,M;) = C; for 1 <j < q. Then T;, rather than K, is returned.

In practice if £: {0,1}% x {0,1}* — {0,1}* is a “real” block cipher and
g > k/l, we expect that Adv¥ (A, is close to 1 because K is likely the
only key consistent with the input-output examples.

Exhaustive Key-Search on DES

DES can be computed at 1.6 Gbits/sec in hardware.
DES plaintext = 64 bits

Chip can perform (1.6 x 10°)/64 = 2.5 x 10" DES computations per
second

Expect Aqs (g = 1) to succeed in 2°° DES computations, so it takes time
255

7 % 107 ~ 1.4 x 10° seconds

~ 45 years!

Key Complementation = 22.5 years

But this is prohibitive. Does this mean DES is secure?

@@ My C o,\r\rﬂcii

Differential & Linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to “look
inside” DES and find /exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage
close to one and running time smaller than 2°® DES computations:

Attack when | g, running time

Differential cryptanalysis | 1992 pall

244

Linear cryptanalysis 1993

VLo N Je e AC A \rmcf/’

An observation

Observation: The E computations can be performed in parallel!

In 1993, Wiener designed a dedicated DES-cracking machine:
e $1 million
e 57 chips, each with many, many DES processors

e Finds key in 3.5 hours

RSA DES Challenges

K < {0,116 ; Y « DES(K, X) ; Publish Y on website.

Reward for recovering X

Challenge | Post Date | Reward Result
I 1997 $10,000 Distributed.Net: 4
months
[l 1998 Depends how | Distributed.Net: 41 days.
fast you find | EFF: 56 hours
key
11 1998 As above < 28 hours

DES Summary

K < {0,1}%0 ; Y « DES(K, X) ; Publish Y on website.
Reward for recovering X

Challenge | Post Date | Reward Result
I 1997 $10,000 Distributed.Net: 4
months

[l 1998 Depends how | Distributed.Net: 41 days.
fast you find | EFF: 56 hours
key

[1998 As above < 28 hours

Increasing Key-Length

Can one use DES to desigh a new blockcipher
with longer effective key-length?

2DES

Block cipher 2DES : {0, 1} x {0,11%% — {0,1}%* is defined by

2DESk, x,(M) = DESk, (DESk, (M))

2DES

Block cipher 2DES : {0,1}12 x {0,1}°* — {0,11°* is defined by

2DESk, x,(M) = DESk, (DESk, (M))

e Exhaustive key search takes 2112 DES computations, which is too
much even for machines

e Resistant to differential and linear cryptanalysis.

Meet-in-the-Middle Attack

Suppose K1 K5 is a target 2DES key and adversary has M, C such that
C = 2DESk, k,(M) = DESk,(DESk,(M))

Then
DES, }(C) = DESk, (M)

Meet-in-the-Middle Attack

Suppose DES;;(C) = DESK,(M) and Ti,..., Ty are all possible DES
keys, where N = 256

T1 | DES(T1, M) DES'(T1,C) | T

Ko —| T; | DES(T, M) | &€ | DES (T, 0 | T | « K,

Tn | DES(Ty, M) DES ' (Tn,C) | Tw
Table [Table R
Attack idea: \y 1 ph y;l'co/[(ccy f-uwg\/tn

e Build L,R tables
e Find i,/ s.t. L[i] = R[j]
e Guess that K1 Ko = T;T;

L 7ebfecHve \

112 7 1 "
L\ (;(do_f\/ EK«S o Dx ? ’\)ES L(F

Dest atbacle: Zﬁ‘ X RES v P g URALS

Translating to Pseudocode

Let 71,..., Toss denote an enumeration of DES keys.

adversary AniinM

/\/Il <— 064; Cl < Fl‘l(/\/ll)

for i=1,...,2% do L[i] +~ DES(T;, M1)
for j =1,...,2% do R[j] +~ DES™}(T;, 1)
S« {(0J) : Lil=RU]}

Pick some (/,r) € S and return T, || T,

Attack takes about 2°7 DES/DES ™! computations and has
Advihes(Avinm) = 1.

This uses g = 1 and is unlikely to return the target key. For that one
should extend the attack to a larger value of q.

3DES

Block ciphers
3DES3 : {0,1}1%8 x {0,1}%* — {0,1}%
3DES2: {0,1}112 x {0,1}%* — {0,1}%
are defined by
3DES3k, | k, || ks(M) = DESk,(DES, (DESk,(M))
3DES2y, || k,(M) = DES,(DES, (DESk,(M))

Meet-in-the-middle attack on 3DES3 reduces its “effective” key length to
112.

Better Attacks?

Cryptanalysis of the Full DES and the Full
3DES Using a New Linear Property

Tomer Ashur! and Raluca Posteucal

imec-COSIC, KU Leuven, Leuven, Belgium
[tomer.ashur, raluca.posteuca]@esat.kuleuven.be

Abstract. In this paper we extend the work presented by Ashur and
Posteuca in BalkanCryptSec 2018, by designing 0-correlation key-dependent
linear trails covering more than one round of DES. First, we design a 2-
round 0-correlation key-dependent linear trail which we then connect to
Matsui’s original trail in order to obtain a linear approximation cover-
ing the full DES and 3DES. We show how this approximation can be
used for a key recovery attack against both ciphers. To the best of our
knowledge, this paper is the first to use this kind of property to attack a
symmetric-key algorithm, and our linear attack against 3DES is the first
statistical attack against this cipher.

Keywords: linear cryptanalysis, DES, 3DES, poisonous hull

Better Attacks?

Code-Based Game-Playing Proofs
and the Security of Triple Encryption

MIHIR BELLARE * PHILLIP ROGAWAY T

November 27, 2008

(Draft 3.0)

Abstract

The game-playing technique is a powerful tool for analyzing cryptographic constructions.
We illustrate this by using games as the central tool for proving security of three-key triple-
encryption, a long-standing open problem. Our result, which is in the ideal-cipher model,
demonstrates that for DES parameters (56-bit keys and 64-bit plaintexts) an adversary’s maxi-
mal advantage is small until it asks about 27® queries. Beyond this application, we develop the
foundations for game playing, formalizing a general framework for game-playing proofs and dis-
cussing techniques used within such proofs. To further exercise the game-playing framework we
show how to use games to get simple proofs for the PRP/PRF Switching Lemma, the security
of the basic CBC MAC, and the chosen-plaintext-attack security of OAEP.

Keywords: Cryptographic analysis techniques, games, provable security, triple encryption.

DESX

DESXKK1K2(M) = Ky P DESK(Kl D M)

o Key length =56 4 64 + 64 = 184
o “effective” key length = 120 due to a 2?0 time meet-in-middle attack

Increasing Block-Length?

We will later see that we would also like a
blockcipher with

Increasing Block-Length?

We will later see that we would also like a
blockcipher with

Increasing Block-Length?

We will later see that we would also like a
blockcipher with

This seems much harder to do using DES.

Increasing Block-Length?

We will later see that we would also like a
blockcipher with

This seems much harder to do using DES.

Increasing Block-Length?

We will later see that we would also like a
blockcipher with

This seems much harder to do using DES.

Motivated the search for a new blockcipher.

AES History

1998: NIST announces competition for a new block cipher

e key length 128
e block length 128

e faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6,
Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC,
Safer+, Deal

2001: NIST selects Rijndael to be AES.

AES Construction

function AESk (M)

(KQ, cee KlO) — expand(K)

s— M KO

for r =1 to 10 do
s <+ S(s)
s < shift-rows(s)
if r <9 then s <— mix-cols(s) fi
s+ sPK,

end for

return s

e Fewer tables than DES

e Finite field operations

AES Construction

' . \4\\/\‘ URg PLAINTEXT KEY
\ K
M 0
5'\/\\05 V\\M L
h@ [TT] [T T [T T [T 1]
\
\ \(\/\[0 LTTd [T 11 [T1] [T 1]
N P
LITT] [TT] [T [TT]
CVS ()g K
[jthk) S\ [TTT IIIT IIIT 1101
ro%“d s s, || s, S,
[T T [T 1] [T 1] [T T
P
LIT] [T 1] [TT1] [T 1]
fans K
NP
[TT1 [T 11 [TT1 [TT11
LTI [TT7 [TT7 [TT7]
e K
N

CIPHERTEXT

AES Security

Best known key-recovery attack [BoKhRell] takes 2120-1 time, which is
only marginally better than the 2128 time of EKS.

There are attacks on reduced-round versions of AES as well as on its
sibling algorithms AES192, AES256. Many of these are “related-key”
attacks. There are also effective side-channel attacks on AES such as
“cache-timing” attacks [Be05,0sShTr05].

Exercise

Define F: {0,1}2°¢ x {0,1}2°¢ — {0,1}2°¢ by

Alg FK1||K2 (Xl HX2)

y1 < AES_l(Kl,Xl b X2); Vo <— AES(KQ,X_Q)
Return yi |y

for all 128-bit strings K1, K>, x1, X2, where X denotes the bitwise
complement of x. (For example 01 = 10.) Let Tags denote the time for
one computation of AES or AES™!. Below, running times are worst-case
and should be functions of Tags.

Prove that F is a blockcipher.

What is the running time of a 4-query exhaustive key-search attack
on F?

Give a 4-query key-recovery attack in the form of an adversary A
specified in pseudocode, achieving Advl,f—r(A) = 1 and having running
time O(21?8 . Tags) where the big-oh hides some small constant.

|s Key-Recovery Security Enough?

A |

[on §rder it

T ety bl clecplte O

V-quey B S - 235C 4T K 2L Prquencs

6,14, ¥, (T x") - Ek,(ﬁ)
W eelkuess . doesa'} | EVL()(Z\

WNse Shanne's eribvia . o

L.O/X' M\)...]K 2t b{ G\N\

CV\UWA}:\“-»-\ ofF M \LL»’S.

Adversary A qur PP

/(’V» e ?a/‘ol.k-ﬂ,vu(
Fo" j‘: b lu do- o,
Tyt (i) W
é’,mbt& K¥— K¢

\%,f\:’w It Ui~ E]LJ‘ (X.'.z.) “i"_.
i/}, Vs oP ,4“" \Z‘Jr
0t Pal KFNES

9 T R quertes

Best (& odiwess T o
el

