Lecture 6 — Symmetric-Key
Encryption

COSC-260 Codes and Ciphers
Adam O’Neill

Adapted from http://cseweb.ucsd.edu/~mihir/cse107/



Setting the Stage

* We have studied our first lower-level
primitive,
* Today we will study how to use it to build

our first higher-level primitive, symmetric-
key encryption.
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Blockcipher Modes of Operation

ke«y(.mg"‘“‘(- €.9 hrES

ﬂ»&- Y w . - |"7,?
E - {0,1}% x {0,1}" — {0,1}" ¥ block é?ph%‘rh f ke

Notation: x[i] is the i-th n-bit block of a string x, so that x = x[1] ... x[m]
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Electronic Codebook Mode

SE = (K, E,D) where:

Alg £k (M) Alg Dk (C)
fori=1,..., mdo |fori=1,..., m do

C[i] < Ex(M[i]) MIi] + Ex*(C[i])
return C L return M
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Weakness of ECB
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Introducing Randomized Encryption

* Encryption algorithm flips coins.

* Many possible ciphertexts for each
message (using the same key).

* Decryption still recovers the (unique)
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CBC-$:

/—5

Cipher-block Chaining Mode with Random 1V
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CTR-$ Mode
Cownksy -~ node

If X € {0,1}" and i € N then X + i denotes the n-bit string formed by
converting X to an integer, adding i modulo 2", and converting the result
back to an n-bit string.
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P[i] < Ex(C[0] + /)
Cli] «+ P[i] ® M[i]
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P[i] < Ex(C[0] + /)
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return M
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Voting with CBC-$

Suppose we encrypt My, M, € {Y, N} with CBCS.
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Assessing Security

* How to determine which modes of
operations are “good” ones?

* E.g., CBC-$ seems better than ECB. But

is it secure? Or are there still attacks? —
* Important since CBC-$ is widely used.




Towards a Master Property

* As before, one approach is to list
requirements for a “good” encryption scheme.

* Key recovery is hard.

» Message recavery is hard
e  Retovertng Hre XoR2 o mowlHele messaces.

* Better idea: Specify a master property that
implies all the properties in such an (infinite)
list.



Intuition
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Let S€ = (K, E,D) be an encryption scheme

Game Leftsg Game Rightgg
procedure Initialize procedure Initialize
K&K K< K
procedure LR( My, M7) procedurd, LR(M,, M)
Return C < Ex(Mp) Return C < Ex(M;)
e ———
Associated to S&, A are the probabilities
Pr [Leftg‘g;sl} ‘ Pr [Rightég;q]
e — = ——

that A outputs 1 in each world. The (ind-cpa) advantage of A is
Adv 1P A) = Pr [Rightég;»1] — Pr [Leftgg;xl}
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Advantage Interpretation

Advglg'Cpa(A) ~ 1 means A is doing well and S€ is not ind-cpa-secure.

AdviesP*(A) ~ 0 (or < 0) means A is doing poorly and SE resists the
attack A is mounting.

Adversary resources are its running time t and the number g of its oracle
queries, the latter representing the number of messages encrypted.

Security: SE is IND-CPA-secure if Adviae P*(A) is “small” for ALL A
that use “practical” amounts of resources.

Insecurity: S€ is not IND-CPA-secure if we can specify an explicit A that
uses ‘few" resources yet achieves “high” ind-cpa-advantage.
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Security Analysis of CTR-$

Let £ : {0,1} x {0,1}" — {0,1}" be a blockcipher and S&€ = (K, &, D)
the corresponding CTR$ symmetric encryption scheme. Suppose 1-block
messages My, My are encrypted:

Go[0]Go[1] - E(K, Mo) | Gi0]Gi[1] <= E(K, My)
o[0]+ C4[0]+1
C [i)] 1 |
Ex Ex
! v
Po P4
| v
Mo —»@ M+ »@
Co[0] Cj[1 ] C4[0] C1l[1 ]

Let us say we are lucky If (y[0] = G1[0]. If so:
Co[].] = Cl[].] if and onIy if Mo = Ml

So if we are lucky we can detect message equality and violate IND-CPA.



The Adversary



Advantage Analysis



Conclusion: CTR$ can be broken (in the IND-CPA sense) in about 2"/2
queries, where n is the block length of the underlying block cipher,
regardless of the cryptanalytic strength of the block cipher.



So far: A g-query adversary can break CTR$ with advantage = g’

2n—|—1

Question: s there any better attack?

Answer: NO!

We can prove that the best g-query attack short of breaking the block
cipher has advantage at most

J2

on
where o is the total number of blocks encrypted.

Example: If g 1-block messages are encrypted then o = g so the adversary
advantage is not more than g2/2".

For E = AES this means up to 2% blocks may be securely encrypted,
which is good.



Theorem Statement

Theorem: [BDJR98] Let E : {0,1}* x {0,1}" — {0,1}" be a block cipher
and S€ = (K, &, D) the corresponding CTR$ symmetric encryption
scheme. Let A be an ind-cpa adversary against S& that has running time t
and makes at most g LR queries, these totalling at most o blocks. Then
there is a prf-adversary B against E such that

2
ind-cpa rf o
AdvgE ™ (A) < 2- Adv'(B) +

Furthermore, B makes at most o oracle queries and has running time
t+©(o - n).



« Analogous theorem holds for CBC-$.

* Provides a guantitative guarantee on how
many blocks can be securely encrypted
using these modes (assuming the
underlying block cipher is good).



