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Setting the Stage

• We have studied our first lower-level 
primitive, blockciphers.

• Today we will study how to use it to build 
our first higher-level primitive, symmetric-
key encryption.



Syntax
A symmetric - key encryption scheme is

a triple of algorithms s E = ( He , E
,

D )
with message - space Msgsp such that :

- K is the key-gen-erationalgoritmti.at
is randomized and outputs a key K

- E is the encryption algorithm
-

that is

randomized and on inputs K
,

me Msg Sp

outputs a ciphertext c .

- D is the

dTedneeryptionalgorithmthat on inputs K
,

c

outputs a message me Msg Sp or
error
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Correctness
We say that SE is correct if
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Blockcipher Modes of OperationBlock cipher modes of operation

E : {0, 1}k × {0, 1}n → {0, 1}n a block cipher

Notation: x [i ] is the i-th n-bit block of a string x, so that x = x [1] . . . x [m]

if |x | = nm.

Always:

Alg K
K

$← {0, 1}k

return K
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Electronic Codebook ModeECB: Electronic Codebook Mode

SE = (K, E ,D) where:

Alg EK (M)

for i = 1, . . . ,m do

C [i ]← EK (M[i ])
return C

Alg DK (C )

for i = 1, . . . ,m do

M[i ]← E−1
K (C [i ])

return M

Correct decryption relies on E being a block cipher, so that EK is invertible
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Weakness of ECB
the same block of the message
will encrypt to the same block in

the ciphertext

MED - i. min ) if mEiI=mzEj3
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Introducing Randomized Encryption

• Encryption algorithm flips coins.
• Many possible ciphertexts for each 

message (using the same key).
• Decryption still recovers the (unique) 

message.

(

.
.



CBC-$: 
Cipher-block Chaining Mode with Random IV

CBC$: Cipher Block Chaining with random IV mode

SE = (K, E ,D) where:

Alg EK (M)

C [0] $← {0, 1}n

for i = 1, . . . ,m do

C [i ]← EK (M[i ]⊕ C [i − 1])
return C

Alg DK (C )

for i = 1, . . . ,m do

M[i ]← E−1
K (C [i ])⊕ C [i − 1]

return M

Correct decryption relies on E being a block cipher.
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CTR-$ Mode
CTR$ mode

If X ∈ {0, 1}n and i ∈ N then X + i denotes the n-bit string formed by
converting X to an integer, adding i modulo 2n, and converting the result
back to an n-bit string.

Alg EK (M)

C [0] $← {0, 1}n

for i = 1, . . . ,m do

P [i ]← EK (C [0] + i)
C [i ]← P [i ]⊕M[i ]

return C

Alg DK (C )

for i = 1, . . . ,m do

P [i ]← EK (C [0] + i)
M[i ]← P [i ]⊕ C [i ]

return M
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Voting with CBC-$Voting with CBC$

Suppose we encrypt M1,M2 ∈ {Y ,N} with CBC$.

EK

M1

C1[1]{0, 1}n $→ C1[0]

EK

M2

C2[1]{0, 1}n $→ C2[0]

Adversary A sees C1 = C1[0]C1[1] and C2 = C2[0]C2[1].

Suppose A knows that M1 = Y .

Can A determine whether M2 = Y or M2 = N?
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Assessing Security

• How to determine which modes of 
operations are “good” ones?

• E.g., CBC-$ seems better than ECB.  But 
is it secure? Or are there still attacks?

• Important since CBC-$ is widely used.
j
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Towards a Master Property
• As before, one approach is to list 

requirements for a “good” encryption scheme.
• Key recovery is hard.
• Message recovery is hard 
• …

• Better idea: Specify a master property that 
implies all the properties in such an (infinite) 
list.

-

-

Recovering the XOR of multiple messages .



Intuition
~ C

Encryption should hide all partial

information
. ! ! !

I *particular ,

if I encrypt a

sequence of message ,
it shouldn't

be any easier to guess
the value of

a function of these Messages
compared to when other messages
are encrypted .



IND-CPAGames for ind-cpa-advantage of an adversary A

Let SE = (K, E ,D) be an encryption scheme

Game LeftSE

procedure Initialize

K
$←K

procedure LR(M0,M1)

Return C
$← EK (M0)

Game RightSE

procedure Initialize

K
$←K

procedure LR(M0,M1)

Return C
$← EK (M1)

Associated to SE ,A are the probabilities

Pr
[

LeftASE⇒1
]

Pr
[

RightASE⇒1
]

that A outputs 1 in each world. The (ind-cpa) advantage of A is

Advind-cpa
SE

(A) = Pr
[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]
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Advantage InterpretationThe measure of success

Advind-cpa
SE

(A) ≈ 1 means A is doing well and SE is not ind-cpa-secure.

Advind-cpa
SE

(A) ≈ 0 (or ≤ 0) means A is doing poorly and SE resists the
attack A is mounting.

Adversary resources are its running time t and the number q of its oracle
queries, the latter representing the number of messages encrypted.

Security: SE is IND-CPA-secure if Advind-cpa
SE

(A) is “small” for ALL A

that use “practical” amounts of resources.

Insecurity: SE is not IND-CPA-secure if we can specify an explicit A that
uses “few” resources yet achieves “high” ind-cpa-advantage.
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Security Analysis of ECB
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Security Analysis of CTR-$Birthday attack on CTR$

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and SE = (K, E ,D)
the corresponding CTR$ symmetric encryption scheme. Suppose 1-block
messages M0,M1 are encrypted:

C0[0]C0[1]
$← E(K ,M0) C1[0]C1[1]

$← E(K ,M1)

Let us say we are lucky If C0[0] = C1[0]. If so:

C0[1] = C1[1] if and only if M0 = M1

So if we are lucky we can detect message equality and violate IND-CPA.
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The Adversary



Advantage Analysis



Birthday attack on CTR$

Advind-cpa
SE

(A) = Pr
[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]

= C (2n, q)− 0 ≥ 0.3 ·
q(q − 1)

2n

Conclusion: CTR$ can be broken (in the IND-CPA sense) in about 2n/2

queries, where n is the block length of the underlying block cipher,
regardless of the cryptanalytic strength of the block cipher.
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Security of CTR$

So far: A q-query adversary can break CTR$ with advantage ≈ q2

2n+1

Question: Is there any better attack?

Mihir Bellare UCSD 44

Security of CTR$

So far: A q-query adversary can break CTR$ with advantage ≈ q2

2n+1

Question: Is there any better attack?

Answer: NO!

We can prove that the best q-query attack short of breaking the block
cipher has advantage at most

σ2

2n

where σ is the total number of blocks encrypted.

Example: If q 1-block messages are encrypted then σ = q so the adversary
advantage is not more than q2/2n.

For E = AES this means up to 264 blocks may be securely encrypted,
which is good.
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Theorem Statement
Security of CTR$

Theorem: [BDJR98] Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher
and SE = (K, E ,D) the corresponding CTR$ symmetric encryption
scheme. Let A be an ind-cpa adversary against SE that has running time t

and makes at most q LR queries, these totalling at most σ blocks. Then
there is a prf-adversary B against E such that

Advind-cpa
SE

(A) ≤ 2 · AdvprfE (B) +
σ2

2n

Furthermore, B makes at most σ oracle queries and has running time
t +Θ(σ · n).
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• Analogous theorem holds for CBC-$.
• Provides a quantitative guarantee on how 

many blocks can be securely encrypted 
using these modes (assuming the 
underlying block cipher is good).


