\) LO [}71\[\)&/ (\/\/3 — V1

Public-Key
Encryption

Adam O’Neill
based on http://cseweb.ucsd.edu/~mihir/cse207/

Symmetric-key Crypto

e Before Alice and Bob can communicate securely, they need to have a
common secret key Kxp.

e

e If Alice wishes to also communicate with Charlie then she and Charlie
must also have another common secret key Kxc.

r‘

o |f Alice generates Kag, Kac, they must be communicated to her
partners over private and authenticated channels.

Public-key Crypto

e Alice has a secret key that is shared with nobody, and an associated
public key that is known to everybody.

e Anyone (Bob, Charlie, ...) can use Alice's public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

e Senders don't need secrets

e [here are no shared secrets

Syntax

A public-key (or asymmetric) encryption scheme AE = (K, £, D) consists
of three algorithms, where q{ Chov e
?’ N

pk<=—— K

//\M% E e 4 > ———=—= D =Mor L

Step
Alice

Step
Step

We d
shou
could

How It Works

1: Key generation
locally computers (pk, sk) < KC and stores sk.

2: Alice enables any prospective sender to get pk.
3: The sender encrypts under pk and Alice decrypts under sk.

on't require privacy of pk but we do require authenticity: the sender
d be assured pk is really Alice’s key and not someone else's. One

Put public keys in a trusted but public “phone book™, say a

cryptographic DNS.

e Use certificates as we will see later.

Privacy

e The privacy notion is like IND-CPA for symmetric-key
encryption, except the adversary is given the public key.

IND-CPA

Let A = (K, E,D) be a PKE scheme and A an adversary.

Game Left 4¢ Game Right 4¢
procedure Initialize procedure Initialize
(pk, sk) < K ; return pk (pk, sk) < IC; return pk
procedure LR(My, My) procedure LR(My, My)
Return C < Ex(Mo) Return C < (M)

Associated to AE, A are the probabilities
Pr|Lefthe=1| Pr | Right4e=1]

that A outputs 1 in each world. The ind-cpa advantage of A is
Adv P (A) = Pr | Right/e=1| — Pr | Leftfs=1]

Explanation

The “return pk” statement in Initialize means the adversary A gets the
public key pk as input. It does not get sk.

It can call LR with any equal-length messages My, M; of its choice to get
back an encryption C & Epk(Mp) of My under sk, where b =0 in game

Left 4¢ and b =1 in game Right 4-. Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages My, My of unequal length. Any
such A is considered invalid and its advantage is undefined or O.

It outputs a bit, and wins if this bit equals b.

Building a Scheme

We would like security to result from the hardness of computing discrete
ogarithms.

_et the receiver's public key be g where G = (g) is a cyclic group. Let's
et the encryption of x be g*. Then

x hard
g — X

N~~~
Eg(x)

so to recover x, adversary must compute discrete logarithms, and we know
It can't, so are we done?

Key Encapsulatlon

e o build a PKE scheme it is often easier to first build what
Is called a key-encapsulation mechanism

Key Encapsulation

e o build a PKE scheme it is often easier to first build what
Is called a key-encapsulation mechanism

e A PKE scheme is then obtained by using hybrid
encryption (the so-called KEM-DEM paradigm)

g €
Key Encapsulation

A KEM ICEM = (KK, EK, DK) is a triple of algorithms

;ﬁj/

ey

g

¥
A4

:ﬁ’@/

¢

K¥

K € {0,1}* is a key of some key length k associated to KXEM

=

|

A

pk < ICKC
J
v
%dﬁ DK (=K
oW %
bob 7

KEM Security

Let CEM = (KK, EK, DK) be a KEM with key length k. Security

requires that if we let
(K1, C5) < EK i

-~

then Kj should look “random”. Somewhat more precisely, if we also
generate Ko < {0,1}*; b <> {0,1} then

Kb%

., 4

A has a hard time figuring out b

CV\O&QV\J C/Lw"vP//L’U/IL

KEM Security
b oY -KLEM

Let CEM = (KK, E, DK) be a KEM with key length k, and A an

adversary.
Game Leftjice Game Rightie g
procedure Initialize procedure Initialize
(pk, sk) < KK (pk, sk) <& KK
return pk h{ return pk
4
procedureB Tncapsalel procedure Enc D
P Koe{o 1}k ._.%glcpk Ko <& {0,115 (Ki, G) < EKC i
return (Ko, € return (Ki, Cj)

We allow only one call to Enc. The ind-cpa advantage of A is

Advid P (A) = Pr [Rightég = 1} Py [Leftég = 1}

Building a KEM
Y=o Y=g

We can turn DH key exchange into a KEM via
o |Let Alice have public key g* and secret key x)

e Bob picks y and sends g” to Alice as the ciphertextl{ A S e
e The key K is (a hash of) the shared DH key g = Y* = XY

The DH key is a group element. Hashing results in a key that is a string of
a desired length.

(RSN QOL\MA%VLCU(Ve Siow of DWW — yaseo ,CW ,
00} v o

El Gamal KEM «

Let G = (g) be a cyclic group of order m and H : {0,1}* — {0,1}* a (public, keyless)
hash function. Define KEM KEM = (KK, EKX, DK) by

Al
Alg KK g$ i}CX & , | Alg DK.(G,)
x &z, ?_ o TE 7o %
X + g* K:H 2) K « H(G,|Z)
return (X X) o return K
return (K, C,)
ple €\<
5
Yy <— Z, w X \l/
gx . gxy L = gy - gX)\L
H = H

X <
X <=

| D= PA
Hybrid Encryption

Ve —DerN eVt osuA T

e L
Given a KEM KEM = (KK, EK, DK) with key length k, we can build a
PKE scheme with the aid of a symmetric encryption scheme SE = (KS,

E£S.DS) that also has key length k. Namely, define the PKE schem
= (KK, &, D) via:

— P —— —_—

Alg &y (M) Alg Dy ((Ca, Gs))

(K, C) <~ EKpx | K+ DKa(Ca)

C. & ESH(M) M < DSk (Cs)
Return (C,, Cs) | Return M

_ 7

—

rem + eV

/

—P 4/“/\& N 9yim. el g ML [bive \/G tiﬁ‘uﬁ@m

DOne query 5|mpI|f|cat|on

@ Vv \WV{JO\(W\' Jg

In assessing IND-CPA security of a PKE scheme, we may assume A makes
only one LR query. It can be shown that this can decrease its advantage
by at most the number of LR queries.

Theorem: Let AE be a PKE scheme and A an ind-cpa adversary making g
LR queries. Then there is a ind-cpa adversary A; making 1 LR query such

A_,_% that
1nd cpa A) <- Adv md—cpa(Al)

and the running time of A1 Is about that of A.

3 — \ \W YW Sh
\JS(/ R un A J:V”\ _ \ 9
o - Or Gu Y CFVLO,W\, ©
(el v e q@ 'kt , | \MM%W“M?
TE et { (L prominy
Ce QPZCYM@)) GuUvTes
(\oe oght
.))
| Q@—’CC%’*’“C 'B e s S0 3¢
ey © éj | 7
| 2 n Cw:’”J\

%KDFML Hrgf{« b Vs XW <f§1>
LKC')‘?
— Ad\VWSMV A,

(’J{»,JLM"/\)

Koo A
a ‘F\‘Wjﬂ% W st quem /\0}0‘6
KL AT B

Q-
L— e

—

Hybrid Encryption

DU\,

Y v Fola rve

If the KEM and symmetric encryption scheme are both IND-CPA, then so
Is the PKE scheme constructed by hybrid encryption.

Theorem: Let KEM KEM = (KIC, EX, DK) and symmetric encryption
scheme S& = (KS,ES,DS) both have key length k, and let A = (KK,
£,D) be the corresponding PKE scheme built via hybrid encryption. Let A

1LR queryThen there are adversaries B;, Bs

be an adversary makmg
| cc(

such that ,\

Furthermore«Bg—m—a*NS one Enc query, Bs makes one LR query, and both
have running time about the same as that of A.

be ?o,’l%

Ao
o cogs (%), EV‘CKCNW\ PrOOf

With b < {0,1}; Ko < {0,1}%; (K1, C,) & EK ik

Game | Challenge ciphertext | Adversary goal
‘@ Ca, SSKl(Mb) Compute b
Gq Ca, SSKO(Mb) Compute b

e A unlikely to win in G; because of security of symmetric scheme

e Ais about as likely to win in Gy as in Gy due to KEM security

- Eaps (v), bne CW 3
E/\/\LO\WQC\C 3)

7 E'Y\CC’/\ e C« ‘)) Lfﬂ&la Am@>? "7C«L
\ <)3 /WQCAPSCKB | WCC<WG>
/

M/J L one gy o s ocode
(S vehorn Cc’cﬁ)
\c /

@\r@\ QWCAB ~ P (—51

L/ QK C)é—)LV\LO(}
(. wien Le ve celled ST e g3

o & Tne o (M)

—

L2 (- ',3 0170\/“\(\5%
%(&\(‘Q/\/SO\/V\ @ //§_{mﬁ \PJL%X
(s\, Pl) — P ot

Con A (ple)

PNASAS @ Mot § G U)
™,)Wl O(’.D{

C/S %f L]ZéMb J’W)JP}

retum @L@ Z

Dutput Als pubpwt

ey

Andil
%\Le} 2

A

Benefits

e Modular design, assurance via proof

Benefits

e Modular design, assurance via proof

e Speed: 160-bit elliptic curve exponentiation takes the
time of about block cipher operations or hashes

El Gamal KEM

Let G = (g) be a cyclic group of order m and H : {0,1}* — {0,1}* a
(public, keyless) hash function. Define KEM KEM = (KK, EX, DK) by

Alg K
x & Z,
X < g~
return (X, x)

Alg 5/CX

y EZ.: C, g
Z +— XY

K < H(C,|2)
return (K, C,)

Alg DK, (C,)

Z +— CS
K < H(C,||Z)

return K

How to prove this scheme is secure?

Random Oracle Model

~ YU\ Trnd o
< ecessrble onle VIE oracle

A random oracle is a publicly-accessible random function

w_ _ If H[W] = L then

H[W] < {0,1}%
<H(W) Return H [W]

Oracle access to H provided to

e all scheme algorithms

e the adversary

The only access to H is oracle access.

ROM EG KEM

Let G = (g) be a cyclic group of order m and H the random oracle. Define
the Random Oracle Model (ROM) KEM KEM = (KK, EK, DK) by

Alg KK
x & Z,
X — g~
return (X, x)

Alg ECY

y Sz Cy+— g7
Z +— XY

K + H(C,||Z)
return (K, G,)

Alg DKY(C,)

L +— CX
K « H(GC,||2)

return K

Algorithms EK, DK have oracle access to the random oracle H.

ROM KEM Security

Let LEM = (KK, EX, DK) be a ROM KEM with key length k, and let A
be an adversary.

Game INDCPA e procedure H(W)

procedure Initialize if H[W] = L then H[W] « {0,1}*
(pk,sk) <= KK; b<>{0,1} | return H (W]

return pk procedure Enc

procedure Finalize(b') Ko < {0,1}%; (K1, G5) < EKL
return (b = b') return (Kp, ;)

We allow only one call to Enc. The ind-cpa advantage of A is

Advis P (A) = 2 - Pr [INDCPAR v = true| — 1

ROM Security of EG KEM

(/
y
oty Y \

Claim: The EG KEM is IND-CPA secure in the RO model

In the IND-CPA game

Pk =g —= < = H

Ca:gy% A

Kp——=

where
b<>{0,1}; Ko< {0,1}%; Ky < H(g”|lg™)

We are saying A has a hard time figuring out b. Why?

The Theorem

The following says that if the CDH problem is hard in G then the EG
KEM is IND-CPA secure in the ROM.

Theorem: Let G = (g) be a cyclic group of order m and let LEM =
(KIC,EK, DK) be the ROM EG KEM over G with key length k. Let A be

an ind-cpa adversary making 1 query to Enc and q queries to the RO H.
Then there is a cdh adversary B such that

Adviie " (A) < g - Advy(B).

Furthermore the running time of B is about the same as that of A.

Intuition

Claim: The EG KEM is IND-CPA secure in the RO model

In the IND-CPA game

Pk =g~ —= < = H

Ca:gy% A

Kb%

where
b+ {0,1}; Ko< {0,1}; K1 + H(g”||g")

We are saying A has a hard time figuring out b. Why?

Intuition

g ——= = = H

g

where
X,y S Z - b {0,1}; Ko & {0, 1}";

Ki — H(g”|g™); K « Ky
Possible strategy for A:

o Query g¥||g to H to get back Z = H(g”||g¥)
e If / = K then return 1 else return 0

This startegy works! So why do we say that A can't figure out b?

Intuition

g~, gl ——= = =1 H

where
X,y S Z o b {0,1}; Ko & {0, 1}";

Ki < H(g"[lg”): K< Kb
Possible strategy for A:

e Query g¥||g¥ to H to get back Z = H(g”||g¥)
e If / = K then return 1 else return 0

This startegy works! So why do we say that A can't figure out b?

Problem: A can't compute g™ hence can’'t make the query

Intuition

g~, gl ——= = =1 H

where
X,y & Zm b<{0,1}; Ko< {0,1}%;

K1 < H(ngng); K < Kp

Observation:

e If A does not query g”||g™ to H then it cannot predict H(g”||g¥)
and hence has no chance at all to determine whether K = H(g”||g*¥)

or K is random
o If A does query g¥||g* to H it has solved the CDH problem

Games for Proof

(46

Game Go, G1

procedure Initialize
X,y & Zm K< {0,1}

return @

procedure Enc
return (K,\g”

= o) e damg,
(oad LB QAME

0
bad < true;{| H{W] <+ K|\ < “‘)d\&@@c&
return H[W] & o)
e

Assume (wlog) that A never repeats a H-query. Then

Adviie PA(A) = Pr[Gf = 1] — Pr[G§ = 1]

< Pr:GOA sets bad]

We would like to design B so that Pr[G' sets bad] < Adv%d’g(B)

subroutine EncSim
return (K, g”)
adversary B(g*, g”) ¢ ¢
$ y k £,8 subroutine HSim(W)~ /-1 0

2(/ - goéjc}éir’:;ISim | HIW] & {0,1}%: Y||Z + W

;_ij/ o] (&%) i (Lzﬁ?zg/{y and Y = g¥) then

t outbﬁtg and halt
return H[W/] =

We would like to design B so that Pr[G§' sets bad] < AdeGd,g(B)

subroutine EncSim
return (K, g¥)

adversary B(g*, g”)

K < {0,1}%
b AEncSim,HSim(gx)

subroutine HSim(W)

HIW] <& {0,1}%; Y||Z + W

if (Z=g¥ and Y = g”) then
output Z and halt

return H[W]

Problem: B can't do the test since it does not know g*.

Let G = (g) be a cyclic group of order m and B’ an adversary that has g
outputs.

Game CDHg g procedure Finalize(Zy, ..., Z,)
procedure Initialize | for i =1,...,q do

x,y<&2Z, it Z; = g then win < true
return g%, g¥ return win

The cdh-advantage of B’ is

Adv@t(B') = Pr[CDHE , = true]

Lemma: Let G = (g) be a cyclic group and B’ a cdh-adversary that has ¢
outputs. Then there is a cdh-adversary B that has 1 output, about the
same running time as B’, and

AdvZh(B') < q- AdvE2(B)

Proof:

adversary B(g*, g”)
(Z1,...,2Z4) < B'(g¥,g")

i<{1,...,q}
return Z;

We design a g-output cdh adversary B’ so that
Pr[G§' sets bad] < AdeGd’g(B’)

subroutine EncSim
adversary B'(g*,g”) | return (K,g”)

K < {0,1}*

[0 subroutine HSim (W)

b AEncSim,HSim(gX) H[W] & {O’]_}k; YHZ — W
return 71, ..., Z, i< i+1, i+ 2

return H[W]|

Then the cdh-adversary B of the theorem is obtained by applying the
lemma to B’.

DHIES and ECIES

The PKE scheme derived from KEM + symmetric encryption scheme with
e The RO EG KEM

e Some suitable mode of operation symmetric encryption scheme (e.g.
CBC9) is standardized as DHIES and ECIES

7} EUp

ECIES features:

Operation Cost

encryption 2 160-bit exp

decryption 1 160-bit exp
ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)

Instantiating the RO

We have studied the EG KEM in an abstract model where H i1s a random

function accessible only as an oracle. To get a “real” scheme we need to
instantiate H with a “real” function

How do we do this securely?

Instantiating the RO

We know that PRFs approximate random functions, meaning if

F:{0,1}° x D — {0,1}% is a PRF then the I/O behavior of F is like
that of a random function.

So can we instantiate H via F?

RO Paradigm

e Design and analyze schemes in RO model

e |n instantiation, replace RO with a hash-function based construct.

Example: H(W) = first 128 bits of SHA1(W). More generally if we need

ﬁoutput bits: Sﬂ}m/@(p " P[LQU
H(W) = first ¢ bits of SHAL(L||W) || SHAX2||W) || ...

RO Paradigm

There is no proof that the instantiated scheme is secure based on some
“standard” assumption about the hash function.

The RO paradigm is a heuristic that seems to work well in practice.
The RO model is a model, not an assumption on H. To say

“Assume SHA1 is a RO”

makes no sense: it isn't.

RO Paradigm

It yields practical, natural schemes with provable support that has held up
well in practice.

Cryptanalysts will often attack schemes assuming the hash functions in
them are random, and a RO proof indicates security against such attacks.

Bottom line on RO paradigm:
e Use, but use with care

e Have a balanced perspective: understand both strengths and
limitations

e Research it!

Counter-Example

Let AE" = (K, &', D’) be an IND-CPA PKE scheme. We modify it to a
ROM PKE scheme A€ = (K, &, D), which

e |s IND-CPA secure in the ROM, but
e Fails to be IND-CPA secure for all instantiations of the RO.

5\&/@~,> QNF9e AO \P\rk’myo\w’ 9
Y%ill@\ 7/2 OC,)

I D S

LRNTRASS I

Counter-Example

Given AE' = (K, &', D) we define AE = (K, &, D) via

Alg £5(M)

Parse M as (h) where h: {0,1}* — {0,1}*
x < {0, 1}

if H(x) = h(x) then return M

else return &, (M)

If H is a RO then for any M = (h)
Pr{H(x) = h(x)] < —-

for an adversary making g queries to H, and hence security is hardly
affected.

Counter-Example

Given AE' = (K, &', D) we define AE = (K, &, D) via

Alg &5 (M)

Parse M as (h) where h: {0,1}* — {0,1}%
x < {0,1}%

if H(x) = h(x) then return M

else return £, (M)

Now let h: {0,1}* — {0, 1}* be any fixed function, and instantiate H
with h. Then if we encrypt M = (h) we have

Epk((h) =M

so the scheme is insecure.

Chosen Ciphertext Attack

Where we are

e We've seen EG KEM and extensions in the RO model

Where we are

e We've seen EG KEM and extensions in the RO model

e Besides discrete-log-based PKE schemes, the other big
class of schemes is RSA-based (related to factoring)

Where we are

e We've seen EG KEM and extensions in the RO model

e Besides discrete-log-based PKE schemes, the other big
class of schemes is RSA-based (related to factoring)

o | et’s first look at the math behind RSA

Recall that ¢(N) = |Z},].

Claim: Suppose i,_q’ S Z:;(N)

satisfy ed =1 (mod ¢(N)). Then for any

x € £y, we have e
(x¢)? = x (mod N)
\/v_\/\/_\
Proof:
(Xe)d — Xed mod ¢(N) — Xl = x

modulo N

RSA Function

A modulus N and encryption exponent e define the RSA function
f:Zy — £} defined by

f(x) =x° mod N
for all x € Z,.

A value d € Z7) satisfying ed = 1 (mod ¢(N)) is called a decryption
exponent.

Claim: The RSA function f : Zy, — Z}, is a permutation with inverse
f~1:Zy — Z} given by el

FL(y)=y? mod N
Proof: For all x € Z, we have
FLf(x) = (x8)? =x (mod N)

by previous claim.

Example

Let N = 15. So
Z),
p(N)
o(N)
Let e =3 and d = 3. Then
ed=9=1 (mod 8)

Let

f(x) x> mod 15
pRd

g(y) y> mod 15

{1,2,4,7,8,11,13,14}

8
{1,3,5,7}
[F(x) | g(F(x))
1)) 1] | 1]
21 8\ | 2)
4 4 4
71 13 7
8| 2 | 8
11| 11| |11
13\ 7)| (13
14 14)] 14

RSA Usage

e pk=N.,e; sk=N,d
o Epk(x) =x% mod N = f(x)
e Dyl(y) =y mod N =f"1(y)

Security will rely on it being hard to compute f~1 without knowing d.
RSA is a trapdoor, one-way permutation:

e Easy to invert given trapdoor d

e Hard to invert given only N, e

RSA Generators

An RSA generator with security parameter k is an algorithm /C,s; that
returns N, p, g, e, d satisfying

e p, g are distinct odd primes

e N = pg and is called the (RSA) modulus

o |N| = k, meaning 2k-1 < N < 2k

e e € Z;’;(N) is called the encryption exponent

o dc Z;';(N) Is called the decryption exponent
e ed =1 (mod p(N))

More Math

Fact: If p, g are distinct primes and N = pq then o(N) = (p —1)(qg — 1).

Proof:

o(N) = [{1,...,N—1}| —|[{ip:1<i<q—1} —|[{ig: 1< i< p—1}]
=(N-1)—(g—-1)—(p—1)
=N—-p—qg—+1
=pg—p—q+1
=(p—1)(g—-1)
Example:
e 15=3-5
o Zj. ={1,2,4,7,8,11,13,14}
* ¢(15)=8=03-1)(5-1)

Building RSA Generators

Lo _
TN
Say we wish to have e = 3 (for efficiency). The generator K> with (even)
security parameter k:
repeat
p,q <> {2k 2K2 1} N« pg; M < (p—1)(q — 1)
until

N > 2k=1 and p, q are prime and gcd(e, M) =1
d + MOD-INV(e, M)
return N, p,qg, e, d

One-Wayness

@(\/\6 ‘\/\/Q\\/ %\(MX)(/((/()(@&(Y\/\VLMK/\&V\

The following should be hard:
Given: N e,y where y = f(x) = x¢ mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.

One-Wayness

Let IC,., be a RSA generator and / an adversary.

Game OWg

procedure Initialize
(N7p7 q7 e7 d) é ICI'S&
X@Z’,"V; y < x® mod N
return N, e, y

procedure Finalize(x')
return (x = x’)

The ow-advantage of [is

Advy”

rsa

(1) = Pr [OW,’C = true]

rsa

Inverting RSA

Inverting RSA : given N, e,y find x such that x* =y (mod N)

T EASY because f1(y) = y? mod N

Know d

T EASY because d = e~ mod ()
Know ¢(N)

T EASY because (N) =(p—1)(g —1)
Know p, g

]

Know N

Factoring

Given: N where N = pg and p, g are prime

Find: p, g

If we can factor we can invert RSA. We do not know whether the converse
Is true, meaning whether or not one can invert RSA without factoring.

Factoring

Alg FACTOR(N) // N = pq where p, g are primes

fori:2,...,{\/NW do
if N mod /i =0 then
p<i;,q<« N/i; return p,q

Factoring

Algorithm Time taken to factor N
Naive O(ed5n)
Quadratic Sieve (QS) O(e<(in N)/2(inIn N)*/2)
Number Field Sieve (NFS) | O(el-92(n N)L/3(In In N)2/3)

Factoring

Number | bit-length | Factorization | alg
RSA-400 400 1993 QS
RSA-428 428 1994 QS
RSA-431 431 1996 NF

RSA-465 465 1999 NFS
RSA-515 515 1999 NFS
RSA-576 576 2003 NFS
RSA-768 7638 2009 NFS

Factoring

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus
80-bit security: Factoring takes 259 time.
Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.

D oM S ok q

ans OMW\%/\MJ ”

RSA: What to Remember

The RSA function f(x) = x® mod N is a trapdoor one way permutation:

e Easy forward: given N, e, x it is easy to compute f(x)

e Easy back with trapdoor: Given N, d and y = f(x) it is easy to
compute x = f1(y) = y¢ mod N

e Hard back without trapdoor: Given N, e and y = f(x) it is hard to
compute x = f1(y)

Plain RSA Encryption

Q LQ,)C()/bOD

The plain RSA PKE scheme AE = (K, &, D) associated to RSA generator

KCogn 1S
Alg
Ng | Al (M) Alg D;(C)
(kp,q/,ve) < Krsa C+— M mod N| M+ C?% mod N
1; i : ((e)) return C return M
return (pk sk)

The “easy-backwards with trapdoor” property implies

Dy (Epk(M)) = M

for all M € Zy,. /\(\Q\N\OV“\U[P\/\\\SM

,_/ﬁmq@ ; WW?Q; (Pt

\w —————

RSA-KEM

The ROM SRSA (Simple RSA) KEM KEM = (K, &, D) associated to
RSA generator K., is as follows, where H : {0,1}* — {0,1}% is the RO:

Alg £/}
Alg K =t Alg DH(C,)
(N,p,q,e d) <& K., XLy x + C2 mod N
pk < (N, e) i ng) K < H(x)
sk < (N, d) Cakmx® mod N | opin K
return (pk sk) return (K, G)
{\) L[/V> \f e “\/ {

LS \(ﬁm

—

RSA-KEM

Theorem: Let K., be a RSA generator and KEM = (K, E, D) the
associated ROM SRSA KEM. Let A be an ind-cpa adversary that makes 1
Enc query and g queries to the RO H. Then there is a OW-adversary |/
such that

Adviie P (A) < Advy

v (1) Se Cumn TN

Furthermore the running time of / is about that of A plus the time for g

RSA encryptions.

L oGP

RSA OAEP
Yl cc ¥ \/1 \

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
ROs: G: {0,1}1%% — {0,1}%%* and H: {0,1}%%* — {0,1}'%°

Algorithm &y (M) // M| <765 | Algorithm Dy 4(C) // C <€z
r< {0,118, p « 765 — |M| x < C9 mod N
128 894 sft = x
s t
Cﬁ) Y pon -
PD— :>%
H Lovy WN)“\&
@
[
) r all M| 10°
* if 2 = 0'%® then return M
retur else return L

RSA-OAEP

e [ND-CPA secure in the RO model [BR’94]

E{;SQ-OAEP

e [ND-CPA secure in the RO model [BR’94]

e IND-CCA secure in the RO model [FOPS’00]

RSA-OAEP

e [ND-CPA secure in the RO model [BR’94]
e IND-CCA secure in the RO model [FOPS’00]

e IND-CPA secure in the assuming the phi-
hiding assumption [KOS’10]

RSA-OAEP

Protocols:
o SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
e SSH ver 1.0, 2.0

Standards:
e RSA PKCS #1 versions 1.5, 2.0
e |IEEE P1363
e NESSIE (Europe)
e CRYPTREC (Japan)

