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Recall	Symmetric-Key	Crypto

• In	this	setting,	if	Alice	wants	to	communicate	
secure	with	Bob	they	need	a	shared	key	KAB.

• If	Alice	wants	to	also	communicate	with	Charlie	
they	need	a	shared	key	KAC.	

• If	Alice	generates	KAB	and	KAC	they	must	be	
communicated	to	Bob	and	Charlie	over	secure	
channels.		How	can	this	be	done?
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Public-Key	Crypto

• Alice	has	a	secret	key	that	is	shared	with	
nobody,	and	a	public	key	that	is	shared	with	
everybody.

• Anyone	can	use	Alice’s	public	key	to	send	her	a	
private	message.

• Public	key	is	like	a	phone	number:	Anyone	can	
look	it	up	in	a	phone	book.
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Syntax	and	Correctness	of	PKE
Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E ,D) consists
of three algorithms, where

EM D M or ?

sk

K

C C

pk

A
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- K is the key - generation algorithm
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Intended	Usage
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Code	Obfuscation	Perspective



IND-CPAThe games for IND-CPA

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game LeftAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M0)

Game RightAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M1)

Associated to AE ,A are the probabilities

Pr
h
LeftAAE)1

i
Pr

h
RightAAE)1

i

that A outputs 1 in each world. The ind-cpa advantage of A is

Adv
ind-cpa
AE (A) = Pr

h
RightAAE)1

i
� Pr

h
LeftAAE)1

i
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A	More	Basic	Problem:	Key	Exchange



How	to	Build	Key	Exchange?

• We	need	to	take	a	trip	into	computational	
number	theory….Modern Cryptography: Esoteric mathematics?

Hardy, in his essay A Mathematician’s Apology writes:

“Both Gauss and lesser mathematicians may be

justified in rejoicing that there is one such

science [number theory] at any rate, and that

their own, whose very remoteness from ordinary

human activities should keep it

gentle and clean”

No longer: Number theory is the basis of modern public-key systems such
as RSA.
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Notation
Notation

Z = {. . . ,�2,�1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N 2 Z let gcd(a,N) be the largest d 2 Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.
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Integers	mod	N
Integers mod N

For N 2 Z+, let

• ZN = {0, 1, . . . ,N � 1}

• Z
⇤
N = {a 2 ZN : gcd(a,N) = 1}

• '(N) = |Z
⇤
N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

• Z
⇤
12 = {1, 5, 7, 11}

• '(12) =

4
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Division	and	MOD
Division and mod

INT-DIV(a,N) returns (q, r) such that

• a = qN + r

• 0  r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r 2 ZN

is the remainder when a is divided by N.

Example: INT-DIV(17, 3) = (5, 2) and 17 mod 3 = 2.

Def: a ⌘ b (mod N) if a mod N = b mod N.

Example: 17 ⌘ 14 (mod 3)
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Groups
Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b 2 G , a value a · b is defined.

Example: G = Z
⇤
12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N is a group.
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Groups:	Closure
Groups: Closure

Closure: For every a, b 2 G we have a · b is also in G .

Example: G = Z12 with a · b = ab does not have closure because
7 · 5 = 35 62 Z12.

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies closure,

meaning

gcd(a,N) = gcd(b,N) = 1 implies gcd(ab mod N,N) = 1

Example: Let G = Z
⇤
12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 2 Z
⇤
12

Exercise: Prove the above Fact.
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Groups:	AssociativityGroups: Associativity

Associativity: For every a, b, c 2 G we have (a · b) · c = a · (b · c).

Fact: If N 2 Z+ then G = Z
⇤
N with a · b = ab mod N satisfies

associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1

5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1

Exercise: Given an example of a set G and a natural operation
a, b 7! a · b on G that satisfies closure but not associativity.
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Groups:	Identity	Element

Groups: Identity element

Identity element: There exists an element 1 2 G such that
a · 1 = 1 · a = a for all a 2 G .

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then 1 is the identity

element because a · 1 mod N = 1 · a mod N = a for all a.
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Groups:	Inverses

Groups: Inverses

Inverses: For every a 2 G there exists a unique b 2 G such that
a · b = b · a = 1.

This b is called the inverse of a and is denoted a
�1 if G is understood.

Fact: If N 2 Z+ and G = Z
⇤
N with a · b = ab mod N then

8a 2 Z
⇤
N 9b 2 Z

⇤
N such that a · b mod N = 1.

We denote this unique inverse b by a
�1 mod N.

Example: 5�1 mod 12 is the b 2 Z
⇤
12 satisfying 5b mod 12 = 1, so b =

5
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Computational	ShortcutsComputational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16
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Exponentiation
Exponentiation

Let G be a group and a 2 G . We let a0 = 1 be the identity element and
for n � 1, we let

a
n = a · a · · · a| {z }

n

.

Also we let
a
�n = a

�1
· a

�1
· · · a

�1
| {z }

n

.

This ensures that for all i , j 2 Z,

• a
i+j = a

i
· a

j

• a
ij = (ai )j = (aj)i

• a
�i = (ai )�1 = (a�1)i

Meaning we can manipulate exponents “as usual”.
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Examples
Examples

Let N = 14 and G = Z
⇤
N . Then modulo N we have

53 =

5 · 5 · 5 ⌘ 25 · 5 ⌘ 11 · 5 ⌘ 55 ⌘ 13

and
5�3 = 5�1

· 5�1
· 5�1

⌘ 3 · 3 · 3 ⌘ 27 ⌘ 13
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Let N = 14 and G = Z
⇤
N . Then modulo N we have
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Group	Orders
Group Orders

The order of a group G is its size |G |, meaning the number of elements in
it.

Example: The order of Z⇤
21 is 12 because

Z
⇤
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Fact: Let G be a group of order m and a 2 G . Then, am = 1.

Examples: Modulo 21 we have

• 512 ⌘ (53)4 ⌘ 204 ⌘ (�1)4 ⌘ 1

• 812 ⌘ (82)6 ⌘ (1)6 ⌘ 1
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Simplifying	ExponentiationSimplifying exponentiation

Fact: Let G be a group of order m and a 2 G . Then, am = 1.

Corollary: Let G be a group of order m and a 2 G . Then for any i 2 Z,

a
i = a

i mod m.

Proof: Let (q, r) INT-DIV(i ,m), so that i = mq + r and r = i mod m.
Then

a
i = a

mq+r = (am)q · ar

But am = 1 by Fact.
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Corollary	and	Example
Simplifying exponentiation

Corollary: Let G be a group of order m and a 2 G . Then for any i 2 Z,

a
i = a

i mod m.

Example: What is 574 mod 21?

Solution: Let G = Z
⇤
21 and a = 5. Then, m = 12, so

574 mod 21 = 574 mod 12 mod 21

= 52 mod 21

= 4.
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Algorithms	&	Running-Time
Measuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024, 22048.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.
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Algorithms on numbers

Algorithm Input Output Time
ADD a, b a+ b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a0,N 0) quadratic
MOD-INV a 2 Z

⇤
N , N a

�1 mod N quadratic
MOD-EXP a, n, N a

n mod N cubic
EXPG a, n a

n
2 G O(|n|) G -ops
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Extended	GCD

Extended gcd

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Example: EXT-GCD(12, 20) = (4, 2,�3) because

4 = gcd(12, 20) = 12 · (�3) + 20 · 2 .
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EXT-GCD	AlgorithmExtended gcd Algorithm

EXT-GCD(a,N) 7! (d , a0,N 0) such that

d = gcd(a,N) = a · a
0 + N · N

0 .

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Alg EXT-GCD(a,N) // (a,N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else
(q, r) INT-DIV(a,N); (d , x , y) EXT-GCD(N, r)
a
0
 y ; N 0

 x � qy

return (d , a0,N 0)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| · |N|). So the extended gcd can be computed
in quadratic time.
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Modular	InverseModular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a
�1 mod N,

meaning the unique a
0
2 Z

⇤
N satisfying aa

0
⌘ 1 (mod N).

But if we let (d , a0,N 0) EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a
0 + N · N

0

But N · N
0
⌘ 0 (mod N) so aa

0
⌘ 1 (mod N)

Alg MOD-INV(a,N)
(d , a0,N 0) EXT-GCD(a,N)
return a

0 mod N

Modular inverse can be computed in quadratic time.
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ExponentiationModular Exponentiation

Let G be a group and a 2 G . For n 2 N, we want to compute a
n
2 G .

We know that
a
n = a · a · · · a| {z }

n

Consider:

y  1
for i = 1, . . . , n do y  y · a

return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ⇡ 2512 it is prohibitively
expensive.
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Square-and-Multiply
Square-and-Multiply Exponentiation Algorithm

Let bin(n) = bk�1 . . . b0 be the binary representation of n, meaning

n =
k�1X

i=0

bi2
i

Alg EXPG (a, n) // a 2 G , n � 1

bk�1 . . . b0  bin(n)
y  1
for i = k � 1 downto 0 do y  y

2
· a

bi

return y

The running time is O(|n|) group operations.

MOD-EXP(a, n,N) returns an mod N in time O(|n| · |N|
2), meaning is

cubic time.

Mihir Bellare UCSD 48

e-

#



Generators	and	Cyclic	Groups
Generators and cyclic groups

Let G be a group of order m and let g 2 G . We let

hgi = { g
i : i 2 Z } .

Fact: hgi = { g
i : i 2 Zm }

Exercise: Prove the above Fact.

Fact: The size |hgi| of the set hgi is a divisor of m

Note: |hgi| need not equal m!

Definition: g 2 G is a generator (or primitive element) of G if hgi = G ,
meaning |hgi| = m.

Definition: G is cyclic if it has a generator, meaning there exists g 2 G

such that g is a generator of G .
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ExampleGenerators and cyclic groups: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10
2i mod 11 1 2 4 8 5 10 9 7 3 6 1
5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

h2i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

h5i = {1, 3, 4, 5, 9}

• 2 a generator because h2i = Z
⇤
11.

• 5 is not a generator because h5i 6= Z
⇤
11.

• Z
⇤
11 is cyclic because it has a generator.
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Discrete	Logarithms
Discrete Logarithms

If G = hgi is a cyclic group of order m then for every a 2 G there is a
unique exponent i 2 Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function:

DLogG ,g (g
i ) = i for all i 2 Zm

g
DLogG ,g (a) = a for all a 2 G .
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ExampleDiscrete Logarithms: Example

Let G = Z
⇤
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order

m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent
i 2 Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9
2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10
DLogG ,2(a) 0 1 8 2 4 9 7 3 6 5
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Finding	Cyclic	Groups

Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z
⇤
p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z⇤
p| = p � 1 is not prime, so Fact 2 doesn’t imply Fact 1!
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Computing	Discrete	LogsComputing Discrete Logs

Let G = hgi be a cyclic group of order m with generator g 2 G .

Input: X 2 G

Desired Output: DLogG ,g (X )

That is, we want x such that g x = X .

for x = 0, . . . ,m � 1 do
if g x = X then return x

Is this a good algorithm?

It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z
⇤
p is O(p), which is

exponential time and prohibitive for large p.
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Current	Best	Algorithms
Computing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z
⇤
p e

1.92(ln p)1/3(ln ln p)2/3

ECp
p
p = e

ln(p)/2

Here p is a prime and ECp represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1.92(ln q)
1/3(ln ln q)2/3

where q is the largest prime factor of p � 1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.
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Current	RecordsDiscrete logarithm computation records

In Z
⇤
p:

|p| in bits When

431 2005
530 2007
596 2014

For elliptic curves, current record seems to be for |p| around 113.
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Why	ECC?EC: More bang for the buck

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280. Then

• If we work in Z
⇤
p (p a prime) we need to set |Z⇤

p| = p � 1 ⇡ 21024

• But if we work on an elliptic curve group of prime order p then it
su�ces to set p ⇡ 2160.

Why? Because

e
1.92(ln 21024)1/3(ln ln 21024)2/3

⇡

p

2160 = 280

But now:

Group Size Cost of Exponentiation
2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!
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DL	Problem
DL Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize

x
$
 Zm;X  g

x

return X

procedure Finalize(x 0)
return (x = x

0)

The dl-advantage of A is

Adv
dl
G ,g (A) = Pr

h
DLA

G ,g ) true
i
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CDH	Problem
CDH Formally

Let G = hgi be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

X  g
x ;Y  g

y

return X ,Y

procedure Finalize(Z )
return (Z = g

xy )

The cdh-advantage of A is

Adv
cdh
G ,g (A) = Pr

h
CDHA

G ,g ) true
i
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Building	Cyclic	Groups
Choose random p

- of bit - length
k until p is prime

Ican test

primality
efficiently

Ipt cyclic group
Under
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Diffie-Hellman	Key	ExchangeRecall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z⇤

p.

Alice Bob

x $
 Zp�1; X  g x mod p

X
������!

y $
 Zp�1; Y  g y mod p

Y
 ������

KA  Y x mod p KB  X y mod p

• Y x = (g y )x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with the CDH problem.
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