Lecture 8 — Public-Key Encryption
and Computational Number Theory

COSC-466 Applied Cryptography
Adam O’Neill
Adapted from
http://cseweb.ucsd.edu/~mihir/csel107/

Recall Symmetric-Key Crypto

* |n this setting, if Alice wants to communicate
secure with Bob they need a shared key Kas.

=

Recall Symmetric-Key Crypto

* |n this setting, if Alice wants to communicate
secure with Bob they need a shared key Kas.

e |f Alice wants to also communicate with Charlie
they need a shared key Kac

Recall Symmetric-Key Crypto

* |n this setting, if Alice wants to communicate
secure with Bob they need a shared key Kas.

e |f Alice wants to also communicate with Charlie
they need a shared key Kac

 |f Alice generates Kaz and Kac they must be
communicated to Bob and Charlie over secure
channels. How can this be done?

Public-Key Crypto

* Alice has a secret key that is shared with
nobody, and a public key that is shared with
everybody.

Public-Key Crypto

* Alice has a secret key that is shared with

nobody, and a public key that is shared with
everybody.

* Anyone can use Alice’s public key to send her a
private message.

Public-Key Crypto

* Alice has a secret key that is shared with

nobody, and a public key that is shared with
everybody.

* Anyone can use Alice’s public key to send her a
private message.

* Public key is like a phone number: Anyone can

look it up in a phone book.
—

Syntax and Correctness of PKE

A public-key (or asymmetric) encryption scheme AE = (K, &, D) consists
of three algorithms, where

S Ts Hre ke oqemavakiielgo citm
Hhat- on Mp.xl' lk ch\'p ubs & ?w‘vod-e
(c{ S{Uft") (c—&\{ s\ and ‘eu\\o\\‘c \E'C\/ Pk

kalgk}éll"(,ak) k % o gecunt

PW&MQR(

: ok oF L
— 2 1Y Pne me% pHom “gﬂpof(}w: \,:ZJ, 2

t|/\\0w"5 ‘C an A /A OW"p%H N M\otq_/’-u/]-
C Pule\® key €essage , 9 E\Lka)
76(/&)(%* Cb \AS h\ﬁ O\C L‘(‘p'p 'H\M &\%0 flr\/h,m "1,‘“, 49’17;49}

W&no\@mw\'f m of |

Intended Usage

Code Obfuscation Perspective

IND-CPA

Let AE = (K, &, D) be a PKE scheme and A an adversary.

Game Left 4¢ Game Right 4¢
procedure Initialize procedure Initialize
(pk, sk) & K ; return pk (pk, sk) & K ; return pk
procedure LR(My, M) procedure LR(My, M)
Return C <& gpk(Mo) Return C <& gpk(Ml)

Associated to AE, A are the probabilities
Pr [Leftﬁ‘lg;»l} ‘ Pr [Rightﬁ‘lg;q}

that A outputs 1 in each world. The ind-cpa advantage of A is
AdvideP2(A) = Pr [nght Ag;»l} — Pr [Left Ag:,l}

A More Basic Problem: Key Exchange

How to Build Key Exchange?

 We need to take a trip into computational
number theory....

Hardy, in his essay A Mathematician’'s Apology writes:

“Both Gauss and lesser mathematicians may be
justified in rejoicing that there is one such
science [number theory| at any rate, and that

their own, whose very remoteness from ordinary
human activities should keep it
gentle and clean”

Notation
ZzZ N

Z=1{..,-2-1,01,2,..}

T

N=1{0,1,2,...}
s

Z, =1{1,2,3,...}

/

For a, N € Z let gcd(a, N) be the largest d € Z, such that d divides both
a and N.

Example: gcd(30,70) = 10.
A 1S re\o\\-we\q ¢ rime hlb IF 3cat (0\,'0) =1

Integers mod N

For Ne Z,, let
e Zy=10,1,..., N—1}
o Zy, ={a€eZy : gcd(a, N) =1}
¢ o(N) = (Z3

Division and MOD

INT-DIV(a, N) returns (g, r) such that
e
e a=gN+r
e 0<r<N
Refer to g as the quotient and r as the remainder. Then
amod N =rely

is the remainder when a is divided by N.

Groups

Let G be a non-empty set, and let - be a binary operation on G. This
means that for every two points a, b € G, a value a- b is defined.

is multiplication modulo 12, meaning

a-b=abmod12

Example: G =27, and *

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N € Z then G = Z}, with a- b= abmod N is a group.

Groups: Closure

Closure: For every a,b € G we have a- b is also in G.

Example: G = Z15 with a- b = ab does not have closure because
7-5=35¢& 2.

Fact: If N € Z, then G = Z}, with a- b = ab mod N satisfies closure,
meaning

ged(a, N) = ged(b, N) = 1 implies gcd(ab mod N, N) =1
Example: Let G = Z}, = {1,5,7,11}. Then
5-7mod 12 =35 mod 12 =11 € Z],

Exercise: Prove the above Fact.

Groups: Associativity

Associativity: For every a,b,c € G we have (a-b)-c=a-(b-c).

Fact: If N € Z, then G = Z%, with a- b= ab mod N satisfies
associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5-7 mod 12) - 11 mod 12 = (35 mod 12) - 11 mod 12
=11-11 mod 12 =1

5-(7-11 mod 12) mod 12 =5 (77 mod 12) mod 12
=5.-bmod12=1

Exercise: Given an example of a set G and a natural operation
a,br a-bon G that satisfies closure but not associativity.

a-b b-a
Groups: ldentity Element
/]

6

Identity element: There exists an element 1 € G such that
a-1=1-a=aforall aeG. -

Fact: If N € Z, and G = Z}, with a- b = ab mod N then 1 is the identity
element because a-1 mod N =1-amod N = a for all a.

Groups: Inverses

Inverses: For every a € G there exists a unique b € G such that
a-b=b-a=1.

This b is called the inverse of a and is denoted a~! if G is understood.

Fact: If Ne Z, and G = Z}, with a- b = ab mod N then
Vae Zy dbe Zj suchthata-bmod N =1.

We denote this unique inverse b by a~! mod N.

Example: 57! mod 12 is the b € Z%, satisfying 5b mod 12 = 1, so b =

Computational Shortcuts

What is 5-8-10- 16 mod 217
Slow way: First compute

5-8-10-16 =40-10-16 =400 - 16 = 6400

o

and then compute 6400 mod 21 = 16

Fast way:

S-% mod 21 = 106
1G/O mod 21

Exponentiation

Let G be a group and a € G. We let a° = 1 be the identity element and

for n > 1, we let
a :\aaé

Also we let

This ensures that for all i,j € Z,
o T =45 .4
+ ail = (4} = ()
° a—i — (ai)—l — (a—l)i

Meaning we can manipulate exponents “as usual’.

Examples

Let N =14 and G = Z},. Then modulo N we have
53 = (25 wmad Y
=1yt 1M

and

573 = I3 mod &

Group Orders

The order of a group G is its size |G|, meaning the number of elements in
it.

Example: The order of Z5; is 12 because

Z5, = {1,2,4,5,8,10,11,13,16, 17, 19,20}

/%1:/—;‘6 CZl)

Fact: Let G be a group of order mand a € G. Then, 3™ = 1.

Examples: Modulo 21 we have
o 512 =(53)* =20t = (-1)*=1
e 812 =(8%=(1)° =1

Simplifying Exponentiation

Fact: Let G be a group of order mand a € G. Then, a" = 1.

Corollary: Let G be a group of order m and a € G. Then for any i € Z,

a/ _ a/ mod m.

Proof: Let (q,r) < INT-DIV(i, m), so that i = mq + r and r = i mod m.
Then
ai — amq+r — (am)q g

But 3™ =1 by Fact.

Corollary and Example

Corollary: Let G be a group of order mand a € G. Then for any j € Z,

ai:aimod m
Example: What is 5% mod 217 FLE el
(, acb ST ek 2l
‘b\ _ — .
Jet=1
o 1
&) Qa] “=7) o 1

Algorithms & Running-Time

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024 2048

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

(0\ 1_93 ﬁuafwd and

end S
1 (/m L)\ remar
A& + b b \ \o'
(lo € some &
Algorithm | Input Output /| Time
ADD a, b a+ b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N amod N | quadratic
EXT-GCD | a, N (d,a’, N') | quadratic
MOD-INV | ac Zy, N a—! mod N | quadratic
MOD-EXP | a, n, N a" mod N | cubic
EXPg a, n a" € G O(|n|) G-ops

Extended GCD

EXT-GCD(a, N) — (d,a’, N’) such that
d=gcd(a,N)=a-a +N-N".

Example: EXT-GCD(12,20) = (4,2, —3) because
4 = gcd(12,20) = 12 (=3) +20-2 .

L
EXT-GCD Algorithm

EXT-GCD(a, N) — (d, a’, N') such that
d=gcd(a,N)=a-a +N-N".

Lemma: Let (g, r) = INT-DIV(a, N). Then, gcd(a, N) = gcd(N, r)

Alg EXT-GCD(a, N) // (a, N) % (0,0)

if N =0 then return (a, 1,0)

else
(g, r) < INT-DIV(a, N); (d,x,y) < EXT-GCD(N, r)
a <+ y, N < x—qy
return (d,a’, N)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| - |[N|). So the extended gcd can be computed
in quadratic time.

———

Modular Inverse

For a, N such that gcd(a, N) = 1, we want to compute a~! mod N,
meaning the unique a’ € Z}, satisfying aa’ =1 (mod N).

But if we let (d, &, N') < EXT-GCD(a, N) then y0d N

M
1 L N
d=1=gcd(a,N)=a-a + N_N

e —

But N- N =0 (mod N) so aa’ =1 (mod N)

Alg MOD-INV (a, N)
(d,a’, N') «+ EXT-GCD(a, N)
return a’ mod N

Modular inverse can be computed in quadratic time.
_—e

Exponentiation

Let G be a group and a € G. For n € N, we want to compute 3" € G.

We know that

Consider:

y <1
fori=1,....ndoy<+ y-a
return y

Question: Is this a good algorithm?

Square-and-Multiply

Let bin(n) = bx_1... by be the binary representation of n, meaning

k—1
=) b2
=0

Alg EXP¢g(a,n) //ae G, n>1
bk—l ce bo < bin(n)

y <1

for i =k —1downtoO do y « y°-a
return y

b;

The running time is O(|n|) group operations.

MOD-EXP(a, n, N) returns a” mod N in time O(|n| - |[N|?), meaning is
cubic time.

Generators and Cyclic Groups

Let G be a group of order m and let g € G. We let
g)={g 1ieZ}.

Fact: (g)={g' :i€Z,}

Exercise: Prove the above Fact.

Fact: The size |(g)| of the set (g) is a divisor of m

Note: |(g)| need not equal m!

Definition: g € G is a generator (or primitive element) of G if (g) = G,
meaning |(g)| = m.

Definition: G is cyclic if it has a generator, meaning there exists g € G
such that g is a generator of G.

Example

Let G =27, =1{1,2,3,4,5,6,7,8,9,10}, which has order m = 10.

ifo0|l1]213|4] 5/6|7[/8|9]10
2 mod11 |12 4|8]5]|10
5 mod11||1[|5[3|/4|9| 1[5[|3[4|9]| 1

O
\l
(O8N
(@)
|

SO

2) = {1,2,3,4,5,6,7,8,9,10}
5) = {1,3,4,5,9}

e 2 a generator because (2) = Z7;.
e 5 is not a generator because (5) # Z7;.

e Z7, is cyclic because it has a generator.

Discrete Logarithms

If G = (g) is a cyclic group of order m then for every a € G there is a
unique exponent i € Z,, such that g’ = a. We call / the discrete logarithm
of a to base g and denote it by

DLOgG,g(a)

e —————

The discrete log function is the inverse of the exponentiation function:

DLogg .(g') = i forallieZ,
DLogg ,(a)

g a forall aeG.

mojﬂ(o\

Example

Let G =27, ={1,2,3,4,5,6,7,8,9,10}, which is a cyclic group of order
m = 10. We know that 2 is a generator, so DLog »(a) is the exponent
i € Z1o such that 2/ mod 11 = a.

ifo|l1][2(3|/4] 5|/6[7|8]9
2 mod11 || 1|24 |8|5]10|/9|7 (3|6

a
DLogco(a) |0 1]8]2]4[9[7[3]6] 5

Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z is cyclic.

Fact 2: Let G be any group whose order m = |G| is a prime number.
Then G is cyclic.

Note: |Z7| = p — 1 is not prime, so Fact 2 doesn't imply Fact 1!

Computing Discrete Logs

Let G = (g) be a cyclic group of order m with generator g € G.

Input: X € G
Desired Output: DLog¢ ,(X)

Current Best Algorithms .
IACALZ(&J

Group | Time to find discrete logarith

e1.92(|n p)/3(InIn p)?/3 &

7*
p
@ij \/5: eln(P)/2 P 'oa,‘d-‘ S'l-efi_ SI_&()

1o~
ol d—=vrho

Here p is a prime and EC, represents an elliptic curve groug of order p.

Note: In the first case the actual running time is el-92(In@)"/*(inin q)/3

where g is the largest prime factor of p — 1.
In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.

Current Records

In Z3:
|p| in bits | When
431 2005
530 2007
596 2014

For elliptic curves, current record seems to be for |p| around 113.

Why ECC?

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280, Then

e |f we work i

a prime) we need to set [Z3| =p— 1~ 21024

on an elliptic curve group of prime order p then it
p A 2160_

e But if we wdrk
suffices to se

Why? Becausg
1024\1/3 1024\2/3
£1.92(In 21024) /3(InIn21024)2/3 \/2160 — 280

(60 L+ elpwe~?s
/o241 Lt UoranteC

DL Problem

Let G = (g) be a cyclic group of order m, and A an adversary.

Game DLg 4
procedure Finalize(x’)

procedure Initialize
return (x = x’)

X Zm X — g%
return X

The dl-advantage of A is

Adv{ _(A) = Pr|DL% , = true

(L omp Totizrto]l [Eie- w
CDH Problem Hel\moa

Let G = (g) be a cyclic group of order m, and A an adversary.

Game CDHg 4

proce$dure Initialize procedure Finalize(Z2)
X,y & Znm return (Z = g*)

X<+ g5 Y+g¥

return X, Y

The cdh-advantage of A is

Advigh(A) = Pr [CDHZ , = true

Building Cyclic Groups
Choose (andon P ot bc‘+-Q¢H3H”
ko wetilopois g)fl‘rw_

/MV‘ lest
pV\\mo\il‘H
eftuently

Z; (YA Grovp

naded
N U (‘—\\P \"Ca)‘ﬁ)ﬂ

Diffie-Hellman Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z7%.
p

Alice Bob

x@Zp_l;X<—gX mod p l
t y@Zp_l; Y < g” modp

Ka < Y mod p Kg < XY mod p

o YX=(g¥) =g =(g"¥)” = XY modulo p, so Ky = Kg
e Adversary is faced with the CDH problem.
(Weok G of lery 'CAO)rcchV\/J(
- adversy Uy PesSivR L e
- e F&u\\q wount]Lu(faAlst

