Hash functions

CS-466: Applied Cryptography Adam O'Neill

Adapted from http://cseweb.ucsd.edu/~mihir/cse107/

Setting the Stage

• Today we will study a second lower-level primitive, hash functions.

Setting the Stage

- Today we will study a second lower-level primitive, hash functions.
- Hash functions like MD5, SHA1, SHA256 are used pervasively.

Setting the Stage

- Today we will study a second lower-level primitive, hash functions.
- Hash functions like MD5, SHA1, SHA256 are used pervasively.
- Primary purpose is data compression, but they have many other uses and are often treated like a "magic wand" in protocol design.

Collision Resistance

Definition: A collision for a function $h: D \to \{0, 1\}^n$ is a pair $x_1, x_2 \in D$ of points such that $h(x_1) = h(x_2)$ but $x_1 \neq x_2$.

Collision Resistance

Definition: A collision for a function $h: D \to \{0, 1\}^n$ is a pair $x_1, x_2 \in D$ of points such that $h(x_1) = h(x_2)$ but $x_1 \neq x_2$.

If $|D| > 2^n$ then the pigeonhole principle tells us that there must exist a collision for *h*.

Collision Resistance

Definition: A collision for a function $h : D \to \{0, 1\}^n$ is a pair $x_1, x_2 \in D$ of points such that $h(x_1) = h(x_2)$ but $x_1 \neq x_2$.

If $|D| > 2^n$ then the pigeonhole principle tells us that there must exist a collision for *h*.

We want that even though collisions exist, they are hard to find.

Suppose
$$Keys(H) = \{ g \}$$
 then can H be CR -secure?
The formalism considers a family H : $Keys(H) \times D \to R$ of functions, meaning for each $K \in Keys(H)$ we have a map $H_K : D \to R$ defined by $H_K(x) = H(K, x)$.

Example

Let $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a blockcipher. Let $H: \{0,1\}^k \times \{0,1\}^{2n} \rightarrow \{0,1\}^n$ be defined by

(e.g. let E=AES N = 128)

Alg H(K, x[1]x[2]) $y \leftarrow E_{\mathcal{K}}(E_{\mathcal{K}}(x[1]) \oplus x[2]);$ Return y which are unequal. Claim. His not CK. Want X, [1] X, [2], X2[1] X2[2] St. $E_{k}(E_{k}(x, L)) \oplus X, LZ) = E_{k}(E_{k}(x, L) \oplus X, LZ))$ \Longrightarrow $F_{lc}(X,[I]) = F_{lc}(X_2[I]) = F$ $\rightarrow \chi_2[2] = E_K(\chi_i[1]) \oplus \chi_i[2] \oplus E_K(\chi_i[1])$

Keyless Hash Functions

We say that H: Keys $(H) \times D \rightarrow R$ is keyless if Keys $(H) = \{\varepsilon\}$ consists of just one key, the empty string.

In this case we write H(x) in place of $H(\varepsilon, x)$ or $H_{\varepsilon}(x)$.

Practical hash functions like MD5, SHA1, SHA256, SHA3, ... are keyless.

1

SHA1

Secure Hash Algorithm.

 $\begin{array}{l} \underline{\operatorname{Alg SHA1}(M)} & // |M| < 2^{64} \\ V \leftarrow \operatorname{SHF1}(\underbrace{5A827999} \parallel 6ED9EBA1 \parallel 8F1BBCDC \parallel CA62C1D6, M) \\ \operatorname{return} V & \underbrace{(\downarrow \circ \quad \bigcup_{i \downarrow \uparrow S, i} M)} \\ \underline{\operatorname{Alg SHF1}(K, M)} & // |K| = 128 \text{ and } |M| < 2^{64} \\ y \leftarrow \operatorname{shapad}(M) \\ \operatorname{Parse} y \text{ as } M_1 \parallel M_2 \parallel \cdots \parallel M_n \text{ where } |M_i| = 512 \ (1 \le i \le n) \\ V \leftarrow 67452301 \parallel \operatorname{EFCDAB89} \parallel 98BADCFE \parallel 10325476 \parallel C3D2E1F0 \\ \operatorname{for} i = 1, \ldots, n \text{ do } V \leftarrow \operatorname{shf1}(K, M_i \parallel V) \\ \operatorname{return} V \end{array}$

Underlying Compression Function

Alg shf1($K, B \parallel V$) // |K| = 128, |B| = 512 and |V| = 160Parse *B* as $W_0 \parallel W_1 \parallel \cdots \parallel W_{15}$ where $|W_i| = 32$ ($0 \le i \le 15$) Parse *V* as $V_0 \parallel V_1 \parallel \cdots \parallel V_4$ where $|V_i| = 32$ ($0 \le i \le 4$) Parse *K* as $K_0 \parallel K_1 \parallel K_2 \parallel K_3$ where $|K_i| = 32$ ($0 \le i \le 3$) for t = 16 to 79 do $W_t \leftarrow \mathsf{ROTL}^1(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16})$ $A \leftarrow V_0$; $B \leftarrow V_1$; $C \leftarrow V_2$; $D \leftarrow V_3$; $E \leftarrow V_4$ for t = 0 to 19 do $L_t \leftarrow K_0$; $L_{t+20} \leftarrow K_1$; $L_{t+40} \leftarrow K_2$; $L_{t+60} \leftarrow K_3$ for t = 0 to 79 do if $(0 \le t \le 19)$ then $f \leftarrow (B \land C) \lor ((\neg B) \land D)$ if $(20 \le t \le 39 \text{ OR } 60 \le t \le 79)$ then $f \leftarrow B \oplus C \oplus D$ if $(40 \le t \le 59)$ then $f \leftarrow (B \land C) \lor (B \land D) \lor (C \land D)$ $temp \leftarrow \mathsf{ROTL}^5(A) + f + E + W_t + L_t$ $E \leftarrow D$; $D \leftarrow C$; $C \leftarrow \text{ROTL}^{30}(B)$; $B \leftarrow A$; $A \leftarrow temp$ $V_0 \leftarrow V_0 + A$; $V_1 \leftarrow V_1 + B$; $V_2 \leftarrow V_2 + C$; $V_3 \leftarrow V_3 + D$; $V_4 \leftarrow V_4 + E$ $V \leftarrow V_0 \parallel V_1 \parallel V_2 \parallel V_3 \parallel V_4$; return V

• Hashing before digitally signing.

- Hashing before digitally signing.
- Primitive in cryptographic protocols.

- Hashing before digitally signing.
- Primitive in cryptographic protocols.
- Tool for security applications.

- Hashing before digitally signing.
- Primitive in cryptographic protocols.
- Tool for security applications.
- Tool for non-security applications.

- Hashing before digitally signing.
- Primitive in cryptographic protocols.
- Tool for security applications.
- Tool for non-security applications.
- Let's see some examples...

Password Verification

 Consider a password file stored on a remote server and clients logging in over a secure channel.

> Now only vulnerable to dictionary attack.

Er (pwd)

Chient

 $= \begin{cases} r_1 + (r_1 + (r_1 + p)) \\ r_2 + (r_2 + p) \\ r_2 + (r_2 + p) \\ r_3 + (r_2 + p) \\ r_3 + (r_2 + p) \\ r_3 + (r_3 + p)$

Serve

Compare-by-Hash

 Suppose two parties each have a large file and want to know if they have the same file.

Virus Protection

 Suppose you download an executable from somewhere on the Internet. How do you know it's not a virus?

let: H: D -> ZO, I3" be a hash function Consider for some integer parameter q! Adversory A For i=1 to q do. XIED $y_i \leftarrow H(x_i)$ IF Zi, iz Elg St. $H(X_{i,1}) = H(X_{i_2}) \land X_{i_1} \neq X_{i_2}$ then return $(X_{i_1,1}, X_{i_2})$ Else return I

Analysis
Assume that H is require meaning

$$Hy \in \{0, 13^n | H^{-1}(y)| = \frac{|D|}{2^n}$$

Then $P(TH(x_i)=y] = P(Tx_i \in H^{-1}(y)]$
 $= \frac{1}{2^n}$
then $Adv(_H^{-}(A) = C(2^n, q) \geq \frac{32(q_1)}{2^n}$
 $= \frac{2^n}{2^n}$
Neel n-bit output for $n/2$ -lit secury
e.g. for 80-6it sec. we need 160 bit
output e.g. SHA1 has 160 bit. output
 $HA256$ has 256 bit output

	aut	put la	ngth Finl
Function	n 💙	T _B	to find
MD4	128	264	
MD5	128	2^{64}	Collision
SHA1	160	2 ⁸⁰	by bday
SHA2-256	256	2^{128}	ALTACK
SHA2-512	512	2 ²⁵⁶	(())
SHA3-256	256	2 ¹²⁸	
SHA3-512	512	2 ²⁵⁶	

 T_B is the number of trials to find collisions via a birthday attack.

Non-	generic	attacks
(bday	attack is	generic)

When	Against	Time	Who
1993,1996	md5	2 ¹⁶	[dBBo,Do]
2005	RIPEMD	2 ¹⁸	
2004	SHA0	2 ⁵¹	[JoCaLeJa]
2005	SHA0	2 ⁴⁰	[WaFeLaYu]
2005	SHA1	2 ⁶⁹	[WaYiYu]
2012	SHA1	$(2^{60} - 2^{65})$	[St]
2005,2006	MD5	1 minute	[WaFeLaYu,LeWadW,KI]

md5 is the compression function of MD5 SHA0 is an earlier, weaker version of SHA1

Compression Functions

A compression function is a family $h: \{0,1\}^k \times \{0,1\}^{b+n} \to \{0,1\}^n$ of hash functions whose inputs are of a fixed size b + n, where b is called the block size. 5HA1 blocks E.g. b = 512 and n = 160, in which case $h: \{0,1\}^k \times \{0,1\}^{672} \to \{0,1\}^{160}$ Key space X h_K V

Merkle-Dangaard MD Transform

Design principle: To build a CR hash function

$$H: \{0,1\}^k \times D \to \{0,1\}^n$$

where $D = \{0, 1\}^{\leq 2^{64}}$:

- First build a CR compression function $h: \{0,1\}^k \times \{0,1\}_n^{b+n} \to \{0,1\}^n.$
- Appropriately iterate h to get H, using h to hash block-by-block.

to is ned city called pointy

MD Setup

e. J. fur SHA1 7512 fur SHA1

Assume for simplicity that |M| is a multiple of *b*. Let

- $||M||_b$ be the number of *b*-bit blocks in *M*, and write $M = M[1] \dots M[\ell]$ where $\ell = ||M||_b$.
- $\langle i \rangle$ denote the *b*-bit binary representation of $i \in \{0, \ldots, 2^b 1\}$.
- D be the set of all strings of at most 2^b − 1 blocks, so that ||M||_b ∈ {0,...,2^b − 1} for any M ∈ D, and thus ||M||_b can be encoded as above.

The Transform

Given: Compression function $h : \{0,1\}^k \times \{0,1\}^{b+n} \rightarrow \{0,1\}^n$. Build: Hash function $H : \{0,1\}^k \times D \rightarrow \{0,1\}^n$.

MD preserves CR

• The nice property of the MD transform is that it preserves collision-resistance (CR).

MD preserves CR

- The nice property of the MD transform is that it preserves collision-resistance (CR).
- If we start with a CR fixed input-length compression function we end up with a CR hash function taking <u>unbounded-length</u> inputs.

٢

- The nice property of the MD transform is that it preserves collision-resistance (CR).
- If we start with a CR fixed input-length compression function we end up with a CR hash function taking unbounded-length inputs.
- There is no need to cryptanalyze the latter.
 The only way to break it is to break the compression function.

how SHA1's compression function A Better Way works

Let $E : \{0,1\}^b \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. Keyless compression $h: \{0,1\}^{b+n} \rightarrow \{0,1\}^n \not\leftarrow \text{compression} \quad \text{function}$ function $f(x||v) = E_x(v) \bigoplus v$ f SHA1 is underlain in this way by -1. $f(x||v) = E_x(v) \bigoplus v$ for the formula formula for the formula for the formula formula formula for the formula may be designed as The compression function of SHA1 is underlain in this way by a block hard to solve cipher $E: \{0,1\}^{512} \times \{0,1\}^{160} \rightarrow \{0,1\}^{160}$. Davies-Meu $h(x\|v) = E_x(v) \Theta V$ $E_x(v) \Phi v = E_x(v') \Phi v'$

SHAI Recall: Support Non-Generic Attacks								
lengt	h 100 °							
	When	Against	lime	Who				
	1993,1996	md5	2 ¹⁶	[dBBo,Do]				
	2005	RIPEMD	2 ¹⁸					
	2004	SHA0	2 ⁵¹	[JoCaLeJa]				
	2005	SHA0	2 ⁴⁰	[WaFeLaYu]				
	2005	SHA1	269	[WaYiYu]				
	2012	SHA1	$(2^{60} - 2^{65})$	[St]				
	2005,2006	MD5	1 minute	[WaFeLaYu,LeWadW,KI]				

md5 is the compression function of MD5 SHA0 is an earlier, weaker version of SHA1

Submissions: 64

Round 1: 51

Round 2: 14: BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grostl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, Skein.

Finalists: 5: BLAKE, Grostl, JH, Keccak, Skein.

SHA3: 1: Keccak

Winner: The Sponge Construction

f: $\{0,1\}^{r+c} \rightarrow \{0,1\}^{r+c}$ is a (public, invertible!) permutation. d is the number of output bits, and c = 2d.

SHA3 does not use the MD paradigm used by SHA1 and SHA2.

Shake(M, d)— Extendable-output function, returning any given number d of bits.

Winner: The Sponge Construction

f: $\{0,1\}^{r+c} \rightarrow \{0,1\}^{r+c}$ is a (public, invertible!) permutation. d is the number of output bits, and c = 2d.

SHA3 does not use the MD paradigm used by SHA1 and SHA2.

Shake(M, d)— Extendable-output function, returning any given number d of bits.