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• Today	we	will	study	a	second	lower-level	
primitive,	hash	functions.

• Hash	functions	like	MD5,	SHA1,	SHA256	are	
used	pervasively.

• Primary	purpose	is	data	compression,	but	they	
have	many	other	uses	and	are	often	treated	
like	a	“magic	wand”	in	protocol	design.



Collision	Resistance
Collision resistance (CR)

Definition: A collision for a function h : D → {0, 1}n is a pair x1, x2 ∈ D

of points such that h(x1) = h(x2) but x1 ≠ x2.

If |D| > 2n then the pigeonhole principle tells us that there must exist a
collision for h.
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The	GameCollision-resistance of a function family

The formalism considers a family H : Keys(H) × D → R of functions,
meaning for each K ∈ Keys(H) we have a map HK : D → R defined by
HK (x) = H(K , x).

Game CRH

procedure Initialize

K
$← Keys(H)

Return K

procedure Finalize(x1, x2)
If (x1 = x2) then return false
If (x1 ̸∈ D or x2 ̸∈ D) then return false
Return (HK (x1) = HK (x2))

Let
AdvcrH (A) = Pr

[

CR
A
H ⇒ true

]

.
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ExampleExample

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher.
Let H: {0, 1}k × {0, 1}2n → {0, 1}n be defined by

Alg H(K , x [1]x [2])

y ← EK (EK (x [1]) ⊕ x [2]); Return y

Let’s show that H is not collision-resistant by giving an efficient adversary
A such that AdvcrH (A) = 1.
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Keyless	Hash	Functions
Keyless hash functions

We say that H: Keys(H)× D → R is keyless if Keys(H) = {ε} consists of
just one key, the empty string.

In this case we write H(x) in place of H(ε, x) or Hε(x).

Practical hash functions like MD5, SHA1, SHA256, SHA3, ... are keyless.
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SHA1
SHA1

Alg SHA1(M) // |M | < 264

V ← SHF1( 5A827999 ∥ 6ED9EBA1 ∥ 8F1BBCDC ∥ CA62C1D6 , M )
return V

Alg SHF1(K ,M) // |K | = 128 and |M | < 264

y ← shapad(M)

Parse y as M1 ∥M2 ∥ · · · ∥Mn where |Mi | = 512 (1 ≤ i ≤ n)

V ← 67452301 ∥ EFCDAB89 ∥ 98BADCFE ∥ 10325476 ∥ C3D2E1F0
for i = 1, . . . , n do V ← shf1(K ,Mi ∥ V )

return V

Alg shapad(M) // |M | < 264

d ← (447 − |M|) mod 512

Let ℓ be the 64-bit binary representation of |M|
y ← M ∥ 1 ∥ 0d ∥ ℓ // |y | is a multiple of 512

return y
Mihir Bellare UCSD 13
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Underlying	Compression	Functionshf1

Alg shf1(K ,B ∥ V ) // |K | = 128, |B| = 512 and |V | = 160

Parse B as W0 ∥W1 ∥ · · · ∥W15 where |Wi | = 32 (0 ≤ i ≤ 15)

Parse V as V0 ∥ V1 ∥ · · · ∥ V4 where |Vi | = 32 (0 ≤ i ≤ 4)

Parse K as K0 ∥ K1 ∥ K2 ∥ K3 where |Ki | = 32 (0 ≤ i ≤ 3)

for t = 16 to 79 do Wt ← ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)

A← V0 ; B ← V1 ; C ← V2 ; D ← V3 ; E ← V4

for t = 0 to 19 do Lt ← K0 ; Lt+20 ← K1 ; Lt+40 ← K2 ; Lt+60 ← K3

for t = 0 to 79 do

if (0 ≤ t ≤ 19) then f ← (B ∧ C ) ∨ ((¬B) ∧ D)

if (20 ≤ t ≤ 39 OR 60 ≤ t ≤ 79) then f ← B ⊕ C ⊕ D

if (40 ≤ t ≤ 59) then f ← (B ∧ C ) ∨ (B ∧ D) ∨ (C ∧ D)

temp ← ROTL5(A) + f + E +Wt + Lt
E ← D ; D ← C ; C ← ROTL30(B) ; B ← A ; A← temp

V0 ← V0+A ; V1 ← V1+B ; V2 ← V2+C ; V3 ← V3+D ; V4 ← V4+E

V ← V0 ∥ V1 ∥ V2 ∥ V3 ∥ V4; return V
Mihir Bellare UCSD 14
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Applications

• Hashing	before	digitally	signing.
• Primitive	in	cryptographic	protocols.
• Tool	for	security	applications.
• Tool	for	non-security	applications.
• Let’s	see	some	examples…



Password	Verification

• Consider	a	password	file	stored	on	a	remote		
server	and	clients	logging	in	over	a	secure	
channel. MEmakesadversary

have
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Compare-by-Hash

• Suppose	two	parties	each	have	a	large	file	and	
want	to	know	if	they	have	the	same	file.

of H¥) f &
* '

[ Seward]
' ^

Alice Bob

1
.

Useful even in non - security contexts .

2. Seems to provide some measure

of Security ( but dictionary attack
Stiel applies )



Virus	Protection

• Suppose	you	download	an	executable	from	
somewhere	on	the	Internet.		How	do	you	know	
it’s	not	a	virus?

9¥!¥¥!#%fat



Birthday	Attack
let ' H :D { 0,15 be a hash fraction

.

,  
-

Consider for Some integer parameter q !

Adversary A

For i=l to q do:

xitf D

y ,
. HCx ;)
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, ,
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,
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Else return 1-
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Analysis
Assume that H is regular meaning

fye{ 0,13
" III' ( y ) 1 = ?

then PRTHCKHY ]=Pr[ xittttly ) ]
=÷n

then Adult,rCa)=cCzn,e)z .3eG±
n
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Birthday attack times

Function n TB

MD4 128 264

MD5 128 264

SHA1 160 280

SHA2-256 256 2128

SHA2-512 512 2256

SHA3-256 256 2128

SHA3-512 512 2256

TB is the number of trials to find collisions via a birthday attack.
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Cryptanalytic attacks against hash functions

When Against Time Who
1993,1996 md5 216 [dBBo,Do]
2005 RIPEMD 218

2004 SHA0 251 [JoCaLeJa]
2005 SHA0 240 [WaFeLaYu]
2005 SHA1 269 [WaYiYu]
2012 SHA1 260 − 265 [St]
2005,2006 MD5 1 minute [WaFeLaYu,LeWadW,Kl]

md5 is the compression function of MD5
SHA0 is an earlier, weaker version of SHA1
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Compression	FunctionsCompression functions

A compression function is a family h : {0, 1}k × {0, 1}b+n → {0, 1}n of
hash functions whose inputs are of a fixed size b + n, where b is called the
block size.

E.g. b = 512 and n = 160, in which case

h : {0, 1}k × {0, 1}672 → {0, 1}160

hKv

x

hK (x ∥ v)
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MD	Transform

The MD transform

Design principle: To build a CR hash function

H : {0, 1}k × D → {0, 1}n

where D = {0, 1}≤264 :

• First build a CR compression function
h : {0, 1}k × {0, 1}b+n → {0, 1}n .

• Appropriately iterate h to get H, using h to hash block-by-block.
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MD	Setup

MD setup

Assume for simplicity that |M| is a multiple of b. Let

• ∥M∥b be the number of b-bit blocks in M, and write
M = M[1] . . .M[ℓ] where ℓ = ∥M∥b .

• ⟨i⟩ denote the b-bit binary representation of i ∈ {0, . . . , 2b − 1}.
• D be the set of all strings of at most 2b − 1 blocks, so that
∥M∥b ∈ {0, . . . , 2b − 1} for any M ∈ D, and thus ∥M∥b can be
encoded as above.
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The	TransformMD transform

Given: Compression function h : {0, 1}k × {0, 1}b+n → {0, 1}n .

Build: Hash function H : {0, 1}k × D → {0, 1}n .

Algorithm HK (M)
m← ∥M∥b ; M[m + 1]← ⟨m⟩ ; V [0]← 0n

For i = 1, . . . ,m + 1 do v [i ]← hK (M[i ]||V [i − 1])
Return V [m + 1]

hK0n

⟨2⟩M[2]M[1]

hK hK HK (M)
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MD	preserves	CR

• The	nice	property	of	the	MD	transform	is	that	
it	preserves	collision-resistance	(CR).

• If	we	start	with	a	CR	fixed	input-length	
compression	function	we	end	up	with	a	CR	
hash	function	taking	unbounded-length	inputs.

• There	is	no	need	to	cryptanalyze	the	latter.		
The	only	way	to	break	it	is	to	break	the	
compression	function.

To

A-



Proof	Idea

How Ah works

Let (M1,M2) be the HK -collision returned by AH . The Ah will trace the
chains backwards to find an hk -collision.
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Case	1Case 1: ∥M1∥b ≠ ∥M2∥b

Let x1 = ⟨2⟩||V1[2] and x2 = ⟨1⟩||V2[1]. Then

• hK (x1) = hK (x2) because HK (M1) = HK (M2).

• But x1 ≠ x2 because ⟨1⟩ ≠ ⟨2⟩.
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Case	2
Case 2: ∥M1∥b = ∥M2∥b

x1 ← ⟨2⟩||V1[2] ; x2 ← ⟨2⟩||V2[2]
If x1 ≠ x2 then return x1, x2
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Compression	from	Blockcipher?How are compression functions designed?

Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Let us design
keyless compression function

h : {0, 1}b+n → {0, 1}n

by
h(x ||v) = Ex(v)

Is H collision resistant?
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A	Better	Way
How are compression functions designed?

Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Keyless compression
function

h : {0, 1}b+n → {0, 1}n

may be designed as
h(x ||v) = Ex(v)⊕ v

The compression function of SHA1 is underlain in this way by a block
cipher E : {0, 1}512 × {0, 1}160 → {0, 1}160.

Mihir Bellare UCSD 42

Daries - Meyer
D contingent
prennpthn.us attack

how SHAI 's compression function
works

↳ e- comp refusing.

on

⇒
hard to solveD'epMeyer

A toro

¥x¥¥:¥¥¥!



Non-Generic	Attacks
Cryptanalytic attacks against hash functions

When Against Time Who
1993,1996 md5 216 [dBBo,Do]
2005 RIPEMD 218

2004 SHA0 251 [JoCaLeJa]
2005 SHA0 240 [WaFeLaYu]
2005 SHA1 269 [WaYiYu]
2012 SHA1 260 − 265 [St]
2005,2006 MD5 1 minute [WaFeLaYu,LeWadW,Kl]

md5 is the compression function of MD5
SHA0 is an earlier, weaker version of SHA1
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SHA3	Competition
SHA3

Submissions: 64

Round 1: 51

Round 2: 14: BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue,
Grostl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, Skein.

Finalists: 5: BLAKE, Grostl, JH, Keccak, Skein.

SHA3: 1: Keccak
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Winner:	The	Sponge	Construction
SHA3: The Sponge construction

f : {0, 1}r+c → {0, 1}r+c is a (public, invertible!) permutation.
d is the number of output bits, and c = 2d .

SHA3 does not use the MD paradigm used by SHA1 and SHA2.

Shake(M, d)— Extendable-output function, returning any given number d
of bits.
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