Lecture 1/2 – Public-Key Encryption Schemes

COSC-466 Applied Cryptography Adam O'Neill

Adapted from

http://cseweb.ucsd.edu/~mihir/cse107/

We will see two types of public-key encryption schemes:

We will see two types of public-key encryption schemes:

• Discrete-log based

We will see two types of public-key encryption schemes:

- Discrete-log based
- RSA-based

We will see two types of public-key encryption schemes:

- Discrete-log based
- RSA-based

Pay careful attention to efficiency, security model and assumptions needed to prove security.

Let $G = \langle g \rangle$ be a cyclic group of order m and $H: G \to \{0,1\}^k$ a (public) hash function. The DHIES PKE scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined for messages $M \in \{0,1\}^k$ via

Note: This is a simplified version of the actual scheme.

generated a shard psuedo-OTP

Which Hash Function to Use?

Our analysis will assume H is "perfect"

Question: What does this mean? Answer: *H* will be modeled as a random oracle [BR93]

> hash function viewed as a truly random function acessible only VED oracle acess (to all parties)

Random Oracle Model

A random oracle is a publicly-accessible random function

- all scheme algorithms
- the adversary

The only access to H is oracle access.

Security of DHIES

The DHIES scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to cyclic group $G = \langle g \rangle$ and (public) hash function H can be proven IND-CPA assuming

- CDH is hard in G, and
- *H* is a "random oracle," meaning a "perfect" hash function.

In practice, H(K) could be the first k bits of the sequence SHA256 $(0^8 || K) ||$ SHA256 $(0^7 1 || K) || \cdots$

ECIES

• DHIES scheme where G is an appropriate elliptic curve group.

- DHIES scheme where G is an appropriate elliptic curve group.
- Attractive performance: ciphertext size 160 bits, encryption is 2 160-bit exponentiations.

ECIES

- DHIES scheme where *G* is an appropriate elliptic curve group.
- Attractive performance: ciphertext size 160 bits, encryption is 2 160-bit exponentiations.
- Widely standardized and used, prevailing scheme in next-generation Internet protocols.

ECIES

- DHIES scheme where *G* is an appropriate elliptic curve group.
- Attractive performance: ciphertext size 160 bits, encryption is 2 160-bit exponentiations.
- Widely standardized and used, prevailing scheme in next-generation Internet protocols.

TL. for N=pq, péqure large primes (eg. 1024 bits) $\frac{1}{1} \stackrel{*}{}_{N} \cong \frac{1}{1} \stackrel{*}{}_{p} \stackrel{*}{}_{N} \frac{1}{2} \stackrel{*}{}_{q-1}$ $[7L_{N}^{*}] = (p_{-1})(q_{-1}) = e(N).$ => if at 72 then a ecm = 1 mod N a.b mod N e, d nod e(~)

 $\alpha \in \mathbb{Z}_{N}^{*}$ RSA Function

A modulus N and encryption exponent e define the RSA function $f: \mathbf{Z}_N^* \to \mathbf{Z}_N^*$ defined by

e should be relatively prime to E(N) $RSA_{N,e}(x) = f(x) = x^e \mod N$ for all $x \in \mathbf{Z}_N^*$.

A value $d \in Z^*_{\varphi(N)}$ satisfying $ed \equiv 1 \pmod{\varphi(N)}$ is called a decryption exponent.

Claim: The RSA function $f : \mathbf{Z}_N^* \to \mathbf{Z}_N^*$ is a permutation with inverse $f^{-1}: \mathbf{Z}_{\mathcal{N}}^* \to \mathbf{Z}_{\mathcal{N}}^*$ given by

$$f^{-1}(y) = y^d \mod N = 1$$

$$(\chi e)^d \mod N = \chi \mod e(v)$$

$$= \chi \mod N$$

Example
$$N = 15 = 5 \cdot 3$$

Let N = 15. So

\mathbf{Z}_{N}^{*} = {1, 2, 4, 7, 8, 11, 13, 14}				
$\varphi(N) = 8$				
${\sf Z}^*_{arphi(N)} = \{1,3,5,7\}$				
Q(N)		(())		
Let $a = 2$ and $d = 2$. Then	X	f(x)	g(f(x))	
Let $e = 5$ and $u = 5$. Then	1	1	1	
$ed \equiv 9 \equiv 1 \pmod{8}$	2	8	2	
	4	4	4	
Let	7	13	7	
	8	2	8	
$f(x) = x^3 \mod 15$	11	11	11	
$g(v) = v^3 \mod{15}$	13	7	13	
	14	14	14	

RSA Generators (N, p, q, e, d) < RSA gen (1^k)

An RSA generator with security parameter k is an algorithm \mathcal{K}_{rsa} that returns N, p, q, e, d satisfying

- *p*, *q* are distinct odd primes
- N = pq and is called the (RSA) modulus
- |N| = k, meaning $2^{k-1} \le N \le 2^k$
- $e \in \mathbf{Z}^*_{\varphi(N)}$ is called the encryption exponent
- $d \in \mathsf{Z}^*_{\varphi(N)}$ is called the decryption exponent
- $ed \equiv 1 \pmod{\varphi(N)}$

Building an RSA Generator Typically e is fixed e=21671 Then choose $P_1q \leftarrow \frac{3}{20}, 15^{k/2}$ until - P, q are primes - e is relatively prime to $\ell(N)$ primes are sufficiently dense that you don't need to try very many

One-Wayness of RSA relative to an RSA generator

The following should be hard:

Given: N, e, y where $y = f(x) = x^e \mod N$

Find: x

Formalism picks x at random and generates N, e via an RSA generator.

One-Wayness Game

The ow-advantage of *I* is

$$\mathsf{Adv}^{\mathrm{ow}}_{\mathcal{K}_{\mathrm{rsa}}}(I) = \mathsf{Pr}\left[\mathrm{OW}'_{\mathcal{K}_{\mathrm{rsa}}} \Rightarrow \mathsf{true}\right]$$

Inverting RSA (p-1)(q-1)

Inverting RSA : given N, e, y find x such that $x^e \equiv y \pmod{N}$

Factoring and RSA - We know it we can break factoring ve can break RSA - the converse is open; factoring is potentially idle. Factor (N) // N=pq For i=1 to JN if i N then ret i, 1/c exponential in MI Rhit lengtmot

Best Algorithms and Implication

"Plain RSA" Encryption

The plain RSA PKE scheme $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ associated to RSA generator \mathcal{K}_{rsa} is

$$\begin{array}{c|c} \underline{\mathsf{Alg } \mathcal{K}} \\ (N, p, q, e, d) \stackrel{\$}{\leftarrow} \mathcal{K}_{\mathrm{rsa}} \\ pk \leftarrow (N, e) \\ sk \leftarrow (N, d) \\ \mathrm{return } (pk, sk) \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg } \mathcal{E}_{pk}(M)} \\ \overline{\mathsf{C} \leftarrow M^e \mod N} \\ \mathrm{return } C \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg } \mathcal{D}_{sk}(C)} \\ \overline{\mathsf{M} \leftarrow C^d \mod N} \\ \mathrm{return } M \end{array}$$

The "easy-backwards with trapdoor" property implies

$$\mathcal{D}_{sk}(\mathcal{E}_{pk}(M)) = M$$

for all $M \in \mathbf{Z}_N^*$.

Security Analysis

formany $A(N_{e})$ $C \in LR(1, 2)$ If c = 1 vet 0Else ret 1 Bad things: * Car brute-force the msg * Ciphertext of 1 is 2.

Fact. RSA is multiplicatively nomomorphic.

What this means is that given x, mod N and x2 mod N we can efficiently compute (X, X2) mod N for any (unknown) Kix 2 Fr From RSAN, e (xi) E y=RSAN, e(x2) Can compute RSAN, e(x, x2) this is bad for clactive" attacks (not covered in this course) proof: just multiply = x, e, x, mod N = (x, x2) e mod N

"Simple RSA" Encryption Scheme

The SRSA PKE scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator \mathcal{K}_{rsa} and (public) hash function $H: \{0, 1\}^* \to \{0, 1\}^k$ encrypts k-bit messages via:

Alg \mathcal{K}	Alg $\mathcal{E}_{N,e}(M)$	Alg $\mathcal{E}_{N,d}(C_a, C_s)$
$(N, p, q, e, d) \xleftarrow{\$} \mathcal{K}_{rsa}$	$x \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} {\sf Z}^*_N$	$x \leftarrow C^d_a mod N$
$\textit{pk} \leftarrow (\textit{N}, e)$	$K \leftarrow H(x)$	$K \leftarrow H(x)$
$\textit{sk} \leftarrow (\textit{N}, \textit{d})$	$C_a \leftarrow x^e \mod N$	$M \leftarrow C_s \oplus K$
return (<i>pk</i> , <i>sk</i>)	$C_{s} \leftarrow K \oplus M$	return M
	return $(\mathcal{Q}_a, \mathcal{C}_s)$	
	Can general	ize to
	SER(M) f	or symmetric
	encrypti	on scheme SE.

Security Analysis

The SRSA PKE scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator \mathcal{K}_{rsa} and (public) hash function H: $\{0, 1\}^* \to \{0, 1\}^k$ can be proven IND-CPA assuming

- \mathcal{K}_{rsa} is one-way
- *H* is a "random oracle," meaning a "perfect" hash function.

In practice, H(K) could be the first k bits of the sequence SHA256 $(0^8 || K) ||$ SHA256 $(0^7 1 || K) || \cdots$

RSA-OAEP (PKCS #1 v2.1) [BR'94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024Hash functions: $G: \{0, 1\}^{128} \rightarrow \{0, 1\}^{894}$ and $H: \{0, 1\}^{894} \rightarrow \{0, 1\}^{128}$

• Same ciphertext length as RSA PKCS v1.5.

- Same ciphertext length as RSA PKCS v1.5.
- But has provable security guarantees:

- Same ciphertext length as RSA PKCS v1.5.
- But has provable security guarantees:
 - IND-CPA in the RO model assuming RSA is one-way [BR'94].

- Same ciphertext length as RSA PKCS v1.5.
- But has provable security guarantees:
 - IND-CPA in the RO model assuming RSA is one-way [BR'94].
 - IND-CCA in the RO model assuming RSA is one-way [FOPS'00].

- Same ciphertext length as RSA PKCS v1.5.
- But has provable security guarantees:
 - IND-CPA in the RO model assuming RSA is one-way [BR'94].
 - IND-CCA in the RO model assuming RSA is one-way [FOPS'00].
 - IND-CPA in the standard model assuming RSA is "lossy" [KOS'10].

Careful in Practice

 Attacks are possible if *d* is too small, timing information leaks, *etc.* (cf. "Twenty Years of Attacks on RSA" by Dan Boneh).

Careful in Practice

- Attacks are possible if *d* is too small, timing information leaks, *etc.* (cf. "Twenty Years of Attacks on RSA" by Dan Boneh).
- Lenstra *et al.* recently found many keys share a common divisor due to buggy randomness!!

Careful in Practice

- Attacks are possible if *d* is too small, timing information leaks, *etc.* (cf. "Twenty Years of Attacks on RSA" by Dan Boneh).
- Lenstra *et al.* recently found many keys share a common divisor due to buggy randomness!!
- Use open-source, publicly scrutinized implementations!
 How does ECIES compre How RSA-OEPP??