COMPSCI 466: Homework 4

Problem 1. (50 points.) Define key-generation algorithm \mathcal{K} to output a random 128 -bit key K and define encryption algorithm \mathcal{E} by

Algorithm $\mathcal{E}_{K}(M)$:
$C[0] \leftarrow\{0,1\}^{128}$
For $i=1$ to m do:
$W[i] \leftarrow C[0]+i \bmod 2^{128}$
$C[i] \leftarrow \operatorname{AES}_{K}(M[i] \oplus W[i])$
$C \leftarrow C[0]\|\ldots\| C[m]$
Return C
Above we parse M as consisting of m blocks of 128 -bits each, and ' $W[i] \leftarrow C[0]+i \bmod 2^{128}$, denotes regarding $C[0]$ and i as encoding 128-bit integers, taking their sum modulo 2^{128}, and then encoding the result as another 128 -bit string $W[i]$.
(Part A-10 points.) Define a decryption algorithm \mathcal{D} such that $\mathrm{SE}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a symmetric-key encryption scheme (i.e., satisfying the correctness condition we gave in class).
(Part B - 40 points.) Show that SE is not IND-CPA secure by giving a practical adversary A such that its advantage $\operatorname{Adv}_{\mathrm{SE}}^{\mathrm{ind}-\mathrm{cpa}}(A)$ is high. As usual, your adversary should be given in concise pseudocode and you should formally analyze its advantage and resource usage. NB: Your adversary should break the encryption scheme without breaking the underlying blockcipher as a PRF (no birthday attack or exhaustive key search). Such attacks against the underlying blockcipher are not practical and will not receive any points.

