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Where we are
• We’ve seen a lower-level primitive (blockciphers) and a 

higher-level primitive (symmetric encryption)
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Hash functions

HASH FUNCTIONS
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SHA1 is dead ...
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Hash functions

• MD: MD4, MD5, MD6

• SHA2: SHA1, SHA224, SHA256, SHA384, SHA512

• SHA3: SHA3-224, SHA3-256, SHA3-384, SHA3-512

Their primary purpose is collision-resistant data compression, but they
have many other purposes and properties as well ... A hash function is
often treated like a magic wand ...

Some uses:

• Certificates: How you know www.snapchat.com really is Snapchat

• Bitcoin

• Data authentication with HMAC: TLS, ...

SHA = “Secure Hash Algorithm” ,
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CollisionsCollisions

A collision for a function h : D ! {0, 1}n is a pair x1, x2 2 D of points
such that

• h(x1) = h(x2), and

• x1 6= x2.

If |D| > 2n then the pigeonhole principle tells us that there must exist a
collision for h.
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Collision-resistance of a function family

The formalism considers a family H : Keys⇥D ! R of functions, meaning
for each K 2 Keys we have a function HK : D ! R defined by HK (x) =
H(K , x).

Game CRH

procedure Initialize

K
$ Keys

Return K

procedure Finalize(x1, x2)
If (x1 = x2) then return false
If (x1 62 D or x2 62 D) then return false
Return (HK (x1) = HK (x2))

Let
Adv

cr
H
(A) = Pr

h
CRA

H
) true

i
.
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Collision-resistance

Game CRH

procedure Initialize

K
$ Keys

Return K

procedure Finalize(x1, x2)
If (x1 = x2) then return false
If (x1 62 D or x2 62 D) then return false
Return (HK (x1) = HK (x2))

The Return statement in Initialize means that the adversary A gets K as
input. The key K here is not secret!

Adversary A takes K and tries to output a collision x1, x2 for HK .

A’s output is the input to Finalize, and the game returns true if the
collision is valid.
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The FormalismCollision-resistance of a function family

The formalism considers a family H : Keys(H)⇥ D ! R of functions,
meaning for each K 2 Keys(H) we have a map HK : D ! R defined by
HK (x) = H(K , x).
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Example
Example

Let N = 2256 and define

H: {1, . . . ,N}| {z }
Keys

⇥ {0, 1, 2, . . .}| {z }
D

! {0, 1, . . . ,N � 1}| {z }
R

by
H(K , x) = (x mod K ) .

Q: Is H collision resistant?

A: NO!
Why? (x + K ) mod K = x mod K

adversary A(K )

x1  0 ; x2  K ; Return x1, x2

Adv
cr
H
(A) = 1
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Example

Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n be a blockcipher.
Let H: {0, 1}k ⇥ {0, 1}2n ! {0, 1}n be defined by

Alg H(K , x [1]x [2])

y  EK (EK (x [1]) � x [2]); Return y

Let’s show that H is not collision-resistant by giving an e�cient adversary
A such that Advcr

H
(A) = 1.

Idea: Pick x1 = x1[1]x1[2] and x2 = x2[1]x2[2] so that

EK (x1[1]) � x1[2] = EK (x2[1]) � x2[2]
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Another exampleExample

Alg H(K , x [1]x [2])

y  EK (EK (x [1]) � x [2]); Return y

Idea: Pick x1 = x1[1]x1[2] and x2 = x2[1]x2[2] so that

EK (x1[1]) � x1[2] = EK (x2[1]) � x2[2]

adversary A(K )

x1  0n1n ; x2[2] 0n; x2[1] E
�1
K

(EK (x1[1]) � x1[2] � x2[2])
return x1, x2

Then Adv
cr
H
(A) = 1 and A is e�cient, so H is not CR.

Note how we used the fact that A knows K and the fact that E is a
blockcipher!
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Exercise

Let E : {0, 1}k ⇥ {0, 1}l ! {0, 1}l be a blockcipher. Let D be the set of
all strings whose length is a positive multiple of l .

Define the hash function H: {0, 1}k ⇥ D ! {0, 1}l as follows:

Alg H(K ,M)

M[1]M[2] . . .M[n] M

C [0] 0l

For i = 1, . . . , n do
B[i ] E (K ,C [i � 1] � M[i ]); C [i ] E (K ,B[i ] � M[i ])

Return C [n]

Show that H is not CR by giving an e�cient adversary A such that
Adv

cr
H
(A) = 1.
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Keyless hash functions

We say that H: Keys⇥ D ! R is keyless if Keys = {"} consists of just
one key, the empty string.

In this case we write H(x) in place of H(", x) or H"(x).

Practical hash functions like the MD, SHA2 and SHA3 series are keyless.
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SHA256

The hash function SHA256: {0, 1}<264 ! {0, 1}256 is keyless, with

• Inputs being strings X of any length strictly less than 264

• Outputs always having length 256.

Alg SHA256(X ) // |X | < 264

M  shapad(X ) // |M| mod 512 = 0

M
(1)

M
(2) · · ·M(n)  M // Break M into 512 bit blocks

H
(0)
0  6a09e6677 ; H(0)

1  bb67ae85 ; · · · ; H(0)
7  5be0cd19

H
(0)  H

(0)
1 H

(0)
2 · · ·H(0)

7 // |H(0)
i

| = 32, |H(0)| = 256

For i = 1, . . . , n do H
(i)  sha256(M(i) k H(i�1))

Return H
(n)

sha256: {0, 1}512+256 ! {0, 1}256 is the compression function.

Mihir Bellare UCSD 20
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Underlying blockcipher

Padding, and initialization vector H
(0)

Alg shapad(X ) // |X | < 264

d  (447� |X |) mod 512 // Chosen to make |M| a multiple of 512

Let ` be the 64-bit binary representation of |M|
M  X k 1 k 0d k ` // |M| is a multiple of 512

return M

The 32-bit word H
(0)
j

was obtained by taking the first 32 bits of the
fractional part of the square root of the j-th prime number (0  j  7).

Mihir Bellare UCSD 21

Compression function sha256

Compression function sha256: {0, 1}512+256 ! {0, 1}256 takes a
512 + 256 = 768 bit input and returns a 256-bit output.

Alg sha256(xkv) // X=512, v=256

w  Esha256(x , v)
w0 · · ·w7  w // Break w into 32-bit words

v0 . . . v7  v // Break v into 32-bit words

For j = 0, . . . , 7 do hj  wj + vj

h h0 . . . h7 // |h| = 256

Return h

Here and on next slide, “+” denotes addition modulo 232.

Esha256: {0, 1}512 ⇥ {0, 1}256 ! {0, 1}256 is a block cipher with 512-bit
keys and 256-bit blocks.

Mihir Bellare UCSD 22

Block cipher E
sha256

Alg Esha256(x , v) // x is a 512-bit key, v is a 256-bit input

x0 · · · x15  x // Break x into 32-bit words

For t = 0, . . . , 15 do Wt  xt

For t = 16, . . . , 63 do Wt  �1(Wt�2) +Wt�7 + �0(Wt�15) +Wt�16

v0 · · · v7  v // Break v into 32-bit words

For j = 0, . . . , 7 do Sj  vj // Initialize 256-bit state S

Fot t = 0, . . . , 63 do // 64 rounds

T1  S7 + �1(S4) + Ch(S4, S5, S6) + Ct +Wt

T2  �0(S0) +Maj(S0, S1, S2)
S7  S6 ; S6  S5 ; S5  S4 ; S4  S3 + T1

S3  S2 ; S2  S1 ; S1  S0 ; S0  T1 + T2

S  S0 · · · S7
Return S // 256-bit output
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Internals of block cipher E
sha256

On the previous slide:

• �0,�1, �0, �1,Ch,Maj are functions not detailed here.

• C1 = 428a2f98, C2 = 71374491, . . . , C63 = c67178f2 are
constants, where Ci is the first 32 bits of the fractional part of the
cube root of the i-th prime.

Mihir Bellare UCSD 24



Internals

Padding, and initialization vector H
(0)

Alg shapad(X ) // |X | < 264

d  (447� |X |) mod 512 // Chosen to make |M| a multiple of 512

Let ` be the 64-bit binary representation of |M|
M  X k 1 k 0d k ` // |M| is a multiple of 512

return M

The 32-bit word H
(0)
j

was obtained by taking the first 32 bits of the
fractional part of the square root of the j-th prime number (0  j  7).
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Compression function sha256

Compression function sha256: {0, 1}512+256 ! {0, 1}256 takes a
512 + 256 = 768 bit input and returns a 256-bit output.

Alg sha256(xkv) // X=512, v=256

w  Esha256(x , v)
w0 · · ·w7  w // Break w into 32-bit words

v0 . . . v7  v // Break v into 32-bit words

For j = 0, . . . , 7 do hj  wj + vj

h h0 . . . h7 // |h| = 256

Return h

Here and on next slide, “+” denotes addition modulo 232.

Esha256: {0, 1}512 ⇥ {0, 1}256 ! {0, 1}256 is a block cipher with 512-bit
keys and 256-bit blocks.
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Block cipher E
sha256

Alg Esha256(x , v) // x is a 512-bit key, v is a 256-bit input
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UsageSHA256 hash calculator

http://www.xorbin.com/tools/sha256-hash-calculator
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Usage of hash functions

Uses include hashing the data before signing in creation of certificates,
data authentication with HMAC, key-derivation, Bitcoin, ...

These will have to wait, so we illustrate another use, the hashing of
passwords.
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Authentication via passwords

• Client A has a password PW that is also stored by server B

• A authenticates itself by sending PW to B over a secure channel
(TLS)

A
PW PW - B

PW

Problem: The password will be found by an attacker who compromises
the server.

These types of server compromises are common and often in the news:
Yahoo, Equifax, ...
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Hashed passwords

• Client A has a password PW and server stores PW = H(PW ).

• A sends PW to B (over a secure channel) and B checks that
H(PW ) = PW

A
PW PW - B

PW

Server compromise results in attacker getting PW which should not reveal
PW as long as H is one-way, which is a consequence of
collision-resistance.

But we will revisit this when we consider dictionary attacks!

This is how client authentication is done on the Internet, for example login
to gmail.com.
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Hashed passwords

SHA256 hash calculator

http://www.xorbin.com/tools/sha256-hash-calculator

Mihir Bellare UCSD 25

Usage of hash functions

Uses include hashing the data before signing in creation of certificates,
data authentication with HMAC, key-derivation, Bitcoin, ...

These will have to wait, so we illustrate another use, the hashing of
passwords.

Mihir Bellare UCSD 26

Authentication via passwords

• Client A has a password PW that is also stored by server B

• A authenticates itself by sending PW to B over a secure channel
(TLS)

A
PW PW - B

PW

Problem: The password will be found by an attacker who compromises
the server.

These types of server compromises are common and often in the news:
Yahoo, Equifax, ...

Mihir Bellare UCSD 27

Hashed passwords

• Client A has a password PW and server stores PW = H(PW ).

• A sends PW to B (over a secure channel) and B checks that
H(PW ) = PW

A
PW PW - B

PW

Server compromise results in attacker getting PW which should not reveal
PW as long as H is one-way, which is a consequence of
collision-resistance.

But we will revisit this when we consider dictionary attacks!

This is how client authentication is done on the Internet, for example login
to gmail.com.

Mihir Bellare UCSD 28



Birthday attack
Birthday collision-finding attack

Let H : {0, 1}k ⇥D ! {0, 1}n be a family of functions with |D| > 2n. The
q-trial birthday attack is the following adversary Aq for game CRH :

adversary Aq(K )

for i = 1, . . . , q do xi
$ D ; yi  HK (xi )

if 9i , j (i 6= j and yi = yj and xi 6= xj) then return xi , xj
else return ?

Interestingly, the analysis of this via the birthday problem is not trivial, but
it shows that

Adv
cr
H
(Aq) � 0.3 · q(q � 1)

2n
.

So a collision can usually be found in about q =
p
2n trials.
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Birthday attack times

Function n TB

MD4 128 264

MD5 128 264

SHA1 160 280

SHA256 256 2128

SHA512 512 2256

SHA3-256 256 2128

SHA3-512 512 2256

TB is the number of trials to find collisions via a birthday attack.

Design of hash functions aims to make the birthday attack the best
collision-finding attack, meaning it is desired that there be no attack
succeeding in time much less than TB .
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Compression functions

A compression function is a family h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n of
functions whose inputs are of a fixed size b+ n, where b is called the block
size.

E.g. b = 512 and n = 256, in which case

h : {0, 1}k ⇥ {0, 1}768 ! {0, 1}256

hK
v

x

hK (x k v)
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The MD transform

Let h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n be a compression function with
block length b. Let D be the set of all strings of at most 2b � 1 blocks.

The MD transform builds from h a family of functions

H : {0, 1}k ⇥ D ! {0, 1}n

such that: If h is CR, then so is H .

The problem of hashing long inputs has been reduced to
the problem of hashing fixed-length inputs.

There is no need to try to attack H. You won’t find a weakness in it unless
h has one. That is, H is guaranteed to be secure assuming h is secure.

For this reason, MD is the design used in many hash functions, including
the MD and SHA2 series. SHA3 uses a di↵erent paradigm.
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Birthday collision-finding attack
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collision-finding attack, meaning it is desired that there be no attack
succeeding in time much less than TB .
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Compression functions

A compression function is a family h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n of
functions whose inputs are of a fixed size b+ n, where b is called the block
size.

E.g. b = 512 and n = 256, in which case

h : {0, 1}k ⇥ {0, 1}768 ! {0, 1}256

hK
v

x

hK (x k v)
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The MD transform

Let h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n be a compression function with
block length b. Let D be the set of all strings of at most 2b � 1 blocks.

The MD transform builds from h a family of functions

H : {0, 1}k ⇥ D ! {0, 1}n

such that: If h is CR, then so is H .

The problem of hashing long inputs has been reduced to
the problem of hashing fixed-length inputs.

There is no need to try to attack H. You won’t find a weakness in it unless
h has one. That is, H is guaranteed to be secure assuming h is secure.

For this reason, MD is the design used in many hash functions, including
the MD and SHA2 series. SHA3 uses a di↵erent paradigm.
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Compression Functions
Compression functions

A compression function is a family h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n of
hash functions whose inputs are of a fixed size b + n, where b is called the
block size.

E.g. b = 512 and n = 160, in which case

h : {0, 1}k ⇥ {0, 1}672 ! {0, 1}160

hK
v

x

hK (x k v)

Mihir Bellare UCSD 31

D

O

girl aim
"! i

KA
Choi b "

O
wir we



MD Transform

Birthday collision-finding attack

Let H : {0, 1}k ⇥D ! {0, 1}n be a family of functions with |D| > 2n. The
q-trial birthday attack is the following adversary Aq for game CRH :

adversary Aq(K )

for i = 1, . . . , q do xi
$ D ; yi  HK (xi )

if 9i , j (i 6= j and yi = yj and xi 6= xj) then return xi , xj
else return ?

Interestingly, the analysis of this via the birthday problem is not trivial, but
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The MD transform

Let h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n be a compression function with
block length b. Let D be the set of all strings of at most 2b � 1 blocks.

The MD transform builds from h a family of functions

H : {0, 1}k ⇥ D ! {0, 1}n

such that: If h is CR, then so is H .

The problem of hashing long inputs has been reduced to
the problem of hashing fixed-length inputs.

There is no need to try to attack H. You won’t find a weakness in it unless
h has one. That is, H is guaranteed to be secure assuming h is secure.

For this reason, MD is the design used in many hash functions, including
the MD and SHA2 series. SHA3 uses a di↵erent paradigm.
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MD SetupMD setup

Given: Compression function h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n.

Build: Hash function H : {0, 1}k ⇥ D ! {0, 1}n.

Since M 2 D, its length ` = |M| is a multiple of the block length b. We
let kMkb = |M|/b be the number of b-bit blocks in M, and parse as

M[1] . . .M[`] M .

Let h`i denote the b-bit binary representation of ` 2 {0, . . . , 2b � 1}.
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MD transform

Given: Compression function h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n.

Build: Hash function H : {0, 1}k ⇥ D ! {0, 1}n.

Algorithm HK (M)
m kMkb ; M[m + 1] hmi ; V [0] 0n

For i = 1, . . . ,m + 1 do v [i ] hK (M[i ]||V [i � 1])
Return V [m + 1]

hK0n

h2iM[2]M[1]

hK hK HK (M)

Mihir Bellare UCSD 34

MD preserves CR

Theorem: Let h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n be a family of functions
and let H : {0, 1}k ⇥ D ! {0, 1}n be obtained from h via the MD
transform. Given a cr-adversary AH we can build a cr-adversary Ah such
that

Adv
cr
H
(AH)  Adv

cr
h
(Ah)

and the running time of Ah is that of AH plus the time for computing h on
the outputs of AH .

Implication:
h CR ) Adv

cr
h
(Ah) small

) Adv
cr
H
(AH) small

) H CR
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How are compression functions designed?

Let E : {0, 1}b ⇥ {0, 1}n ! {0, 1}n be a block cipher. Let us define
keyless compression function h : {0, 1}b+n ! {0, 1}n by

h(xkv) = Ex(v) .

Question: Is h collision resistant?

We seek an adversary that outputs distinct x1kv1, x2kv2 satisfying

Ex1(v1) = Ex2(v2) .

Answer: NO, h is NOT collision-resistant, because the following adversary
A has Advcr

h
(A) = 1:

adversary A

x1  0b ; x2  1b ; v1  0n ; y  Ex1(v1) ; v2  E
�1
x2

(y)
Return x1kv1 , x2kv2
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The Transform
MD transform

Given: Compression function h : {0, 1}k ⇥ {0, 1}b+n ! {0, 1}n.

Build: Hash function H : {0, 1}k ⇥ D ! {0, 1}n.

Algorithm HK (M)
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For i = 1, . . . ,m + 1 do v [i ] hK (M[i ]||V [i � 1])
Return V [m + 1]

hK0n

h2iM[2]M[1]

hK hK HK (M)
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How are compression functions designed?

Let E : {0, 1}b ⇥ {0, 1}n ! {0, 1}n be a block cipher. Let us define
keyless compression function h : {0, 1}b+n ! {0, 1}n by

h(xkv) = Ex(v) .

Question: Is h collision resistant?

We seek an adversary that outputs distinct x1kv1, x2kv2 satisfying

Ex1(v1) = Ex2(v2) .

Answer: NO, h is NOT collision-resistant, because the following adversary
A has Advcr

h
(A) = 1:

adversary A

x1  0b ; x2  1b ; v1  0n ; y  Ex1(v1) ; v2  E
�1
x2

(y)
Return x1kv1 , x2kv2
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Compression functions
How are compression functions designed?

Let E : {0, 1}b ⇥ {0, 1}n ! {0, 1}n be a block cipher. Let us define
keyless compression function h : {0, 1}b+n ! {0, 1}n by

h(xkv) = Ex(v) .

Question: Is h collision resistant?

We seek an adversary that outputs distinct x1kv1, x2kv2 satisfying

Ex1(v1) = Ex2(v2) .

Answer: NO, h is NOT collision-resistant, because the following adversary
A has Advcr
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adversary A

x1  0b ; x2  1b ; v1  0n ; y  Ex1(v1) ; v2  E
�1
x2

(y)
Return x1kv1 , x2kv2
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How are compression functions designed?

Let E : {0, 1}b ⇥ {0, 1}n ! {0, 1}n be a block cipher. Let us define
keyless compression function h : {0, 1}b+n ! {0, 1}n by

h(xkv) = Ex(v)� v .

Question: Is h collision resistant?

We seek an adversary that outputs distinct x1kv1, x2kv2 satisfying

Ex1(v1) � v1 = Ex2(v2) � v2 .

Answer: Unclear how to solve this equation, even though we can pick all
four variables.
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Davies-MeyerThe Davies-Meyer method

Let E : {0, 1}b ⇥ {0, 1}n ! {0, 1}n be a block cipher. Let us define
keyless compression function h : {0, 1}b+n ! {0, 1}n by

h(xkv) = Ex(v)�v .

This is called the Davies-Meyer method and is used in the MD and SHA2
series of hash functions, modulo that the � may be replaced by addition.

In particular the compression function sha256 of SHA256 is underlain in
this way by the block cipher Esha256 : {0, 1}512 ⇥ {0, 1}256 ! {0, 1}256
that we saw earlier, with the � being replaced by component-wise
addition modulo 232.
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Cryptanalytic attacks

So far we have looked at attacks that do not attempt to exploit the
structure of h.

Can we get better attacks if we do exploit the structure?

Ideally not, but hash functions have fallen short!
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Cryptanalytic attacks against hash functions

When Against Time Who
1993,1996 md5 216 [dBBo,Do]
2004 MD5 1 hour [WaFeLaYu]
2005,2006 MD5 1 minute [LeWadW,Kl]
2005 SHA1 269 [WaYiYu]
2017 SHA1 263.1 [SBKAM]

Collisions found in compression function md5 of MD5 did not yield
collisions for MD5, but collisions for MD5 are now easy.

https://shattered.io/.

2017: Google, Microsoft and Mozilla browsers stop accepting SHA1-based
certificates.

The SHA256 and SHA512 hash functions are still viewed as secure,
meaning the best known attack is the birthday attack.
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SHA1 collision
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Flame exploited MD5Flame exploited an MD5 attack
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Cryptographer job-performance evaluation

Why don’t cryptographers build secure hash functions?

Assess their job performance in light of attacks by selecting a grade below:

A – Cryptographers are doing super well
B – They are OK
C – They suck
F – Just fire them all and give the job to AI
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Cryptographers’ tightrope

Why don’t cryptographers build secure hash functions?

Cryptographers seem perfectly capable of building secure hash functions.

The di�culty is that they strive for VERY HIGH SPEED.

SHA256 can run at 3.5 cycles/byte (eBACS: 2018 Intel Core i3-8121U,
https://bench.cr.yp.to/results-hash.html) or 0.6 ns per byte, and hardware
will make it even faster.

It is AMAZING that one gets ANY security at such low cost.

If you allow cryptographers a 10x slowdown, they can up rounds by 10x
and designs seem almost impossible to break.
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SHA3

National Institute for Standards and Technology (NIST) held a world-wide
competition to develop a new hash function standard.

Contest webpage:
http://csrc.nist.gov/groups/ST/hash/index.html

Requested parameters:

• Design: Family of functions with 224, 256, 384, 512 bit output sizes

• Security: CR, one-wayness, near-collision resistance, others...

• E�ciency: as fast or faster than SHA2-256
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SHA3

Submissions: 64

Round 1: 51

Round 2: 14: BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue,
Grostl, Hamsi, JH, Keccak, Lu↵a, Shabal, SHAvite-3, SIMD, Skein.

Finalists: 5: BLAKE, Grostl, JH, Keccak, Skein.

SHA3: 1: Keccak

Mihir Bellare UCSD 51

SHA3: The Sponge construction

f : {0, 1}r+c ! {0, 1}r+c is a (public, invertible!) permutation.
d is the number of output bits, and c = 2d .

SHA3 does not use the MD paradigm used by the MD and SHA2 series.

Shake(M, d)— Extendable-output function, returning any given number d
of bits.

Mihir Bellare UCSD 52
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Constructions of UHF

Proof. The UHF adversary B runs A and obtains s  Q distinct messages m1, . . . , ms. It randomly
picks a random pair of distinct indices i and j from {1, . . . , s}, and outputs mi and mj . The list
generated by A contains a collision for H(k, ·) with probability MUHFadv[A, H] and B will choose
a colliding pair with probability at least 2/Q2. Hence, UHFadv[B, H] is at least MUHFadv[A, H] ·
(2/Q2), as required. 2

7.1.2 Mathematical details

As usual, we give a more mathematically precise definition of a UHF using the terminology defined
in Section 2.4.

Definition 7.4 (Keyed hash functions). A keyed hash function is an e�cient algorithm H,
along with three families of spaces with system parameterization P :

K = {K�,⇤}�,⇤, M = {M�,⇤}�,⇤, and T = {T�,⇤}�,⇤,

such that

1. K, M, and T are e�ciently recognizable.

2. K and T are e�ciently sampleable.

3. Algorithm H is an e�cient deterministic algorithm that on input � 2 Z�1, ⇤ 2 Supp(P (�)),
k 2 K�,⇤, and m 2 M�,⇤, outputs an element of T�,⇤.

In defining UHFs we parameterize Attack Game 7.1 by the security parameter �. The advantage
UHFadv[A, H] is then a function of �.

The information-theoretic property (7.1) is the more traditional approach in the literature
in defining ✏-UHFs for individual hash functions with no security or system parameters; in our
asymptotic setting, if property (7.1) holds for each setting of the security and system parameters,
then our definition of an ✏-UHF will certainly be satisfied.

7.2 Constructing UHFs

The challenge in constructing good universal hash functions (UHFs) is to construct a function that
achieves a small collision probability using a short key. Preferably, the size of the key should not
depend on the length of the message being hashed. We give three constructions. The first is an
elegant construction of a statistical UHF using modular arithmetic and polynomials. Our second
construction is based on the CBC and cascade functions defined in Section 6.4. We show that both
are computational UHFs. The third construction is based on PMAC0 from Section 6.11.

7.2.1 Construction 1: UHFs using polynomials

We start with a UHF construction using polynomials modulo a prime. Let ` be a (poly-bounded)
length parameter and let p be a prime. We define a hash function Hpoly that hashes a message
m 2 Z`

p to a single element t 2 Zp. The key space is K := Zp.

Let m be a message, so m = (a1, a2, . . . , av) 2 Z`
p for some 0  v  `. Let k 2 Zp be a key.

The hash function Hpoly(k, m) is defined as follows:

Hpoly

�
k, (a1, . . . , av)

�
:= kv + a1k

v�1 + a2k
v�2 + · · · + av�1k + av 2 Zp (7.3)
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