Lecture 8 – Public-Key Encryption and Computational Number Theory

COSC-466 Applied Cryptography Adam O'Neill

Adapted from

http://cseweb.ucsd.edu/~mihir/cse107/

Recall Symmetric-Key Crypto

• In this setting, if Alice wants to communicate secure with Bob they need a shared key KAB.

Recall Symmetric-Key Crypto

- In this setting, if Alice wants to communicate secure with Bob they need a shared key KAB.
- If Alice wants to also communicate with Charlie they need a shared key *K*_{AC}.

Recall Symmetric-Key Crypto

- In this setting, if Alice wants to communicate secure with Bob they need a shared key KAB.
- If Alice wants to also communicate with Charlie they need a shared key *K*_{AC}.
- If Alice generates *K_{AB}* and *K_{AC}* they must be communicated to Bob and Charlie over secure channels. How can this be done?

Public-Key Crypto

 Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.

Public-Key Crypto

- Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.
- Anyone can use Alice's public key to send her a private message.

Public-Key Crypto

- Alice has a secret key that is shared with nobody, and a public key that is shared with everybody.
- Anyone can use Alice's public key to send her a private message.
- Public key is like a phone number: Anyone can look it up in a phone book.

Syntax and Correctness of PKE

A public-key (or asymmetric) encryption scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms, where

Intended Usage

Code Obfuscation Perspective

IND-CPA

Let $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a PKE scheme and \mathcal{A} an adversary.

 $\mathsf{Game}\ \mathrm{Left}_{\mathcal{AE}}$

procedure Initialize $(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{K}$; return pkprocedure $LR(M_0, M_1)$ Return $C \stackrel{\$}{\leftarrow} \mathcal{E}_{pk}(M_0)$ Game Right_{AE} **procedure Initialize** $(pk, sk) \stackrel{\$}{\leftarrow} \mathcal{K}$; return pk **procedure LR** (M_0, M_1) Return $C \stackrel{\$}{\leftarrow} \mathcal{E}_{pk}(M_1)$

Associated to \mathcal{AE}, A are the probabilities

$$\mathsf{Pr}\left[\mathrm{Left}_{\mathcal{AE}}^{\mathcal{A}} \Rightarrow 1\right] \qquad \mathsf{Pr}\left[\mathrm{Right}_{\mathcal{AE}}^{\mathcal{A}} \Rightarrow 1\right]$$

that A outputs 1 in each world. The ind-cpa advantage of A is $\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{ind-cpa}}(A) = \Pr\left[\mathrm{Right}_{\mathcal{AE}}^{\mathcal{A}} \Rightarrow 1\right] - \Pr\left[\mathrm{Left}_{\mathcal{AE}}^{\mathcal{A}} \Rightarrow 1\right]$

A More Basic Problem: Key Exchange

How to Build Key Exchange?

• We need to take a trip into computational number theory....

Hardy, in his essay A Mathematician's Apology writes:

"Both Gauss and lesser mathematicians may be justified in rejoicing that there is one such science [number theory] at any rate, and that their own, whose very remoteness from ordinary human activities should keep it gentle and clean"

Notation

 \mathbb{Z}^{t}

- $Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ Z
- $N = \{0, 1, 2, \ldots\}$

 $\mathbf{Z}_+ = \{1, 2, 3, \ldots\}$

For $a, N \in \mathbb{Z}$ let gcd(a, N) be the largest $d \in \mathbb{Z}_+$ such that d divides both a and N.

Example: gcd(30, 70) = 10.

Integers mod N

For $N \in \mathbf{Z}_+$, let

•
$$\mathbf{Z}_N = \{0, 1, \dots, N-1\}$$

• $\mathbf{Z}_N^* = \{a \in \mathbf{Z}_N : \operatorname{gcd}(a, N) = 1\}$

•
$$\varphi(N) = |\mathsf{Z}_N^*|$$

l(N) = # relatively prime to N from 1 to N-1

Division and MOD

Refer to q as the quotient and r as the remainder. Then

$$a \mod N = r \in \mathbf{Z}_N$$

is the remainder when a is divided by N.

Groups

Let G be a non-empty set, and let \cdot be a binary operation on G. This means that for every two points $a, b \in G$, a value $a \cdot b$ is defined.

Example: $G = \mathbf{Z}_{12}^*$ and "·" is multiplication modulo 12, meaning $a \cdot b = ab \mod 12$

Def: We say that *G* is a *group* if it has four properties called closure, associativity, identity and inverse that we present next.

Fact: If $N \in \mathbb{Z}_+$ then $G = \mathbb{Z}_N^*$ with $a \cdot b = ab \mod N$ is a group.

Groups: Closure

Closure: For every $a, b \in G$ we have $a \cdot b$ is also in G.

Example: $G = Z_{12}$ with $a \cdot b = ab$ does not have closure because $7 \cdot 5 = 35 \notin Z_{12}$.

Fact: If $N \in \mathbb{Z}_+$ then $G = \mathbb{Z}_N^*$ with $a \cdot b = ab \mod N$ satisfies closure, meaning

gcd(a, N) = gcd(b, N) = 1 implies $gcd(ab \mod N, N) = 1$

Example: Let $G = \mathbf{Z}_{12}^* = \{1, 5, 7, 11\}$. Then

 $5 \cdot 7 \mod 12 = 35 \mod 12 = 11 \in \mathbf{Z}_{12}^*$

Exercise: Prove the above Fact.

Groups: Associativity

Associativity: For every $a, b, c \in G$ we have $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. **Fact:** If $N \in \mathbb{Z}_+$ then $G = \mathbb{Z}_N^*$ with $a \cdot b = ab \mod N$ satisfies associativity, meaning

 $((ab \mod N)c) \mod N = (a(bc \mod N)) \mod N$

Example:

 $(5 \cdot 7 \mod 12) \cdot 11 \mod 12 = (35 \mod 12) \cdot 11 \mod 12$ = $11 \cdot 11 \mod 12 = 1$ $5 \cdot (7 \cdot 11 \mod 12) \mod 12 = 5 \cdot (77 \mod 12) \mod 12$ = $5 \cdot 5 \mod 12 = 1$

Exercise: Given an example of a set G and a natural operation $a, b \mapsto a \cdot b$ on G that satisfies closure but *not* associativity.

م، ہے ہے۔ Groups: Identity Element

Identity element: There exists an element $\mathbf{1} \in G$ such that $a \cdot \mathbf{1} = \mathbf{1} \cdot a = a$ for all $a \in G$.

Fact: If $N \in \mathbb{Z}_+$ and $G = \mathbb{Z}_N^*$ with $a \cdot b = ab \mod N$ then 1 is the identity element because $a \cdot 1 \mod N = 1 \cdot a \mod N = a$ for all a.

Groups: Inverses

Inverses: For every $a \in G$ there exists a unique $b \in G$ such that $a \cdot b = b \cdot a = \mathbf{1}$.

This b is called the inverse of a and is denoted a^{-1} if G is understood.

Fact: If $N \in \mathbb{Z}_+$ and $G = \mathbb{Z}_N^*$ with $a \cdot b = ab \mod N$ then $\forall a \in \mathbb{Z}_N^*$ $\exists b \in \mathbb{Z}_N^*$ such that $a \cdot b \mod N = 1$.

We denote this unique inverse *b* by $a^{-1} \mod N$.

Example: $5^{-1} \mod 12$ is the $b \in \mathbf{Z}_{12}^*$ satisfying $5b \mod 12 = 1$, so b = 1

Computational Shortcuts

What is $5 \cdot 8 \cdot 10 \cdot 16 \mod 21$?

Slow way: First compute

 $5 \cdot 8 \cdot 10 \cdot 16 = 40 \cdot 10 \cdot 16 = 400 \cdot 16 = 6400$

and then compute 6400 mod 21 = 16

Fast way:

5-8 mod 21 = 16 16.10 mod 21....

Exponentiation

Let G be a group and $a \in G$. We let $a^0 = \mathbf{1}$ be the identity element and for $n \ge 1$, we let

$$a^n = \underbrace{a \cdot a \cdots a}_n.$$

Also we let

$$a^{-n} = \underbrace{a^{-1} \cdot a^{-1} \cdots a^{-1}}_{n}.$$

This ensures that for all $i, j \in \mathbf{Z}$,

•
$$a^{i+j} = a^i \cdot a^j$$

• $a^{ij} = (a^i)^j = (a^j)^i$
• $a^{-i} = (a^i)^{-1} = (a^{-1})^i$

Meaning we can manipulate exponents "as usual".

Examples

Let N = 14 and $G = \mathbf{Z}_N^*$. Then modulo N we have

and

$$5^{-3} = 13 \mod 14$$

Group Orders

The order of a group G is its size |G|, meaning the number of elements in it.

Example: The order of \mathbf{Z}_{21}^* is 12 because

 $\bm{Z}_{21}^* = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$

Fact: Let G be a group of order m and $a \in G$. Then, $a^m = \mathbf{1}$.

Examples: Modulo 21 we have

•
$$5^{12} \equiv (5^3)^4 \equiv 20^4 \equiv (-1)^4 \equiv 1$$

•
$$8^{12} \equiv (8^2)^6 \equiv (1)^6 \equiv 1$$

Simplifying Exponentiation

Fact: Let G be a group of order m and $a \in G$. Then, $a^m = \mathbf{1}$.

Corollary: Let G be a group of order m and $a \in G$. Then for any $i \in \mathbf{Z}$,

 $a^i = a^i \mod m$.

Proof: Let $(q, r) \leftarrow \text{INT-DIV}(i, m)$, so that i = mq + r and $r = i \mod m$. Then

$$a^i = a^{mq+r} = (a^m)^q \cdot a^r$$

But $a^m = \mathbf{1}$ by Fact.

Corollary and Example

Corollary: Let G be a group of order m and $a \in G$. Then for any $i \in \mathbf{Z}$,

 $a^i = a^i \mod m$.

Algorithms & Running-Time

In an algorithms course, the cost of arithmetic is often assumed to be $\mathcal{O}(1)$, because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2⁵¹², 2¹⁰²⁴, 2²⁰⁴⁸.

Numbers are provided to algorithms in binary. The length of a, denoted |a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

(a,b)			
aa'+bb	=(a,b) for some	a', b1	

Algorithm	Input	Output 🖌	Time
ADD	a, b	a + b	linear
MULT	a, b	ab	quadratic
INT-DIV	a, N	(q,r)	quadratic
MOD	a, N	a mod N	quadratic
EXT-GCD	a, N	(d, a', N')	quadratic
MOD-INV	$a \in \mathbf{Z}_N^*$, N	$a^{-1} \mod N$	quadratic
MOD-EXP	a, n, N	<i>aⁿ</i> mod N	cubic
$\operatorname{EXP}_{\boldsymbol{G}}$	a, n	$a^n\in G$	$\mathcal{O}(n)$ G-ops

quotient and remainder

Extended GCD

EXT-GCD $(a, N) \mapsto (d, a', N')$ such that $d = \operatorname{gcd}(a, N) = \underline{a \cdot a'} + \underline{N \cdot N'}.$ Example: EXT-GCD(12, 20) = (4, 2, -3) because $4 = \operatorname{gcd}(12, 20) = 12 \cdot (-3) + 20 \cdot 2.$

EXT-GCD Algorithm

 $\operatorname{EXT-GCD}(a, N) \mapsto (d, a', N')$ such that

$$d = \gcd(a, N) = a \cdot a' + N \cdot N'$$
.

Lemma: Let (q, r) = INT-DIV(a, N). Then, gcd(a, N) = gcd(N, r)

Alg EXT-GCD(a, N) // $(a, N) \neq (0, 0)$ if N = 0 then return (a, 1, 0)else $(q, r) \leftarrow \text{INT-DIV}(a, N); (d, x, y) \leftarrow \text{EXT-GCD}(N, r)$ $a' \leftarrow y; N' \leftarrow x - qy$ return (d, a', N')

Running time analysis is non-trivial (worst case is Fibonacci numbers) and shows that the time is $\mathcal{O}(|a| \cdot |N|)$. So the extended gcd can be computed in quadratic time.

Modular Inverse

For a, N such that gcd(a, N) = 1, we want to compute $a^{-1} \mod N$, meaning the unique $a' \in \mathbb{Z}_N^*$ satisfying $aa' \equiv 1 \pmod{N}$. But if we let $(d, a', N') \leftarrow \text{EXT-GCD}(a, N)$ then $d = 1 = gcd(a, N) = a \cdot a' + N \cdot N'$ But $N \cdot N' \equiv 0 \pmod{N}$ so $aa' \equiv 1 \pmod{N}$

Alg MOD-INV(a, N) (d, a', N') \leftarrow EXT-GCD(a, N) return $a' \mod N$

Modular inverse can be computed in quadratic time.

Exponentiation

Let G be a group and $a \in G$. For $n \in \mathbb{N}$, we want to compute $a^n \in G$. We know that

$$a^n = \underbrace{a \cdot a \cdots a}_n$$

if

In in large

Consider:

 $y \leftarrow 1$ for i = 1, ..., n do $y \leftarrow y \cdot a$ return y

Question: Is this a good algorithm?

Square-and-Multiply

Let $bin(n) = b_{k-1} \dots b_0$ be the binary representation of n, meaning

Alg EXP_G(a, n) //
$$a \in G, n \ge 1$$

 $b_{k-1} \dots b_0 \leftarrow bin(n)$
 $y \leftarrow 1$
for $i = k - 1$ downto 0 do $y \leftarrow \underbrace{y^2 \cdot a^{b_i}}_{return y}$

The running time is $\mathcal{O}(|n|)$ group operations.

MOD-EXP(a, n, N) returns $a^n \mod N$ in time $\mathcal{O}(|n| \cdot |N|^2)$, meaning is cubic time.

Generators and Cyclic Groups

Let G be a group of order m and let $g \in G$. We let

$$\langle g
angle = \{ g^i : i \in \mathbf{Z} \} .$$

Fact: $\langle g \rangle = \{ g^i : i \in \mathbf{Z}_m \}$

Exercise: Prove the above Fact.

Fact: The size $|\langle g \rangle|$ of the set $\langle g \rangle$ is a divisor of *m*

Note: $|\langle g \rangle|$ need not equal m!

Definition: $g \in G$ is a generator (or primitive element) of G if $\langle g \rangle = G$, meaning $|\langle g \rangle| = m$.

Definition: G is cyclic if it has a generator, meaning there exists $g \in G$ such that g is a generator of G.

Example

Let $G = \mathbf{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	i	0	1	2	3	4	5	6	7	8	9	10
2'	mod 11	1	2	4	8	5	10	9	7	3	6	1
5 ^{<i>i</i>}	mod 11	1	5	3	4	9	1	5	3	4	9	1

SO

$$\langle 2 \rangle = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 $\langle 5 \rangle = \{1, 3, 4, 5, 9\}$

- 2 a generator because $\langle 2 \rangle = \mathbf{Z}_{11}^*$.
- 5 is not a generator because $\langle 5 \rangle \neq \mathbf{Z}_{11}^*$.
- **Z**^{*}₁₁ is cyclic because it has a generator.

Discrete Logarithms

If $G = \langle g \rangle$ is a cyclic group of order *m* then for every $a \in G$ there is a unique exponent $i \in \mathbb{Z}_m$ such that $g^i = a$. We call *i* the discrete logarithm of *a* to base *g* and denote it by

$\mathrm{DLog}_{\mathcal{G},g}(a)$

The discrete log function is the inverse of the exponentiation function:

$$egin{array}{rcl} {
m DLog}_{G,g}(g^i)&=&i& {
m for all }i\in {\sf Z}_m\ g^{{
m DLog}_{G,g}(a)}&=&a& {
m for all }a\in G. \end{array}$$

Example

Let $G = Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which is a cyclic group of order m = 10. We know that 2 is a generator, so $DLog_{G,2}(a)$ is the exponent $i \in Z_{10}^-$ such that $2^i \mod 11 = a$.

а	1	2	3	4	5	6	7	8	9	10
$\mathrm{DLog}_{G,2}(a)$	0	1	8	2	4	9	7	3	6	5

Finding Cyclic Groups

Fact 1: Let p be a prime. Then \mathbf{Z}_{p}^{*} is cyclic.

Fact 2: Let G be any group whose order m = |G| is a prime number. Then G is cyclic.

Note: $|\mathbf{Z}_{p}^{*}| = p - 1$ is not prime, so Fact 2 doesn't imply Fact 1!

Computing Discrete Logs

Let $G = \langle g \rangle$ be a cyclic group of order *m* with generator $g \in G$. Input: $X \in G$ Desired Output: $DLog_{G,g}(X)$

Note: In the first case the actual running time is $e^{1.92(\ln q)^{1/3}(\ln \ln q)^{2/3}}$ where q is the largest prime factor of p-1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete log problem makes it the basis for cryptographic schemes in which breaking the scheme requires discrete log computation.

Current Records

In \mathbf{Z}_{p}^{*} :

p in bits	When
431	2005
530	2007
596	2014

For elliptic curves, current record seems to be for |p| around 113.

Why ECC?

Say we want 80-bits of security, meaning discrete log computation by the best known algorithm should take time 2^{80} . Then

- If we work in \mathbf{Z}_{p}^{*} (p) a prime) we need to set $|\mathbf{Z}_{p}^{*}| = p 1 \approx 2^{1024}$
- But if we work on an elliptic curve group of prime order p then it suffices to set $p \approx 2^{160}$.

Why? Because

 $e^{1.92(\ln 2^{1024})^{1/3}(\ln \ln 2^{1024})^{2/3}} \approx \sqrt{2^{160}} = 2^{80}$ (60 bit elements

1024 bit elements

DL Problem

Let $G = \langle g \rangle$ be a cyclic group of order *m*, and *A* an adversary.

Game $DL_{G,g}$ procedure Initializeprocedure Finalize(x') $x \stackrel{\$}{\leftarrow} Z_m; X \leftarrow g^x$ return (x = x')return X

The dl-advantage of A is

$$\mathsf{Adv}^{\mathrm{dl}}_{G,g}(A) = \mathsf{Pr}\left[\mathrm{DL}^{A}_{G,g} \Rightarrow \mathsf{true}\right]$$

Let $G = \langle g \rangle$ be a cyclic group of order *m*, and *A* an adversary.

The cdh-advantage of A is

$$\mathsf{Adv}^{\mathrm{cdh}}_{\mathcal{G},\mathcal{g}}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{CDH}^{\mathcal{A}}_{\mathcal{G},\mathcal{g}} \Rightarrow \mathsf{true}\right]$$

Building Cyclic Groups choose random p of bit-length k until p is prime l'an test primality efficiently cyclic group under multiplication

Diffie-Hellman Key Exchange

The following are assumed to be public: A large prime p and a generator g of \mathbf{Z}_{p}^{*} .

- $Y^x = (g^y)^x = g^{xy} = (g^x)^y = X^y$ modulo p, so $K_A = K_B$
- Adversary is faced with the CDH problem.
- Weak form of key-agreement - adversory is passive - we really want key indistignishable \$