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Pay careful attention to efficiency, security model
and needed to prove security.
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Let G = (g) be a cyclic group of order m and H: G — {0,1}% a (public)
hash function. The DHIES PKE scheme AE = (K, £, D) is defined for
messages M € {0, 1} via

Alg Ex (M
Alg K © x(M) Alg D (Y, W)
: y
x&Zn {(T_Z)?’y'Y%g K= Y~
X+ g* M« H(K)a W
W%fH(KJEBM} return M

return (X, x) )
return (Y, W
Con ke Qﬁnefmlized‘}éé/g L[\/\3

Correct decryption is assured because K = Xy =g =Y

Note: This is a simplified version of the actual scheme.
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Which Hash Function to Use?

Our analysis will assume H is “perfect”

Question: What does this mean?

Answer: H will be modeled as a random oracle [BR93]
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Random Oracle Model

A random oracle is a publicly-accessible random function

/

W _ If H[W] = L then

H[W] & {0,1}k
<H(W) Return H [W]

— .
Oracle access to H provided to

e all scheme algorithms

e the adversary

The only access to H is oracle access.



Security of DHIES

The DHIES scheme A€ = (K, £, D) associated to cyclic group G = (g)
and (public) hash function H can be proven IND-CPA assuming

e CDH is hard in G, and

e His a “random oracle,” meaning a “perfect” hash function.

In practice, H(K) could be the first k bits of the sequence
SHA256(0°||K)[[SHA256(0"1]|K))| - -
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NRSA Function

A modulus N and encryption exponent e define the RSA function

f . Zy — £} defined by e showld be |
R_, SAN["(X): f(X) =x° mod N r¢|aL|‘v¢l\1 P L me
for all x € Z},. ﬂ—o {L”)

A value d € Z*E’V) satisfying ed =1 (mod ¢(N)) is called a decryption
exponent. ’

Claim: The RSA function f : Z}, — Z}, is a permutation with inverse
FL L, — Z, given by

T —v? mod N =
()/) y /

42 mod_N

= ¥ Moed AJ

651)0)\ wok A =



Example p-c.s.s

Let N =15. So
Zy = {1,2,4,7,8,11,13,14}
p(N) = 8
:;(/\/) — {17375?7}
A
3 x | f(x) | g(f(x))

Let e =3 and d = 3. Then 1 1 1
ed=9=1 (mod8)l 2 8 2
- ) 4 4 4
38 2 38
f(x) = x°mod 15 11| 11 11
14 | 14 14




Basic Idea for Usage
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RSA Generators )
19
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An RSA generator with security parameter k is an algorithm /C,s,; that
returns N, p, g, e, d satisfying

e p, g are distinct odd primes

e N = pq and is called the (RSA) modulus

o |N| = k, meaning 2k-1 < N < 2K

e ¢ € Z:;(N) is called the encryption exponent

e dc Z:;(N) is called the decryption exponent
e ed =1 (mod ¢(N))



Building an RSA Generator
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One-Wayness of RSA
fe\oblive o wa WSA DA’U’J“LO(

The following should be hard:
Given: N e,y where y = f(x) = x¢ mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.



One-Wayness Game

Let IC,., be a RSA generator and / an adversary.

Game OWic_

rocedure Initialize ..
P procedure Finalize(x')

$
(LVW) %e_/_Cer'S_a return (x = x’)
x< Ly, y < x2 mod N c——
return N, e, y

The ow-advantage of / is

Adve” (1) = Pr [OW,’C N true}

rsa rsa



Inverting RSA

T EASY
Know d

T EASY
Know ¢(N)

T EASY
Know p, g

]

Know N

(W) =
Inverting RSA ¢ c;l)q-\\

. given N, e,y find x such that x* =y (mod N)

because f~1(y) = y? mod N

because d = e~ mod (N)

because o(N) =(p—1)(g —1)



Factoring and RSA
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Best Algorithms and Implication

Algorithm Time taken to factor N

Naive Q(el>In V)

—

[Number Field Sieve (NFS) |/ O(el:%2n W)*(inin N)2/%)
T o i \/

quh -QX(Ponen J-I'o..{

NFS = fc 85 bit fackri~

ge C You rneg dl
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“Plain RSA” Encryption

The plain RSA PKE scheme AE = (K, £, D) associated to RSA generator
P

Irsa IS

Alg

/vg g Alg £,.(M) Alg D (C)
(k’i’?;ve’ ))<_ sa | C« M mod N | M+ CY mod N
gk o (N ’5) return C return M

return (pk, sk)

The “easy-backwards with trapdoor” property implies
Dsi(Ep(M)) = M

for all M € Z,.



Security Analysis
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“Simple RSA” Encryption Scheme

The SRSA PKE scheme AE = (K, &, D) associated to RSA generator K
and (public) hash function H: {0,1}* — {0, 1} encrypts k-bit messages

Vvia:

Alg

(N, p,q,e,d) < Ky
pk < (N, e)

sk « (N, d)

return (pk, sk)

Alg <C/‘N,e(lw)
XéZTV

K < H(x)

C, < x*mod N
Cc+— Ko M

return (?a, Cs)

Alg En 4(Ca, C)
x + Cd mod N
K « H(x)

M— C b K
return M

Canr gen e/ ({2 *]-—o

SEK[W\) for Symmelric
enuryption sduvnc SC-:-,

rsa



Security Analysis

The SRSA PKE scheme AE = (K, £, D) associated to RSA generator IC,,

and (public) hash function H: {0,1}* — {0,1}* can be proven IND-CPA
assuming

¢ ICrs

e His a “random oracle,” meaning a “perfect” hash function.

o IS one-way

In practice, H(K) could be the first k bits of the sequence
SHA256(0°||K)||SHA256(0"1||K))| - - -

S =



PKCS #1 v1.5
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Security Analysis
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RSA-OAEP (PKCS

1v2.1) [BR’94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G: {0,1}1?® — {0,1}%% and H: {0,1}%%* — {0,1}1?8

Algorithm &y (M) // M| <765
r<{0,1}'%; p + 765 — |M|

128 894

r 0% || M || 107

s T\

x < s||t \
C +— x®* mod\\V

e_(punoh\n3

return C

Com pressing

Algorithm Dy 4(C) // Cezy

x < C'mod N

s||t « x
128 894
S t
O
r al||M]| 10”7

if 2 = 0'*® then return M
else return L
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Attractive Features

 Same ciphertext length as RSA PKCS v1.5.
* But has provable security guarantees:

. assuming RSA Is
one-way [BR'94].

* IND-CCA in the RO model assuming RSA is
one-way [FOPS’00].

* IND-CPA in the standard model assuming
RSA is “lossy” [KOS’10].
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Careful in Practice

Attacks are possible if d is too small, timing
information leaks, etc. (cf. “Twenty Years of
Attacks on RSA” by Dan Boneh).

Lenstra et al. recently found many keys
due to buggy randomness!!

Use open-source, publicly scrutinized
implementations!
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