
Foundations of
Applied Cryptography

Adam O’Neill
Based on http://cseweb.ucsd.edu/~mihir/cse207/

Setting	the	Stage

• We	now	have	two	lower-level	primitives	in	our	
tool	bag:	blockciphers	and	hash	functions.

Setting	the	Stage

• We	now	have	two	lower-level	primitives	in	our	
tool	bag:	blockciphers	and	hash	functions.

• Today	we	study	our	second	higher-level	
primitive,	message	authentication	codes.

Setting	the	Stage

• We	now	have	two	lower-level	primitives	in	our	
tool	bag:	blockciphers	and	hash	functions.

• Today	we	study	our	second	higher-level	
primitive,	message	authentication	codes.

• Note	that	authenticity	of	data	is	arguably	even	
more	important	than	privacy.

Integrity	and	AuthencitiyIntegrity and authenticity

The goal is to ensure that

• M really originates with Alice and not someone else

• M has not been modified in transit

Mihir Bellare UCSD 2

←

←

Example:	Electronic	Banking
Integrity and authenticity example

Alice
Bob
(Bank)

Alice

Pay $100 to Charlie

-

Adversary Eve might

• Modify “Charlie” to “Eve”

• Modify “$100” to “$1000”

Integrity prevents such attacks.

Mihir Bellare UCSD 3

Syntax	and	UsageMessage authentication codes

A message authentication code T : Keys⇥D ! R is a family of functions.
The envisaged usage is shown below, where A is the adversary:

T-
M

-

-
T

-

A
-

-

M
0

T
0

-

-

V

? ?

K

?$

Keys

-
d

We refer to T as the MAC or tag. We have defined

Algorithm VK (M 0,T 0)

If TK (M 0) = T
0 then return 1 else return 0

Mihir Bellare UCSD 4

(K
,
I)

F-

On•80gcannot

To

UsageMAC usage

Sender and receiver share key K .

To authenticate M, sender transmits (M,T) where T = TK (M).

Upon receiving (M 0,T 0), the receiver accepts M 0 as authentic i↵
VK (M 0,T 0) = 1, or, equivalently, i↵ TK (M 0) = T

0.

Mihir Bellare UCSD 5

I
-

•

cannon
cat

us
'

our -

UF-CMAUF-CMA

Let T : Keys×D → R be a message authentication code. Let A be an
adversary.

Game UFCMAT

procedure Initialize

K
$← Keys ; S ← ∅

procedure Tag(M)
T ← TK (M); S ← S ∪ {M}
return T

procedure Finalize(M,T)
If M ∈ S then return false
If M '∈ D then return false
Return (T = TK (M))

The uf-cma advantage of adversary A is

Advuf-cma
T (A) = Pr

[

UFCMA
A
T ⇒ true

]

Mihir Bellare UCSD 6

Un forge ability under chosen

Msg .

e*#F
mangosteen

attack

a M*

Explanation
UF-CMA: Explanations

Adversary A does not get the key K .

It can call Tag with any message M of its choice to get back the correct
tag T = TK (M).

To win, the adversary A must output a message M 2 D and a tag T that
are

• Correct: T = TK (M)

• New: M 62 S , meaning M was not a query to Tag

Interpretation: Tag represents the sender and Finalize represents the
receiver. Security means that the adversary can’t get the receiver to
accept a message that is not authentic, meaning was not already
transmitted by the sender.

Mihir Bellare UCSD 7

Lower-Bound	on	Tag	Length
Exercise: Tag lengths

Let T : Keys⇥ D ! {0, 1}` be a message authentication code. Specify in
pseudocode an e�cient adversary A making zero Tag queries and
achieving Adv

uf-cma
T (A) = 2�`.

Conclusion: Tags have to be long enough.

For 80 bit security, tags have to be at least 80 bits.

Mihir Bellare UCSD 8

Basic	CBC-MAC
Example: Basic CBC MAC

Let E : {0, 1}k × B → B be a blockcipher, where B = {0, 1}n . View a
message M ∈ B∗ as a sequence of n-bit blocks, M = M[1] . . .M[m].

The basic CBC MAC T : {0, 1}k × B∗ → B is defined by

Alg TK (M)

C [0]← 0n

for i = 1, . . . ,m do C [i]← EK (C [i − 1] ⊕ M[i])
return C [m]

M[1] M[2] M[m]

EK EKEKEK

M[m − 1]

C [m] = TK (M)

Mihir Bellare UCSD 9

Example: Basic CBC MAC

Let E : {0, 1}k ⇥ B ! B be a blockcipher, where B = {0, 1}n. View a
message M 2 B

⇤ as a sequence of n-bit blocks, M = M[1] . . .M[m].

The basic CBC MAC T : {0, 1}k ⇥ B
⇤
! B is defined by

Alg TK (M)

C [0] 0n

for i = 1, . . . ,m do C [i] EK (C [i � 1] � M[i])
return C [m]

M[1] M[2] M[m]

EK EKEKEK

M[m � 1]

C [m] = TK (M)

Mihir Bellare UCSD 9

at
' ¥

"

of

Splicing	AttackSplicing attack on basic CBC MAC

Alg TK (M)

C [0] 0n

for i = 1, . . . ,m do

C [i] EK (C [i � 1] � M[i])
return C [m]

adversary A

Let x 2 {0, 1}n

T1 Tag(x)
M x ||T1 � x

Return M,T1

Then,

x T1 � x

T1 T1

EK EK

TK (M) = EK (EK (x) � T1 � x)

= EK (T1 � T1 � x)

= EK (x)

= T1

Mihir Bellare UCSD 10

AT

. :

* so

*
O

'

O

Replay	AttacksReplay

Suppose Alice transmits (M1,T1) to Bank where M1 =“Pay $100 to
Bob”. Adversary

• Captures (M1,T1)

• Keeps re-transmitting it to bank

Result: Bob gets $100, $200, $300,...

Our UF-CMA notion of security does not ask for protection against replay,
because A will not win if it outputs M,T with M 2 S , even if T = TK (M)
is the correct tag.

Question: Why not?

Answer: Replay is best addressed as an add-on to standard message
authentication.

Mihir Bellare UCSD 14

<

Using	Timestamps
Preventing Replay Using Timestamps

Let TimeA be the time as per Alice’s local clock and TimeB the time as
per Bob’s local clock.

• Alice sends (M,TK (M),TimeA)

• Bob receives (M,T ,Time) and accepts iff T = TK (M) and
|TimeB − Time| ≤ ∆ where ∆ is a small threshold.

Does this work?

Mihir Bellare UCSD 14

Using	Timestamps
Preventing Replay Using Timestamps

Let TimeA be the time as per Alice’s local clock and TimeB the time as
per Bob’s local clock.

• Alice sends (M, TK (MkTimeA),TimeA)

• Bob receives (M,T ,Time) and accepts i↵ TK (MkTime) = T and
|TimeB � Time|  � where � is a small threshold.

Mihir Bellare UCSD 17

Using	Counters
Preventing Replay Using Counters

Alice maintains a counter ctrA and Bob maintains a counter ctrB . Initially
both are zero.

• Alice sends (M,TK (M‖ctrA)) and then increments ctrA
• Bob receives (M,T). If TK (M‖ctrB) = T then Bob accepts and
increments ctrB .

Counters need to stay synchronized.

Mihir Bellare UCSD 17

PRF-as-a-MAC
Any PRF is a MAC

If F is PRF-secure then it is also UF-CMA-secure:

Theorem [GGM86,BKR96]: Let F : {0, 1}k ×D → {0, 1}n be a family of
functions. Let A be a uf-cma adversary making q Tag queries and having
running time t. Then there is a prf-adversary B such that

Advuf-cma
F (A) ≤ AdvprfF (B) +

2

2n
.

Adversary B makes q + 1 queries to its Fn oracle and has running time t

plus some overhead.

We do not prove this here, but we give a little intuition.

Mihir Bellare UCSD 18

fight
n E 128 AES

reduction

PRF	Domain	ExtensionPRF domain extension

A family of functions F : Keys⇥ D ! R is

• FIL (Fixed-input-length) if D = {0, 1}` for some `

• VIL (Variable-input-length) if D is a “large” set like D = {0, 1}⇤ or

D = {M 2 {0, 1}⇤ : 0 < |M| < n2n and |M| mod n = 0 } .

for some n � 1 or ...

We have families we are willing to assume are PRFs, namely blockciphers
and compression functions, but they are FIL.

PRF Domain Extension Problem: Given a FIL PRF, construct a VIL
PRF.

Mihir Bellare UCSD 24

*

PRF	Domain	ExtensionPRF domain extension

PRF Domain Extension Problem: Given a FIL PRF, construct a VIL
PRF.

The basic CBC MAC is a candidate construction but we saw above that it
fails to be UF-CMA and thus also fails to be a PRF. The exercises
explored other solutions.

We will see solutions that work including

• ECBC: The encrypted CBC-MAC

• CMAC: A NIST standard

• HMAC: A highly standardized and used hash-function based MAC

Mihir Bellare UCSD 25

z - Key
1 - key

ECBC-MACECBC MAC

Let E : {0, 1}k × B → B be a block cipher, where B = {0, 1}n . The
encrypted CBC (ECBC) MAC T : {0, 1}2k × B∗ → B is defind by

Alg TKin||Kout
(M)

C [0]← 0n

for i = 1, ...,m do

C [i]← EKin
(C [i − 1] ⊕ M[i])

T ← EKout (C [m])
return T

EKin

M[1] M[2]

EKin
EKin

EKin

M[m]

EKout

M[m − 1]

TKin||Kout
(M)

Mihir Bellare UCSD 24

encrypted

*

.

If

far

Birthday	AttacksBirthday attacks on MACs

There is a large class of MACs, including ECBC MAC, CMAC,HMAC, ...
which are subject to a birthday attack that violates UF-CMA using about
q ⇡ 2n/2 Tag queries, where n is the tag (output) length of the MAC.

Furthermore, we can typically show this is best possible, so the birthday
bound is the “true” indication of security.

The class of MACs in question are called iterated-MACs and work by
iterating some lower level primitive such as a blockcipher or compression
function.

Mihir Bellare UCSD 27

MT D M

Security	of	ECBCSecurity of ECBC

Birthday attack is best possible:

Theorem: Let E : {0, 1}k × B → B be a family of functions, where
B = {0, 1}n . Define F : {0, 1}2k × B∗ → {0, 1}n by

Alg FKin||Kout
(M)

C [0]← 0n

for i = 1, ...,m do C [i]← EKin
(C [i−1] ⊕ M[i])

T ← EKout (C [m]); return T

Let A be a prf-adversary against F that makes at most q oracle queries,
these totalling at most σ blocks, and has running time t. Then there is a
prf-adversary B against E such that

AdvprfF (A) ≤ AdvprfE (B) +
σ2

2n

and B makes at most σ oracle queries and has running time about t.

Mihir Bellare UCSD 27

'z⇐IE÷÷n⇒
.

ImplicationsSecurity of iterated MACs

The number q of m-block messages that can be safely authenticated is
about 2n/2/m, where n is the block-length of the blockcipher, or the
length of the chaining input of the compression function.

MAC n m q

DES-ECBC-MAC 64 1024 222

AES-ECBC-MAC 128 1024 254

AES-ECBC-MAC 128 106 244

HMAC-SHA1 160 106 260

HMAC-SHA256 256 106 2108

m = 106 means message length 16Mbytes when n = 128.

Mihir Bellare UCSD 28

Non-Full	Messages
Non-full messages

So far we assumed messages have length a multiple of the block-length of
the blockcipher. Call such messages full. How do we deal with non-full
messages?

M[1] M[2] M[3]

The obvious approach is padding. But how we pad matters.

Padding with 0⇤:

M[1] M[2] M[3] k 0⇤

adversary A

T Tag(1n1n0); Return (1n1n00,T)

This adversary has uf-cma advantage 1.

Mihir Bellare UCSD 33

Non-Full	MessagesNon-full messages

Padding with 10⇤: For a non-full message

M[1] M[2] M[3] k 10⇤

For a full message

M[1] M[2] M[3] 10⇤

This works, but if M was full, an extra block is needed leading to an extra
blockcipher operation.

Mihir Bellare UCSD 34

up

MACing	with	Hash	FunctionMACing with hash functions

The software speed of hash functions (MD5, SHA1) lead people in 1990s
to ask whether they could be used to MAC.

But such cryptographic hash functions are keyless.

Question: How do we key hash functions to get MACs?

Proposal: Let H : D → {0, 1}n represent the hash function and set

TK (M) = H(K ||M)

Is this UF-CMA / PRF secure?

Mihir Bellare UCSD 29

HtCMILK)

HC K KM11.4)

Length-Extension	Attack
Extension attack

IV

M[1] M[m]K hm + 1i

H(K ||M)h h h h h H(K ||M
0)

hm + 2i

Let M 0 = M||hm + 1i. Then

H(K ||M
0) = h(hm + 2i||H(K ||M))

so given the MAC H(K ||M) of M we can easily forge the MAC of M 0.

Exercise: Specify in pseudocode an adversary mounting the above attack
to achieve uf-cma advantage 1 using 1 Tag query.

Mihir Bellare UCSD 41

thugs

HMAC	(BCK’96)HMAC [BCK96]

Suppose H: D ! {0, 1}n is the hash function, built from an underlying
compression function via the MD transform.

Let B � n/8 denote the byte-length of a message block (B = 64 for MD5,
SHA1, SHA256, SHA512)

Define the following constants

• ipad : The byte 36 repeated B times

• opad : The byte 5C repeated B times

Mihir Bellare UCSD 42

HMACHMAC [BCK96]

Suppose H : D → {0, 1}160 is the hash function. HMAC has a 160-bit key
K . Let

Ko = opad ⊕ K ||0352 and Ki = ipad ⊕ K ||0352

where
opad = 5D and ipad = 36

in HEX. Then
HMACK (M) = H(Ko ||H(Ki ||M))

!!!

"""

H

!!!

"""

H
$

#

Ki‖M

Ko‖X HMACK (M)

Mihir Bellare UCSD 32

ir g , .
- SHA 21

s

in to

2-

Go

See too

ng

Edc.¥*b÷ -

HMACHMAC

Features:

• Blackbox use of the hash function, easy to implement

• Fast in software

Usage:

• As a MAC for message authentication

• As a PRF for key derivation

Security:

• Subject to a birthday attack

• Security proof shows there is no better attack [BCK96,Be06]

Adoption and Deployment: HMAC is one of the most widely
standardized and used cryptographic constructs: SSL/TLS, SSH, IPSec,
FIPS 198, IEEE 802.11, IEEE 802.11b, ...

Mihir Bellare UCSD 44

Security	Results
HMAC Security

Theorem: [BCK96] HMAC is a secure PRF assuming

• The compression function is a PRF

• The hash function is collision-resistant (CR)

But recent attacks show MD5 is not CR and SHA1 may not be either.

So are HMAC-MD5 and HMAC-SHA1 secure?

• No attacks so far, but

• Proof becomes vacuous!

Theorem: [Be06] HMAC is a secure PRF assuming only

• The compression function is a PRF

Current attacks do not contradict this assumption. This new result may
explain why HMAC-MD5 is standing even though MD5 is broken with
regard to collision resistance.

Mihir Bellare UCSD 34

5µAr.o.tl#.

Randomized MACS
, Strong

urn forge ability ,
verification queries

① y
TAG

np÷÷:-. B
'

aft Tag CK
,
M)

Carter-Wegman

