Computational
Number Theory

Adam O’Nelll
Based on http://cseweb.ucsd.edu/~mihir/cse207/

A Basic Problem: Key Exchange

Problem: Obtain a joint secret key via interaction over a public channel:

Alice Bob
x & - X
X \
y &Y —
) Y
KA < FA(X, Y) KB < FB(y,X)

Desired properties of the protocol:
e K4 = Kpg, meaning Alice and Bob agree on a key
e Adversary given X, Y can't compute Ky

HiStory

* Cryptography existed for thousands of years as only
symmetric-key.

HiStory

* Cryptography existed for thousands of years as only
symmetric-key.

 Nobody thought secret key exchange was possible.

HiStory

* Cryptography existed for thousands of years as only
symmetric-key.

 Nobody thought secret key exchange was possible.

e |nthe 1970’s, Diffie and Hellman, and Merkle,
proposed the first secret key exchange protocols.

HiStory

Cryptography existed for thousands of years as only
symmetric-key.

Nobody thought secret key exchange was possible.

In the 1970’s, Diffie and Hellman, and Merkle,
proposed the first secret key exchange protocols.

Public-key (asymmetric) cryptography was born.

HiStory

Cryptography existed for thousands of years as only
symmetric-key.

Nobody thought secret key exchange was possible.

In the 1970’s, Diffie and Hellman, and Merkle,
proposed the first secret key exchange protocols.

Public-key (asymmetric) cryptography was born.

Protocols are based on computational group theory
and number theory so we first study that.

Some Notation

Z={..,-2,-1,0,1,2,...}
N={0,1,2,...}
Z_|_:{1,2,3,...}

For a, N € Z let gcd(a, N) be the largest d € Z, such that d divides both
a and N.

Modular Arithmetic

For N e Z, let
e Zy =1{0,1,..., N—1}
e Z)y={a€Zy : gcd(a,N) =1}
* p(N) = |Z}]

Example: N =12
e Z,,=1{0,1,2,3,4,5,6,7,8,9,10,11}
o L7, = i“fgqﬁﬂ \\g

Division and mod

INT-DIV(a, N) returns (q, r) such that
e a=gN +r
e 0<r<N

Refer to g as the quotient and r as the remainder. Then
amod N=reZy

Is the remainder when a is divided by N.
Example: INT-DIV(17,3) = (5,2) and 17 mod 3 = 2.
Def: a=b (mod N) if amod N = b mod N.

Example: 17 = 14 (mod 3)

Groups

Let G be a non-empty set, and let - be a binary operation on G. This
means that for every two points a, b € G, a value a- b is defined.

Example: G = Z7, and “" is multiplication modulo 12, meaning

a-b=abmod]12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N € Z, then G = Z}, with a- b= ab mod N is a group.

Closure

Closure: For every a,b € G we have a- bis also in G.

Example: G = Z15 with a- b = ab does not have closure because
71-5=35¢&Zq5.

Fact: If N € Z, then G = Z}, with a- b = ab mod N satisfies closure,
meaning

gcd(a, N) = ged(b, N) = 1 implies gcd(ab mod N, N) =1
Example: Let G = Z7, = {1,5,7,11}. Then
5-7mod 12 =35mod 12 =11 € Z7,

Associativity

Associativity: For every a,b,c € G we have (a-b)-c=a-(b-c).

Fact: If N € Z, then G = Z}, with a- b = ab mod N satisfies
assoclativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5-7 mod 12) - 11 mod 12 = (35 mod 12) - 11 mod 12
=11-11mod 12 =1

5.(7-11 mod 12) mod 12 = 5 - (77 mod 12) mod 12
=5-5mod12=1

Exercise: Given an example of a set G and a natural operation
a,b+— a-bon G that satisfies closure but not associativity.

|[dentity Element

Identity element: There exists an element 1 € G such that
a-1=1-a=aforall aeG.

Fact: If N € Z, and G = Z}, with a- b = ab mod N then 1 is the identity
element because a-1 mod N =1:-amod N = a for all a.

lnverses

Inverses: For every a € G there exists a unique b € G such that
a-b=b-a=1.

This b is called the inverse of a and is denoted a—! if G is understood.

Fact: If N¢ Z, and G = Z}, with a- b = ab mod N then
Vae Zy dbe Z) such that a- bmod N = 1.

We denote this unique inverse b by a~* mod N.

Example: 571 mod 12 is the b € Z%, satisfying 5b mod 12 =1, so b =

EXerclises

Let N € Z, and let G = Zpy. Prove that G is a group under the operation
a-b=(a+ b) mod N.

Let n€ Z, and let G = {0,1}". Prove that G is a group under the
operation a-b=a @ b.

Let n€ Z, and let G = {0,1}". Prove that G is not a group under the
operation a- b= a A b. (This is bit-wise AND, for example
0110 A 1101 = 0100.)

Computational Shortcuts

What is5:-8-10-16 mod 217

EXponentiation

Let G be a group and a € G. We let a° = 1 be the identity element and
for n > 1, we let

Also we let

This ensures that for all /,j € Z,
e 3T =23 .2
¢ all = (Y = ()
o 7! — (ai)—l — (a—l)i

Meaning we can manipulate exponents “as usual’.

Order

The order of a group G is its size |G|, meaning the number of elements in
It.

Example: The order of Z5; is 12 because

Z5, = {1,2,4,5,8,10,11,13, 16,17, 19,20}

Fact: Let G be a group of order m and a € G. Then

Examples: Modulo 21 we have
e 512=(53)*=20*=(-1)*=1 i
e 812=(8%)°=(1)° =1 - \

Lagrange & Sylow
* uS\Ab%mv\pw |
L ov oy e (D A (= o Sl/vtﬁjmvp
A\“(ﬂ‘d@;w e Ovdev o € e 6 O
\ S \ [& < b

¥ Sylow: T @‘“} 161 Yhen & Was
N 3\/\\0@\fou§7 N4 kaf/uff \{J

/PY‘\\(\/\-L "

FD \LJE S D]a X (’)br‘r\'\ G %VI/(Q 64/\@\/30,

Simplitying Exponentiation

Corollary: Let G be a group of order mand a € G. Then for any / € Z,

al _ a/ mod m.

e

Example: What is 5’4 mod 217

Running lime

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512 91024 52048

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.

W Mot M

Algorithms on Numbers

Algorithm Input Output Time
ADD a, b a-+ b linear
MULT a, b ab quadratic
INT-DIV a, N —————pq,r quadratic
MOD a, N amod N | quadratic
EXT-GCD | a, N — {p(d,a’,N") | quadratic

MOD-INV | aec Zy, N a—1 mod N | quadratic
MOD-EXP | a, n, N a” mod N

EXPg a, n a"c G | O(|n|) G-ops

Extended gco

[
EXT-GCD(a, N) — (d, a’, N’) such that

d=gcd(a,N)=a-a +N-N".

———=

> g —

Example: EXT-GCD(12,20) =

Extended gco

EXT-GCD(a, N) — (d,a’, N') such that
d=gcd(a,N)=a-a +N-N".

Lemma: Let (g,r) = INT-DIV(a, N). Then, gcd(a, N) = gecd(N, r)

Alg EXT-GCD(a, N) // (a, N) # (0,0)
if N =0 then return (a,1,0)
else
(g,r) « INT-DIV(a, N): (d,x, y) < EXT-GCD(N, r)
a+—y, N+ x—qy
return (d, a’, N')
Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| - |[N|). So the extended gcd can be computed

In quadratic time.

Modular Inverse

For a, N such that\gcd(a, N) = 1,|we want to compute a—1 mod N,
meaning the unique @’ € Z}, satisfying aa’ =1 (mod N)T.
But if we let (d,a’, N') «+ EXT-GCD(a, N) then

d:1:gcd(a,N):a-a’+W

v
But N-N'=0 (mod N) so aa’ =1 (mod N)

Alg MOD-INV (a, N)
(d,a’, N') + EXT-GCD(a, N)
return a’ mod N

Modular inverse can be computed in quadratic time.
%

Modular Exponentiation

Let G be a group and a € G. For n € N, we want to compute a" € G.

We know that
G@\
N——

Consider:

y <1 {m‘
fori=1,..., ndoy<+y-a

return y

Question: Is this a good algorithm?

Fast Exponentiation Idea

We can compute

9 —3 32— g% v B 5 510y 332

in just 5 steps by repeated squaring. So we can compute a” in / steps
when n = 2'.

But what if nis not a power of 27

Square-and-Multiply

Suppose the binary length of n is 5, meaning the binary representation of
n has the form bgbzbybibg. Then

n = 2%+ 23b3 +2%b, + 2 by + 2%b

A

— 16bg +8bs +4by> + 2b1 + by .

We want to compute a”. Our exponentiation algorithm will proceed to
compute the values ys, va, 3, v2, 1, Yo in turn, as follows:

ys = 1
2 a@ b
Ya = Vs — 4 %/
_ 2 b3 __ 2bs+b
o= .ab3 — b4+ Z b
_ 2 _ 4 2
Yo = y5-a 2 — Q4bataD3+Db2
_ 2 b1 _ 8bs+4b3+2b>+b
yi = y5-at = a 4+403+202+D1
_ 2 by __ 16bs4+8b3+4by+2b1+b
yO — yl a 0 — 3 s 4—|_ﬂ 3+4D2+2b1+ Do .

Lo

Square-and-Multiply

Let bin(n) = bx_1 ... by be the binary representation of n, meaning

k—1
n — Z b,'2i
1=0

Alg EXPg(a,n) //ae G, n>1
bk—l e bo < bin(n)

y +1

for i =k —1downto 0 do y < y?-a
return y

b;

The running time is O(|n|) group operations.

MOD-EXP(a, n, N) returns a” mod N in time O(|n| - |N|?), meaning is
cubic time.

G\ - 02/ | Swﬂ‘\w‘“\” ”ACMUW

— Cyclic groups =

—

o

Let G be a group of order m and let g € G. We let
(g)={g' :ieZ}.
. - F
Fact: (g)={g' :i€Z,}

Exercise: Prove the above Fact.

Fact: The size |(g)| of the set (g) is a divisor of m
Note: |(g)| need not equal m!

Definition: g € G is a generator (or primitive element) of G if (g) = G,
meaning |(g)| = m.

Definition: G is cyclic if it has a generator, meaning there exists g € G
such that g is a generator of G.

=g tel, st (0n)ea] e

: o Ly b e
Cyclic groups

Let G =\Z7,\={1,2,3,4,5,6,7,8,9,10}, which has order m = 10.

illol1][2]3]4] 5|/6[7]8]9]10]| (1

2" mod11 ||1|2(4|/8|5]10|9|7|3|6| 1| &
5 mod11 ||1[5(3|4[9| 1[5(3|4[|9]| 1| 44—
SO ﬁg@ Z@L>
2) = {1,2,3,4,5,6,7,8,9,10}
(5) = 4{1,3,4,5,9}

e 2 a generator because (2) = Z7;.
e 5 is not a generator because (5) # Z7;.

e /7, is cyclic because it has a generator.

Exerclse

Let G be the group Z7, under the operation of multiplication modulo 10.
1. List the elements of G

What is the order of G?
Determine the set (3)

2

3

4. Determine the set (9)

5 s G cyclic? Why or why not?

Discrete l0Q

If G = (g) is a cyclic group of order m then for every a € G there is a
unique exponent 1 € Z,, such that 5’ = a. We call i/ the discrete logarithm
of a to base g and denote it by

DLogG’g(a)

The discrete log function is the inverse of the exponentiation function:

DLogG’g(g") = | forallieZ,

g P08 ,¢(3) a forallaeG.

Discrete [0Q

Let G =27, =11,2,3,4,5,6,7,8,9,10}, which is a cyclic group of order
m = 10. We know that 2 is a generator, so DLog¢ 5(a) is the exponent
i € Z1p such that 2/ mod 11 = a.

iflo)1(2|3[4] 5/6|7|8]9
Y [mod1l |[1)[2|4|8|5]10]9|7 3|6

alll|2|3|4|5|6|7|8]9]|10
DLogg »(a) || O

V(_\\PY\GJS 'éﬂ"“(/lf/tﬁ

Finding cyclic groups

Y/ |
Fact 1: Let p be a prime. Then Z is cyclic. JZ’W — P
Fact 2: Let G be any group whose order m = |G]Ts a p SUmber.
Then G is cyclic.

Note: |Z3| = p — 1 is not prime, so Fact 2 doesn't imply Fact 1!

Fact 3: If F is a finite field then F \ {0} is a cycllc group under the

multiplicative operation of F.
—_—

Computing discrete logs

Let G = (g) be a cyclic group of order m with generator g € G.

Input: X € G
Desired Output: DLogg ,(X)

That is, we want x such that g* = X.

for x=0,....m—1 do
it g¥ = X then return x

Is this a good algorithm? It is
e Correct (always returns the right answer), but
e SLOW!

Run time is O(m) exponentiations, which for G = Z7 is O(p), which is
exponential time and prohibitive for large p.

Computing discrete logs

Group | Time to find discrete logarithms
- rz;{\ (e1.92(|np)1/3(|n|ni)2/3 JI== @¢£\CM \
~$ ECP r\/E — eln(p)/2j <R- € 5(() b e
———

Here p is a prime and EC, represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1-92(Ing)!/*(Ining)*/3

where g is the largest prime factor of p — 1.
In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.

Computina discrete loas

In Z5:
|p| in bits | When
431 2005
530 2007
596) (2014)

CcC— <

For elliptic curves, current record seems to be for |p| around 113.

¥ [\{O\ ~— loLH

Ay _

Elliptic curve groups

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 23°. Then

e If we work in Z7; (p a prime) we need to set [Z}| =p— 1= 1024

e But if we work on an elliptic curve group of prime order p then it
suffices to set p ~ 2160,

Why? Because “‘ s

——
o1.92(In 21024)1/3(In In 21024)2/3 %{1 /9160)

But now:
Group Size | Cost of Exponentiation
EC —$2to0 1
Lot ~ p 21024 260

@/\'L\A

Exponentiation will be 260 times faster in the smaller group!

Discrete log game

Let G = (g) be a cyclic group of order m, and A an adversary.

Game DLg ,
procedure Finalize(x')

procedure Initialize
return (x = x’)

xEZ X — g~
return X

The dl-advantage of A is

Adv{ ,(A) = Pr |DLE ; = true|

Computational Diffie-
Hellman

Let G = (g) be a cyclic group of order m with generator g € G. The CDH
problem is:

Input: X =g Gand Y =g¥eG 4—
Desired Output: g € G

This underlies security of the DH Secret Key Exchange Protocol.
Obvious algorithm: x <— DLogg ,(X); Return Y.

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.

CDH Game

Let G = (g) be a cyclic group of order m, and A an adversary.

Game CDHg 4

proce$dure Initialize procedure Finalize(Z)
X, Y < Zm return (Z = g™v)

X<+ g5 Yegr

return X, Y

The cdh-advantage of A is

Advih(A) = Pr|CDHE , = true]

Bullding cyclic groups

 Need large groups over which schemes can work

Bullding cyclic groups

 Need large groups over which schemes can work

 We need generators in these groups

Bullding cyclic groups

 Need large groups over which schemes can work
 We need generators in these groups

 How to do this efficiently?

Bullding cyclic groups

To find a suitable prime p and generator g of Z;:

e Pick numbers p at random until p is a prime of the desired form

e Pick elements g from Z7 at random until g is a generator

For t

his to work we need to know

ow to test if p is prime

ow many numbers in a given range are primes of the desired form
ow to test if g is a generator of Z; when p is prime

ow many elements of Z;, are generators

FINdINg primes

Desired: An efficient algorithm that given an integer k returns a prime
pec {2k=1 .. 2Kk — 1} such that g = (p — 1)/2 is also prime.
Alg Findprime(k)
do
p& {2k 2k -1}
until (p is prime and (p — 1)/2 is prime)
return p

e How do we test primality?

e How many iterations do we need to succeed?

Primality testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

fori=2,...,[v/N] do
it N mod i/ = 0 then return false
return true

Density of primes

Let 7(N) be the number of primes in the range 1,..., N. So if
p<{1,..., N} then

Pr[p is a prime] = W(/\//V)
N
Fact: w(N) ~ in(IV)
So .
Pr[p is a prime] ~ in(IV)

If N = 21924 this is about 0.001488 ~ 1/1000.

So the number of iterations taken by our algorithm to find a prime is not
too big.

S .
Sl ¥ oy e e

DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g

of Z,).
Alice Bob

et 19

$ o N

X< Lp_1; X+ g¥mod p @
Laob e e — X
% yﬁzp_l; Y < g¥ modp
Y
Ka < Y mod p Kg < XY mod p

o YX=(g¥) =g =(g%) = XY modulo p, so Kx = Kg
e Adversary is faced with the CDH problem.

r__——/\—/__/—_’\/____’

DH Secret Key Exchange

e How do we pick a large prime p, and how large is large enough?
e What does it mean for g to be a generator modulo p?

e How do we find a generator modulo p?

e How can Alice quickly compute x — g* mod p?

e How can Bob quickly compute y — g¥ mod p?

e Why is it hard to compute (g* mod p, g”¥ mod p) — g mod p?

