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Symmetric-key Crypto
Recall Symmetric Cryptography

• Before Alice and Bob can communicate securely, they need to have a
common secret key KAB .

• If Alice wishes to also communicate with Charlie then she and Charlie
must also have another common secret key KAC .

• If Alice generates KAB ,KAC , they must be communicated to her
partners over private and authenticated channels.
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Public-key Crypto
Public Key Encryption

• Alice has a secret key that is shared with nobody, and an associated
public key that is known to everybody.

• Anyone (Bob, Charlie, . . .) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

• Senders don’t need secrets

• There are no shared secrets
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Syntax
Public Key Encryption
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Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E ,D) consists
of three algorithms, where

EM D M or ?

sk

K

C C

pk

A

Mihir Bellare UCSD 6

Correct decryption requirement

Let AE = (K, E ,D) be an asymmetric encryption scheme. The correct
decryption requirement is that

Pr[D(sk, E(pk,M)) = M] = 1

for all (pk, sk) that may be output by K and all messages M in the
message space of AE . The probability is over the random choices of E .

This simply says that decryption correctly reverses encryption to recover
the message that was encrypted. When we specify schemes, we indicate
what is the message space.
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How it works

Step 1: Key generation
Alice locally computers (pk, sk) $

 K and stores sk.

Step 2: Alice enables any prospective sender to get pk.

Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don’t require privacy of pk but we do require authenticity: the sender
should be assured pk is really Alice’s key and not someone else’s. One
could

• Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

• Use certificates as we will see later.
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Privacy

• The privacy notion is like IND-CPA for symmetric-key 
encryption, except the adversary is given the public key.



IND-CPA
The games for IND-CPA

Let AE = (K, E ,D) be a PKE scheme and A an adversary.

Game LeftAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M0)

Game RightAE

procedure Initialize

(pk , sk) $
 K ; return pk

procedure LR(M0,M1)

Return C $
 Epk(M1)

Associated to AE ,A are the probabilities

Pr
h
LeftAAE)1

i
Pr

h
RightAAE)1

i

that A outputs 1 in each world. The ind-cpa advantage of A is

Adv
ind-cpa
AE (A) = Pr

h
RightAAE)1

i
� Pr

h
LeftAAE)1

i
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Explanation

Security of PKE Schemes

Same as for symmetric encryption, except for one new element: The
adversary needs to be given the public key.

We formalize IND-CPA accordingly.
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� Pr
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IND-CPA: Explanations

The “return pk” statement in Initialize means the adversary A gets the
public key pk as input. It does not get sk.

It can call LR with any equal-length messages M0,M1 of its choice to get
back an encryption C $

 Epk(Mb) of Mb under sk, where b = 0 in game
LeftAE and b = 1 in game RightAE . Notation indicates encryption
algorithm may be randomized.

A is not allowed to call LR with messages M0,M1 of unequal length. Any
such A is considered invalid and its advantage is undefined or 0.

It outputs a bit, and wins if this bit equals b.
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = hgi is a cyclic group. Let’s
let the encryption of x be g x . Then

g x

|{z}
Eg (x)

hard
��! x

so to recover x , adversary must compute discrete logarithms, and we know
it can’t, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!

Mihir Bellare UCSD 12
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Key Encapsulation

• To build a PKE scheme it is often easier to first build what 
is called a key-encapsulation mechanism
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Key Encapsulation

• To build a PKE scheme it is often easier to first build what 
is called a key-encapsulation mechanism

• A PKE scheme is then obtained by using hybrid 
encryption (the so-called KEM-DEM paradigm)



Key EncapsulationKey Encapsulation Mechanisms (KEMs)

A KEM KEM = (KK, EK,DK) is a triple of algorithms

pk

Ca Ca KDKEK

AK

sk

KK

K 2 {0, 1}k is a key of some key length k associated to KEM
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Key Encapsulation Mechanisms (KEMs)

A KEM KEM = (KK, EK,DK) is a triple of algorithms

pk

Ca Ca KDKEK
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sk

KK

K 2 {0, 1}k is a key of some key length k associated to KEM
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KEM Security

Let KEM = (KK, EK,DK) be a KEM with key length k . Security
requires that if we let

(K1,Ca)
$
 EKpk

then K1 should look “random”. Somewhat more precisely, if we also
generate K0

$
 {0, 1}k ; b $

 {0, 1} then

Ca
?

Kb

A

A has a hard time figuring out b

Mihir Bellare UCSD 15

KEM IND-CPA security

Let KEM = (KK, EK,DK) be a KEM with key length k , and A an
adversary.

Game LeftKEM

procedure Initialize

(pk , sk) $
 KK

return pk

procedure Enc

K0
$
 {0, 1}k ; (K1,Ca)

$
 EKpk

return (K0,Ca)

Game RightKEM

procedure Initialize

(pk , sk) $
 KK

return pk

procedure Enc

K0
$
 {0, 1}k ; (K1,Ca)

$
 EKpk

return (K1,Ca)

We allow only one call to Enc. The ind-cpa advantage of A is

Adv
ind-cpa
KEM (A) = Pr

h
RightAKEM ) 1

i
� Pr

h
LeftAKEM ) 1

i
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KEM IND-CPA security
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i
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Building a KEMThe EG KEM: Idea

We can turn DH key exchange into a KEM via

• Let Alice have public key g x and secret key x

• Bob picks y and sends g y to Alice as the ciphertext

• The key K is (a hash of) the shared DH key g xy = Y x = X y

The DH key is a group element. Hashing results in a key that is a string of
a desired length.
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El Gamal KEMThe EG KEM: Specification

Let G = hgi be a cyclic group of order m and H : {0, 1}⇤ ! {0, 1}k a (public, keyless)
hash function. Define KEM KEM = (KK, EK,DK) by

Alg KK
x

$ Zm

X  g
x

return (X , x)

Alg EKX

y
$ Zm; Ca  g

y

Z  X
y

K  H(CakZ)
return (K ,Ca)

Alg DKx(Ca)
Z  C

x

a

K  H(CakZ)
return K

g
xy

K

H

x

K

Ca = g
y

y
$ Zm

g
xyg

x

H
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Hybrid EncryptionFrom KEMs to PKE: Hybrid encryption

Given a KEM KEM = (KK, EK,DK) with key length k , we can build a
PKE scheme with the aid of a symmetric encryption scheme SE = (KS,
ES,DS) that also has key length k . Namely, define the PKE scheme AE

= (KK, E ,D) via:

Alg Epk(M)

(K ,Ca)
$
 EKpk

Cs

$
 ESK (M)

Return (Ca,Cs)

Alg Dsk((Ca,Cs))

K  DKsk(Ca)
M  DSK (Cs)
Return M
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One query simplificationSimplification: For PKE we can assume just one LR query

In assessing IND-CPA security of a PKE scheme, we may assume A makes
only one LR query. It can be shown that this can decrease its advantage
by at most the number of LR queries.

Theorem: Let AE be a PKE scheme and A an ind-cpa adversary making q
LR queries. Then there is a ind-cpa adversary A1 making 1 LR query such
that

Adv
ind-cpa
AE (A)  q · Adv

ind-cpa
AE (A1)

and the running time of A1 is about that of A.
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Hybrid Encryption
Hybrid encryption works

If the KEM and symmetric encryption scheme are both IND-CPA, then so
is the PKE scheme constructed by hybrid encryption.

Theorem: Let KEM KEM = (KK, EK,DK) and symmetric encryption
scheme SE = (KS, ES,DS) both have key length k , and let AE = (KK,
E ,D) be the corresponding PKE scheme built via hybrid encryption. Let A
be an adversary making 1 LR query. Then there are adversaries Ba,Bs

such that

Adv
ind-cpa
AE (A)  2 · Advind-cpaKEM (Ba) + Adv

ind-cpa
SE (Bs) .

Furthermore Ba makes one Enc query, Bs makes one LR query, and both
have running time about the same as that of A.
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Proof

Simplification: For PKE we can assume just one LR query

In assessing IND-CPA security of a PKE scheme, we may assume A makes
only one LR query. It can be shown that this can decrease its advantage
by at most the number of LR queries.

Theorem: Let AE be a PKE scheme and A an ind-cpa adversary making q
LR queries. Then there is a ind-cpa adversary A1 making 1 LR query such
that

Adv
ind-cpa
AE (A)  q · Adv

ind-cpa
AE (A1)

and the running time of A1 is about that of A.

Mihir Bellare UCSD 21

Hybrid encryption works

If the KEM and symmetric encryption scheme are both IND-CPA, then so
is the PKE scheme constructed by hybrid encryption.

Theorem: Let KEM KEM = (KK, EK,DK) and symmetric encryption
scheme SE = (KS, ES,DS) both have key length k , and let AE = (KK,
E ,D) be the corresponding PKE scheme built via hybrid encryption. Let A
be an adversary making 1 LR query. Then there are adversaries Ba,Bs

such that

Adv
ind-cpa
AE (A)  2 · Advind-cpaKEM (Ba) + Adv

ind-cpa
SE (Bs) .

Furthermore Ba makes one Enc query, Bs makes one LR query, and both
have running time about the same as that of A.
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Benefits of hybrid encryption

Modular design and assurance via proof as above.

Also speed.

Asymmetric cryptography is orders of magnitude slower than symmetric
cryptography.

An exponentiation in a 160-bit elliptic curve group costs about the same
as 3000-4000 hashes or block cipher operations.

So performance is improved by limiting the asymmetric operations as in
hybrid encryption.
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Proof of Theorem: Intuition

With b $
 {0, 1}; K0

$
 {0, 1}k ; (K1,Ca)

$
 EKpk

Game Challenge ciphertext Adversary goal
G0 Ca, ESK1(Mb) Compute b
G1 Ca, ESK0(Mb) Compute b

• A unlikely to win in G1 because of security of symmetric scheme

• A is about as likely to win in G1 as in G0 due to KEM security

Mihir Bellare UCSD 24
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• Modular design, assurance via proof



Benefits

• Modular design, assurance via proof

• Speed: 160-bit elliptic curve exponentiation takes the 
time of about 3k-4k block cipher operations or hashes



El Gamal KEMRecall: The EG KEM

Let G = hgi be a cyclic group of order m and H : {0, 1}⇤ ! {0, 1}k a
(public, keyless) hash function. Define KEM KEM = (KK, EK,DK) by

Alg KK

x $
 Zm

X  g x

return (X , x)

Alg EKX

y $
 Zm; Ca  g y

Z  X y

K  H(CakZ )
return (K ,Ca)

Alg DKx(Ca)
Z  C x

a

K  H(CakZ )
return K

Mihir Bellare UCSD 24How to prove this scheme is secure?



Random Oracle Model
Random Oracle Model [BR93]

A random oracle is a publicly-accessible random function

If H [W ] = ? then
H [W ] $

 {0, 1}k

Return H [W ]

W

H (W )

Oracle access to H provided to

• all scheme algorithms

• the adversary

The only access to H is oracle access.
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- truly random

- accessible only via oracle



ROM EG KEMThe ROM EG KEM

Let G = hgi be a cyclic group of order m and H the random oracle. Define
the Random Oracle Model (ROM) KEM KEM = (KK, EK,DK) by

Alg KK

x $
 Zm

X  g x

return (X , x)

Alg EK
H

X

y $
 Zm; Ca  g y

Z  X y

K  H(CakZ )
return (K ,Ca)

Alg DK
H

x (Ca)
Z  C x

a

K  H(CakZ )
return K

Algorithms EK,DK have oracle access to the random oracle H.
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ROM KEM Security
ROM KEM IND-CPA security

Let KEM = (KK, EK,DK) be a ROM KEM with key length k , and let A
be an adversary.

Game INDCPAKEM

procedure Initialize

(pk , sk) $
 KK; b $

 {0, 1}
return pk

procedure Finalize(b0)
return (b = b0)

procedure H(W )

if H [W ] = ? then H [W ] $
 {0, 1}k

return H [W ]

procedure Enc

K0
$
 {0, 1}k ; (K1,Ca)

$
 EK

H

pk

return (Kb,Ca)

We allow only one call to Enc. The ind-cpa advantage of A is

Adv
ind-cpa
KEM (A) = 2 · Pr

h
INDCPAA

KEM ) true
i
� 1

Mihir Bellare UCSD 28

.



ROM Security of EG KEM
RO model security of our EG KEM

Claim: The EG KEM is IND-CPA secure in the RO model

In the IND-CPA game

A
?

Hpk = g x

Kb

Ca = g y

where
b $
 {0, 1}; K0

$
 {0, 1}k ; K1  H(g y

kg xy )

We are saying A has a hard time figuring out b. Why?
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The TheoremROM security of EG KEM

The following says that if the CDH problem is hard in G then the EG
KEM is IND-CPA secure in the ROM.

Theorem: Let G = hgi be a cyclic group of order m and let KEM =
(KK, EK,DK) be the ROM EG KEM over G with key length k . Let A be
an ind-cpa adversary making 1 query to Enc and q queries to the RO H.
Then there is a cdh adversary B such that

Adv
ind-cpa
KEM (A)  q · Adv

cdh

G ,g (B).

Furthermore the running time of B is about the same as that of A.
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The ROM EG KEM

Let G = hgi be a cyclic group of order m and H the random oracle. Define
the Random Oracle Model (ROM) KEM KEM = (KK, EK,DK) by

Alg KK

x $
 Zm

X  g x

return (X , x)

Alg EK
H

X

y $
 Zm; Ca  g y

Z  X y

K  H(CakZ )
return (K ,Ca)

Alg DK
H

x (Ca)
Z  C x

a

K  H(CakZ )
return K

Algorithms EK,DK have oracle access to the random oracle H.
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ROM KEM IND-CPA security

Let KEM = (KK, EK,DK) be a ROM KEM with key length k , and let A
be an adversary.

Game INDCPAKEM

procedure Initialize

(pk , sk) $
 KK; b $

 {0, 1}
return pk

procedure Finalize(b0)
return (b = b0)

procedure H(W )

if H [W ] = ? then H [W ] $
 {0, 1}k

return H [W ]

procedure Enc

K0
$
 {0, 1}k ; (K1,Ca)

$
 EK

H

pk

return (Kb,Ca)

We allow only one call to Enc. The ind-cpa advantage of A is

Adv
ind-cpa
KEM (A) = 2 · Pr

h
INDCPAA

KEM ) true
i
� 1
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RO model security of our EG KEM

Claim: The EG KEM is IND-CPA secure in the RO model

In the IND-CPA game

A
?

Hpk = g x

Kb

Ca = g y

where
b $
 {0, 1}; K0

$
 {0, 1}k ; K1  H(g y

kg xy )

We are saying A has a hard time figuring out b. Why?
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Intuition

A
g x , g y

K ?

H

where
x , y $
 Zm; b $

 {0, 1}; K0
$
 {0, 1}k ;

K1  H(g y
kg xy ); K  Kb

Possible strategy for A:

• Query g y
kg xy to H to get back Z = H(g y

kg xy )

• If Z = K then return 1 else return 0

This startegy works! So why do we say that A can’t figure out b?

Problem: A can’t compute g xy hence can’t make the query
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Intuition

The ROM EG KEM
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ROM KEM IND-CPA security

Let KEM = (KK, EK,DK) be a ROM KEM with key length k , and let A
be an adversary.

Game INDCPAKEM
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i
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RO model security of our EG KEM
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Intuition

A
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Problem: A can’t compute g xy hence can’t make the query
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Mihir Bellare UCSD 34

ROM security of EG KEM

The following says that if the CDH problem is hard in G then the EG
KEM is IND-CPA secure in the ROM.

Theorem: Let G = hgi be a cyclic group of order m and let KEM =
(KK, EK,DK) be the ROM EG KEM over G with key length k . Let A be
an ind-cpa adversary making 1 query to Enc and q queries to the RO H.
Then there is a cdh adversary B such that

Adv
ind-cpa
KEM (A)  q · Adv

cdh

G ,g (B).

Furthermore the running time of B is about the same as that of A.
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Games for proof

Game G0, G1

procedure Initialize

x , y $
 Zm; K

$
 {0, 1}k

return g x

procedure Enc

return (K , g y )

procedure H(W )

H[W ] $
 {0, 1}k ; Y ||Z  W

if (Z = g xy and Y = g y ) then

bad true; H[W ] K

return H[W ]

Assume (wlog) that A never repeats a H-query. Then

Adv
ind-cpa
KEM (A) = Pr[GA

1 ) 1]� Pr[GA

0 ) 1]

 Pr[GA

0 sets bad]
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Bounding the probability of setting bad

We would like to design B so that Pr[GA

0 sets bad]  Adv
cdh

G ,g (B)

adversary B(g x , g y )

K $
 {0, 1}k

b0  AEncSim,HSim(g x)

subroutine EncSim
return (K , g y )

subroutine HSim(W )

H[W ] $
 {0, 1}k ; Y ||Z  W

if (Z = g xy and Y = g y ) then
output Z and halt

return H[W ]

Problem: B can’t do the test since it does not know g xy .
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The generalized CDH problem

Let G = hgi be a cyclic group of order m and B 0 an adversary that has q
outputs.

Game CDHG ,g

procedure Initialize

x , y $
 Zm

return g x , g y

procedure Finalize(Z1, . . . ,Zq)
for i = 1, . . . , q do
if Zi = g xy then win true

return win

The cdh-advantage of B 0 is

Adv
cdh

G ,g (B
0) = Pr[CDHB

0
G ,g ) true]
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Reducing generalized CDH to CDH

Lemma: Let G = hgi be a cyclic group and B 0 a cdh-adversary that has q
outputs. Then there is a cdh-adversary B that has 1 output, about the
same running time as B 0, and

Adv
cdh

G ,g (B
0)  q · Adv

cdh

G ,g (B)

Proof:

adversary B(g x , g y )

(Z1, . . . ,Zq)
$
 B 0(g x , g y )

i $
 {1, . . . , q}

return Zi
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Bounding the probability of setting bad

We design a q-output cdh adversary B 0 so that

Pr[GA

0 sets bad]  Adv
cdh

G ,g (B
0)

adversary B 0(g x , g y )

K $
 {0, 1}k

i  0
b0  AEncSim,HSim(g x)
return Z1, . . . ,Zq

subroutine EncSim
return (K , g y )

subroutine HSim(W )

H[W ] $
 {0, 1}k ; Y ||Z  W

i  i + 1; Zi  Z
return H[W ]

Then the cdh-adversary B of the theorem is obtained by applying the
lemma to B 0.
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DHIES and ECIES [ABR]

The PKE scheme derived from KEM + symmetric encryption scheme with

• The RO EG KEM

• Some suitable mode of operation symmetric encryption scheme (e.g.
CBC$) is standardized as DHIES and ECIES

ECIES features:

Operation Cost

encryption 2 160-bit exp
decryption 1 160-bit exp

ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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But what about H?

We have studied the EG KEM in an abstract model where H is a random
function accessible only as an oracle. To get a “real” scheme we need to
instantiate H with a “real” function

How do we do this securely?
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PRF-based RO

We know that PRFs approximate random functions, meaning if
F : {0, 1}s ⇥ D ! {0, 1}k is a PRF then the I/O behavior of FK is like
that of a random function.

So can we instantiate H via F?

FK depends on a key K . Who will have K? Since the sender needs to be
able to encrypt given just pk, we need to put K in pk.

Problem: The adversary has pk and PRFs don’t preserve security when
the key is known to the adversary.

Mihir Bellare UCSD 44
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Instantiating the RO
But what about H?

We have studied the EG KEM in an abstract model where H is a random
function accessible only as an oracle. To get a “real” scheme we need to
instantiate H with a “real” function

How do we do this securely?
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Instantiating the ROPRF-based RO

We know that PRFs approximate random functions, meaning if
F : {0, 1}s ⇥ D ! {0, 1}k is a PRF then the I/O behavior of FK is like
that of a random function.

So can we instantiate H via F?

FK depends on a key K . Who will have K? Since the sender needs to be
able to encrypt given just pk, we need to put K in pk.

Problem: The adversary has pk and PRFs don’t preserve security when
the key is known to the adversary.
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RO ParadigmRO paradigm

• Design and analyze schemes in RO model

• In instantiation, replace RO with a hash-function based construct.

Example: H(W ) = first 128 bits of SHA1(W ). More generally if we need
` output bits:

H(W ) = first ` bits of SHA1(1||W ) || SHA1(2||W ) || . . .
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RO ParadigmRO paradigm

There is no proof that the instantiated scheme is secure based on some
“standard” assumption about the hash function.

The RO paradigm is a heuristic that seems to work well in practice.

The RO model is a model, not an assumption on H. To say

“Assume SHA1 is a RO”

makes no sense: it isn’t.
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RO Paradigm
Why the RO paradigm?

It yields practical, natural schemes with provable support that has held up
well in practice.

Cryptanalysts will often attack schemes assuming the hash functions in
them are random, and a RO proof indicates security against such attacks.

Bottom line on RO paradigm:

• Use, but use with care

• Have a balanced perspective: understand both strengths and
limitations

• Research it!
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Counter-ExampleA counter-example

Let AE
0 = (K, E 0,D0) be an IND-CPA PKE scheme. We modify it to a

ROM PKE scheme AE = (K, E ,D), which

• Is IND-CPA secure in the ROM, but

• Fails to be IND-CPA secure for all instantiations of the RO.
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Counter-Example
Counter-example

Given AE
0 = (K, E 0,D0) we define AE = (K, E ,D) via

Alg E
H

pk(M)

Parse M as hhi where h : {0, 1}⇤ ! {0, 1}k

x $
 {0, 1}k

if H(x) = h(x) then return M
else return E

0
pk(M)

If H is a RO then for any M = hhi

Pr[H(x) = h(x)] 
q

2k

for an adversary making q queries to H, and hence security is hardly
a↵ected.
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Counter-Example
Counter-example

Given AE
0 = (K, E 0,D0) we define AE = (K, E ,D) via

Alg E
H

pk(M)

Parse M as hhi where h : {0, 1}⇤ ! {0, 1}k

x $
 {0, 1}k

if H(x) = h(x) then return M
else return E

0
pk(M)

Now let h : {0, 1}⇤ ! {0, 1}k be any fixed function, and instantiate H
with h. Then if we encrypt M = hhi we have

E
h

pk(hhi) = M

so the scheme is insecure.
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• We’ve seen EG KEM and extensions in the RO model

• Besides discrete-log-based PKE schemes, the other big 
class of schemes is RSA-based (related to factoring)

• Let’s first look at the math behind RSA



RSA MathRSA Math

Recall that '(N) = |Z
⇤
N
|.

Claim: Suppose e, d 2 Z
⇤
'(N) satisfy ed ⌘ 1 (mod '(N)). Then for any

x 2 Z
⇤
N
we have

(xe)d ⌘ x (mod N)

Proof:

(xe)d ⌘ xed mod '(N)
⌘ x1 ⌘ x

modulo N

Mihir Bellare UCSD 52

p
142 bits

N =pg
w

Kubik

To T
ng

me



RSA Function
The RSA function

A modulus N and encryption exponent e define the RSA function
f : Z⇤

N
! Z

⇤
N
defined by

f (x) = xe mod N

for all x 2 Z
⇤
N
.

A value d 2 Z ⇤
'(N) satisfying ed ⌘ 1 (mod '(N)) is called a decryption

exponent.

Claim: The RSA function f : Z⇤
N
! Z

⇤
N
is a permutation with inverse

f �1 : Z⇤
N
! Z

⇤
N
given by

f �1(y) = yd mod N

Proof: For all x 2 Z
⇤
N
we have

f �1(f (x)) ⌘ (xe)d ⌘ x (mod N)

by previous claim.
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Example
Example

Let N = 15. So

Z
⇤
N

= {1, 2, 4, 7, 8, 11, 13, 14}

'(N) = 8

Z
⇤
'(N) = {1, 3, 5, 7}

Let e = 3 and d = 3. Then

ed ⌘ 9 ⌘ 1 (mod 8)

Let

f (x) = x3 mod 15

g(y) = y3 mod 15

x f (x) g(f (x))

1 1 1
2 8 2
4 4 4
7 13 7
8 2 8
11 11 11
13 7 13
14 14 14
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RSA UsageRSA usage

• pk = N, e; sk = N, d

• Epk(x) = xe mod N = f (x)

• Dsk(y) = yd mod N = f �1(y)

Security will rely on it being hard to compute f �1 without knowing d .

RSA is a trapdoor, one-way permutation:

• Easy to invert given trapdoor d

• Hard to invert given only N, e
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RSA Generators
RSA generators

An RSA generator with security parameter k is an algorithm Krsa that
returns N, p, q, e, d satisfying

• p, q are distinct odd primes

• N = pq and is called the (RSA) modulus

• |N| = k , meaning 2k�1
 N  2k

• e 2 Z
⇤
'(N) is called the encryption exponent

• d 2 Z
⇤
'(N) is called the decryption exponent

• ed ⌘ 1 (mod '(N))
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More Math
Some more math

Fact: If p, q are distinct primes and N = pq then '(N) = (p � 1)(q � 1).

Proof:

'(N) = |{1, . . . ,N � 1}|� |{ip : 1  i  q � 1}|� |{iq : 1  i  p � 1}|

= (N � 1)� (q � 1)� (p � 1)

= N � p � q + 1

= pq � p � q + 1

= (p � 1)(q � 1)

Example:

• 15 = 3 · 5

• Z
⇤
15 = {1, 2, 4, 7, 8, 11, 13, 14}

• '(15) = 8 = (3� 1)(5� 1)
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Building RSA Generators
Building RSA generators

Say we wish to have e = 3 (for e�ciency). The generator K3
rsa with (even)

security parameter k :

repeat

p, q $
 {2k/2�1, . . . , 2k/2 � 1}; N  pq; M  (p � 1)(q � 1)

until
N � 2k�1 and p, q are prime and gcd(e,M) = 1

d  MOD-INV(e,M)
return N, p, q, e, d
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One-Wayness
One-wayness of RSA

The following should be hard:

Given: N, e, y where y = f (x) = xe mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.
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One-Wayness
One-wayness of RSA, formally

Let Krsa be a RSA generator and I an adversary.

Game OWKrsa

procedure Initialize

(N, p, q, e, d) $
 Krsa

x $
 Z

⇤
N
; y  xe mod N

return N, e, y

procedure Finalize(x 0)
return (x = x 0)

The ow-advantage of I is

Adv
ow

Krsa
(I ) = Pr

h
OWI

Krsa
) true

i
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Inverting RSA
Inverting RSA

Inverting RSA : given N, e, y find x such that xe ⌘ y (mod N)

EASY because f �1(y) = yd mod N

Know d

EASY because d = e�1 mod '(N)

Know '(N)

EASY because '(N) = (p � 1)(q � 1)

Know p, q

?

Know N
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FactoringFactoring Problem

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the converse
is true, meaning whether or not one can invert RSA without factoring.
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FactoringA factoring algorithm

Alg FACTOR(N) // N = pq where p, q are primes

for i = 2, . . . ,
lp

N
m
do

if N mod i = 0 then
p  i ; q  N/i ; return p, q

This algorithm works but takes time

O(
p

N) = O(e0.5 lnN)

which is prohibitive.
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FactoringFactoring algorithms

Algorithm Time taken to factor N

Naive O(e0.5 lnN)

Quadratic Sieve (QS) O(ec(lnN)1/2(ln lnN)1/2)

Number Field Sieve (NFS) O(e1.92(lnN)1/3(ln lnN)2/3)
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FactoringFactoring records

Number bit-length Factorization alg

RSA-400 400 1993 QS
RSA-428 428 1994 QS
RSA-431 431 1996 NFS
RSA-465 465 1999 NFS
RSA-515 515 1999 NFS
RSA-576 576 2003 NFS
RSA-768 768 2009 NFS
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FactoringHow big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus

80-bit security: Factoring takes 280 time.

Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.
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RSA: What to RememberRSA: what to remember

The RSA function f (x) = xe mod N is a trapdoor one way permutation:

• Easy forward: given N, e, x it is easy to compute f (x)

• Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f �1(y) = yd mod N

• Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f �1(y)
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Plain RSA EncryptionPlain-RSA encryption

The plain RSA PKE scheme AE = (K, E ,D) associated to RSA generator
Krsa is

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e)
sk  (N, d)
return (pk, sk)

Alg Epk(M)

C  Me mod N
return C

Alg Dsk(C )

M  Cd mod N
return M

The “easy-backwards with trapdoor” property implies

Dsk(Epk(M)) = M

for all M 2 Z
⇤
N
.
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RSA-KEMThe ROM SRSA KEM

The ROM SRSA (Simple RSA) KEM KEM = (K, E ,D) associated to
RSA generator Krsa is as follows, where H : {0, 1}⇤ ! {0, 1}k is the RO:

Alg K

(N, p, q, e, d) $
 Krsa

pk  (N, e)
sk  (N, d)
return (pk, sk)

Alg E
H

pk

x $
 Z

⇤
N

K  H(x)
Ca  xe mod N
return (K ,Ca)

Alg D
H

sk(Ca)

x  Cd
a mod N

K  H(x)
return K
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RSA-KEMSRSA KEM security: Result

Theorem: Let Krsa be a RSA generator and KEM = (K, E ,D) the
associated ROM SRSA KEM. Let A be an ind-cpa adversary that makes 1
Enc query and q queries to the RO H. Then there is a OW-adversary I
such that

Adv
ind-cpa
KEM (A)  Adv

ow

Krsa
(I )

Furthermore the running time of I is about that of A plus the time for q
RSA encryptions.
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RSA-OAEPOAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
ROs: G : {0, 1}128 ! {0, 1}894 and H: {0, 1}894 ! {0, 1}128

Algorithm EN,e(M) // |M|  765

r
$ {0, 1}128; p  765� |M|

128 894

r

ts

0128 kM k 10p

H

G

x  s||t
C  x

e mod N

return C

Algorithm DN,d(C ) // C 2 Z⇤
N

x  C
d mod N

s||t  x

128 894

t

r

s

H

G

a kM k 10p

if a = 0128 then return M

else return ?
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RSA-OAEP

• IND-CPA secure in the RO model [BR’94]



RSA-OAEP

• IND-CPA secure in the RO model [BR’94]

• IND-CCA secure in the RO model [FOPS’00]
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RSA-OAEP

• IND-CPA secure in the RO model [BR’94]

• IND-CCA secure in the RO model [FOPS’00]

• IND-CPA secure in the standard model assuming the phi-
hiding assumption [KOS’10]



RSA-OAEP
RSA OAEP usage

Protocols:

• SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1

• SSH ver 1.0, 2.0

• . . .

Standards:

• RSA PKCS #1 versions 1.5, 2.0

• IEEE P1363

• NESSIE (Europe)

• CRYPTREC (Japan)

• . . .
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