Authenticated
Encryption

Adam O’Neill
Based on http://cseweb.ucsd.edu/~mihir/cse107/

Motivation

In practice we often want both privacy and authenticity.
Example: A doctor wishes to send medical information M about Alice to
the medical database. Then

e \We want data privacy to ensure Alice's medical records remain
confidential.

e We want authenticity to ensure the person sending the information is
really the doctor and the information was not modified in transit.

We refer to this as authenticated encryption.

Syntax

Syntactically, an authenticated encryption scheme is just a symmetric
encryption scheme A€ = (I, &, D) where

M ™ E e ¢ »Cc» o —» Mor.l

Security

e The same notion of privacy applies, namely IND-CPA

Security

e The same notion of privacy applies, namely IND-CPA

e For authenticity, the adversary’s goal is to get the receiver
to accept a “non-authentic” ciphertext (i.e., not actually
transmitted by the sender)

INT-CTXT

Let A = (K, E&,D) be a symmetric encryption scheme and A an
adversary.

Game INTCTXT 4¢

procedure Initialize procedure Finalize(C)
KK S+ () M «+ Dk/(C)

procedure Enc(M) if (CZSAM# 1) then
C & Ex(M) return true

S« Su{C} Else return false

Return C

The int-ctxt advantage of A is

Adv'iE 5 (A) = PrINTCTXT e = true]

Integrity + Privacy

The goal of authenticated encryption is to provide both integrity and
privacy. We will be interested in IND-CPA + INT-CTXT.

Plain Encryption: CBC$

Alg Ex(M
S f()) Alg Dk(C)
C[0] 10,1} Fori=1,...,mdo
Fori=1,....,mdo M Py :
I A . M[i] < B, (Cli]) & Cli — 1]
Cli] = Ex(Cli =1] & M[i]) | Return M
Return C
M[1] M[2] M[m]
Wan Wan Wan
NP NP, NP
! !
c[o] — C[1] —- C[2] — C[m]

Question: Is CBC$ encryption INT-CTXT secure?

Plain Encryption Does Not
Provide Integrity

Aleg £ (M
S f()) Alg Dk (C)
C[0] < {0, 1} Fori=1,...,mdo
Fori=1.....mdo : 1 : :
A . Mli] < E, " (C[i]) ® C[i — 1]
Cli] + Ex(C[i — 1] & M[i]) Return M “
Return C

adversary A

C[0]C[1]C[2] & {0,1}3n
Return C[0]C[1]C][2]

Then
Advgee™t(A) =1
This violates INT-CTXT.

A scheme whose decryption algorithm never outputs L cannot provide
integrity!

Encryption with
Redundancy

M[1] M]2] M[m] h(M)
SP SP S¥ SP
Ex Ek Ek Ex
B 'R ! !
C[0] — C[1] — C[2 — C[m] — C[m+ 1]

Here E: {0,1}% x {0,1}" — {0,1}" is our block cipher and h: {0,1}* —
{0,1}" is a “redundancy” function, for example

o h(MI[1]...M[m]) =0"

o h(M[1]...M[m])=M[1] & --- & M[m]

o A CRC

o h(MI[1]...M[m]) is the first n bits of SHAL(M([1]... M[m]).

The redundancy is verified upon decryption.

Encryption with
Redundancy

M[1] M2] M[m] h(M)
Y D Y NP
Exl [Ec] - |[Ex] |[Ex
' N ! !

clo] - ¢ — C[2] = Clm]) C[m+1]

Let £: {0,1}* x {0,1}" — {0,1}" be our block cipher and h: {0,1}* —
{0,1}" a redundancy function. Let S€ = (K, &', D’) be CBC$ encryption
and define the encryption with redundancy scheme AE = (IC, &, D) via

Alg Ex(M) Alg Dk (C)

M[1]... M[m] < M M[1]... M[m|M[m + 1] < D, (C)
M[m + 1] < h(M) if (M[m+ 1] = h(M)) then

C <& (M[1]... M[m]M[m + 1]) return M[1]... M[m]

return C else return L

Does it Work?

MI1]

9

Ex

.
Clo] — 1]

M|2]

9

Ex

-
C[2

M([m]

N

\ 4

Ex

r:

Ex

f
Clm] =

Y
Clm + 1]

The adversary will have a hard time producing the last enciphered block of

d NEW Message.

Attacks

adversary A

M[1] < {0,1}"; M[2] < h(M[1])
C[0]C[1]C[2]C[3] < Enc(M[1]M]2])
Return C[0]C[1]C|[2]

h(M[1])

—~
M M) h%gw[z])

Ex Ex Ex
v v v
clo] — cli] — c2] — C[3

This attack succeeds for any (not secret-key dependent) redundancy
function h.

WEP Attack

A “real-life” rendition of this attack broke the 802.11 WEP protocol, which
instantiated h as CRC and used a stream cipher for encryption [BGW].

What makes the attack easy to see is having a clear, strong and formal
security model.

Generic Composition

Build an authenticated encryption scheme AE = (K, £, D) by combining

e a given IND-CPA symmetric encryption scheme S€ = (K, &', D)
e a given PRF F: {0,1}* x {0,1}* — {0,1}"

CBC$-AES | CTR$-AES

HMAC-SHA1
CMAC
ECBC

Generic Composition

Build an authenticated encryption scheme AE = (K, &, D) by combining

e a given IND-CPA symmetric encryption scheme S€ = (K, &', D’)
e agiven PRF F:{0,1}* x {0,1}* — {0,1}"

A key K = K¢||K,, for AE always consists of a key K for S€ and a key
K, for F:

Alg K

Ke <& K'; K < {0, 1}

Return Kc||Kpm

Generic Composition

The order in which the primitives are applied is important. Can consider

Method Usage

Encrypt-and-MAC (E&M) SSH
MAC-then-encrypt (MtE) | SSL/TLS
Encrypt-then-MAC (EtM) IPSec

Encrypt-and-MAC

AE = (K, E,D) is defined by

Alg Eic.|ikn (M) Alg Dy ik, (C'|| T)

C' & & (M) M« Dje (C)

T < Fx (M) If (T = Fx,(M)) then return M
Return C'|| T Else return L

Security | Achieved?

IND-CPA
INT-CTXT

MAC-then-Encrypt

AE = (K, E,D) is defined by

Alg .|k, (M) Alg Dy k,,(C)

T + Fg, (M) M||T < Dj (C)

C< & (M||T) If (T = Fk_,(M)) then return M
Return E’ Else return L

Security | Achieved?

IND-CPA
INT-CTXT

Encrypt-then-MAC

AE = (K, &E,D) is defined by

Alg &k, |k, (M) Alg Dy ik, (C'||T)

C' < & (M) M «+ D} (C')

T + Fx_ (C') If (T = Fk,(C")) then return M
Return C'|| T Else return L

Security | Achieved?

IND-CPA
INT-CTXT

Two keys?

We have used separate keys K, K, for the encryption and message
authentication. However, these can be derived from a single key K via
Ke = Fk(0) and K, = Fk(1), where F is a PRF such as a block cipher,
the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message
authentication is error-prone, but works if done correctly.

Generic Composition in
Practice

AE in is based on | which in and in this
general is | case is

SSH E&M insecure secure

SSL MtE insecure insecure

SSL + RFC 4344 | MtE insecure secure

IPSec EtM secure secure

WinZip EtM secure Insecure

Why?

e Encodings

e Specific “E" and “M" schemes

e For WinZip, disparity between usage and security model

AE in SSH

M
'

Encode

|

counter len(M))len(Pad) | M| Pad

Y

Encrypty MACk,,

' '

C T

SSH2 encryption uses inter-packet chaining which is insecure [D, BKN].
RFC 4344 [BKN] proposed fixes that render SSH provably IND-CPA +
INT-CTXT secure. Fixes recommended by Secure Shell Working Group
and included in OpenSSH since 2003. Fixes included in PuTTY since 2008.

