Foundations of Applied
Cryptography

Adam O’Neill
Based on http://cseweb.ucsd.edu/~mihir/cse207/

Where we are

e We’ve seen a lower-level primitive (blockciphers) and a
higher-level primitive (symmetric encryption)

Where we are

e We’ve seen a lower-level primitive (blockciphers) and a
higher-level primitive (symmetric encryption)

e Now let’s see another lower-level primitive, hash functions

Hash functions

e MD: MD4, MD5, MD6
o SHA2: SHA1, SHA224, SHA256, SHA384, SHAb512
o SHA3: SHA3-224, SHA3-256, SHA3-384, SHA3-512

Their primary purpose is collision-resistant data compression, but they
have many other purposes and properties as well ... A hash function is
often treated like a magic wand ...
Some uses:
o (Certificates: How you know www.snapchat.com really is Snapchat
e Bitcoin
e Data authentication with HMAC: TLS, ...

Collisions

A collision for a function h: D — {0,1}" is a pair x3, x> € D of points
such that

e h(x1) = h(xz), and

® X1 #XQ.

If |D| > 2" then the pigeonhole principle tells us that there must exist a
collision for h.

We want that even though collisions exist, they are hard to find.

The Formalism

The formalism considers a family H : Keys(H) x D — R of functions,

meaning for each K € Keys(H) we have a map Hk : D — R defined by
Hk(x) = H(K, x).

Game CRy procedure Finalize(x;, x2)

procedure Initialize T (x1 = x2) then return false

K <& Keys(H) f(x1 € D or xo & D) then return false
Return K Return (Hk(x1) = Hk(x2))

m————

Let
Adv(A) = Pr [CR,{‘, N true] .

oL o 50 oye S a8

The Formalism

Game CRy procedure Finalize(x, x»)

procedure Initialize T (x1 = x2) then return false

K < Keys f(x1 € D or xo & D) then return false
Return K Return (Hk (x1) = Hk(x2))

The Return statement in Initialize means that the adversary A gets K as
input. The key K here is not secret!

Adversary A takes K and tries to output a collision x;, x> for Hg.

A's output is the input to Finalize, and the game returns true if the
collision is valid.

Example

Let N = 22°% and define

_J/

H: {1,...,N}x{0,1,2,...} = {0,1,...,N — 1}

Keys D R

by
H(K,x) = (x mod K) .

Q: Is H collision resistant?

Another example

[~ Z - S
Let £: {0,1}* x {0,1}" — {0,1}" be a blockcipher. E-RE

Let H: {0,1}% x {0,1}°" — {0,1}" be defined by

Alg H(K, x[1]x[2])

y < Ex(Ex(x[1]) @ x[2]); Return y

Let's show that H is not collision-resistant by giving an efficient adversary
A such that Advi;(A) = 1.

Another example

Let £: {0,1}% x {0,1}" — {0,1}" be a blockcipher.
Let H: {0,1}% x {0,1}°" — {0,1}" be defined by

Alg H(K, x[1]x[2])
y < Ex(Ex(x[1]) @ x[2]); Return y

Let's show that H is not collision-resistant by giving an efficient adversary
A such that Advi;(A) = 1.

Idea: Pick x3 = x1[1]x1[2] and x2 = x2[1]x2[2] so that

Ex(xa[l]) ® x1[2] = Ex(x2[1]) & x2[2]
————— e

Another example

Alg H(K, x[1]x[2])
y < Ex(Ex(x[1]) ® x[2]); Return y

Idea: Pick x3 = X1[].]X1 [2] and xp = X2[].]X2[2] so that
Ex(x1[1]) © x1[2] = Ex(x2[1]) © x2[2]

adversary A(K)

X1 < 0"1"; X2[2] +— 0 X2[1] < EEl(EK(Xl[].]) S, X1[2] S, X2[2])
return xi, xo

Then Adv}(A) =1 and A is efficient, so H is not CR.

Note how we used the fact that A knows K and the fact that E i1s a
blockcipher!

Keyless Hash Functions

We say that H: Keys x D — R is keyless if Keys = {&} consists of just
one key, the empty string.

In this case we write H(x) in place of H(e, x) or H-(x).

Practical hash functions like the MD, SHA2 and SHA3 series are keyless.

T (7,15 s hoas”

SHA256

The hash function SHA256: {0,1}<2" — {0,112 is keyless, with
e Inputs being strings X of any length strictly less than 2%

e Qutputs always having length 256.

Alg SHA256(X) // |X| < 2%

M < shapad(X) // |M| mod 512 =0
MO ME) oM « M // Break M into 512 bit blocks

HS®) « 6209e6677 ; H\”) + bb67aess ; - ; HiY) + 5bedcd19
HO «— HOHO . HO 1 HO) = 32, |HO)| = 256
Fori=1,...,ndo H) < sha256(M() || H(i=1))

Return H(")

sha256: {0,1}°1212%¢ _ 10 112°° is the compression function.
——a —

Underlying blockcipher

Alg ESha250(x) // x is a 512-bit key, v is a 256-bit input

Xo-+-X15 < X // Break x into 32-bit words
For t =0,...,15 do W; < x;
For t =16,...,63 do W; Jl(Wt_Q) + Wi_7 + UO(Wt—15) + Wi_16
Vo---Vv7 <= v // Break v into 32-bit words
For j=0,...,7do Sj < v; // Initialize 256-bit state S
Fott =0,...,63do // 64 rounds
T1 < 57+ 71(84) + Ch(84, S5, S6) + Ct + W4
T2 < 70(50) + Maj(50, 51, 52)
S7 ¢ 56 ;5 < S5: 5 S4;5,+ 53+ T4
53452 ;55 ;515 ;5% T1+ T>
S+ S5
Return S // 256-bit output

Internals

On the previous slide:

® 00,01,%,71, Ch, Maj are functions not detailed here.

o ({ =428a2f98, (» = 71374491, ..., Csgz3 = c67178f2 are
constants, where C; is the first 32 bits of the fractional part of the
cube root of the /-th prime.

Usage

Uses include hashing the data before signing in creation of certificates,
data authentication with HMAC, key-derivation, Bitcoin, ...

These will have to wait, so we illustrate another use, the hashing of

passwords.

Sov s 3 1A og (\chﬂ\ja\\LB

Password authentication

e Client A has a password PW that is also stored by server B

e A authenticates itself by sending PW to B over a secure channel

(TLS)

APW PW BPW

Problem: The password will be found by an attacker who compromises

the server.

These types of server compromises are common and often in the news:
Yahoo, Equifax, ...

Hashed passwords

o Client A has a password PW and server stores PW = H(PW).

o A sends PW to B (over a secure channel) and B checks that
H(PW) = PW
APW PW BPW

| -
P

Server compromise results in attacker getting PW which should not reveal
PW as long as H is one-way, which is a consequence of
collision-resistance.

But we will revisit this when we consider dictionary attacks!

This is how client authentication is done on the Internet, for example login
to gmail. com.

Birthday attack

Let H:{0,1}* x D — {0,1}" be a family of functions with |D| > 2". The
g-trial birthday attack is the following adversary A, for game CRpy:

adversary A,(K)

fori=1,...,q doxi < D; y; < Hk(x;)
if 3i,j (i #j and y; = y; and x; # x;) then return x;, x;
else return L

Interestingly, the analysis of this via the birthday problem is not trivial, but
it shows that
q(q — 1)

2n

So a collision can usually be found in about g = /2" trials.

AdvSi(A,) > 0.3

Attack times

Function n B
MD4 128 | 204
MD5 128 | 204
SHA1 160 | 280

SHA256 256 | 2128
SHA512 | 512 | 22°°
SHA3-256 | 256 | 2128
SHA3-512 | 512 | 22°°

T is the number of trials to find collisions via a birthday attack.

Design of hash functions aims to make the birthday attack the best
collision-finding attack, meaning it is desired that there be no attack
succeeding in time much less than Tp.

Compression Functions

A compression function is a family h: {0,1}% x {0, 1@% {0,1}" of
hash functions whose inputs are of a fixed size b+ n, where b is called the
block size.

E.g. b=512 and n = 160, in which case

h: {0, 13K x {0, 116721, {0 1}160

/\ \ \”U]
N
\
r\ @\\AV | M (x| v)
Q\\w ‘W\D\b Q
AN

MD Transform

Let h: {0,135 x {0,1}°*" — {0,1}" be a compression function with
block length b. Let D be the set of all strings of at most 22 — 1 blocks.

The MD transform builds from h a family of functions

H:{0,1}* x D — {0,1}"

such that: |If his CR, then sois H|.

The problem of hashing long inputs has been reduced to
the problem of hashing fixed-length inputs.

There is no need to try to attack H. You won't find a weakness in it unless
h has one. That is, H is guaranteed to be secure assuming h is secure.

For this reason, MD is the design used in many hash functions, including
the MD and SHAZ2 series. SHA3 uses a different paradigm.

MD Setup

Given: Compression function h: {0,1}% x {0,1}>*" — {0,1}".
Build: Hash function H : {0,1}% x D — {0,1}".

Since M € D, its length ¢ = |M| is a multiple of the block length b. We
let ||[M||p, = |[M|/b be the number of b-bit blocks in M, and parse as

M[1]... M[f] « M .

Let (¢) denote the b-bit binary representation of £ € {0,...,2° —1}.

The Transform

Given: Compression function h: {0, 1} x {0,1}+" — {0, 1}".
Build: Hash function H: {0,1}% x D — {0,1}".

Algorithm Hy (M)

m <« [[M||p ; M[m+ 1] < (m) ; V[0] «+ 0"

Fori=1,..., m+ 1 do v[i] < hx(M[i]||V]i — 1])
Return V[m + 1]

on — | hK hK hK L HK(M)

MD preserves CR

Theorem: Let h:{0,1}% x {0,1}°T" — {0,1}" be a family of functions
and let H: {0,1}% x D — {0,1}" be obtained from h via the MD
transform. Given a cr-adversary Ay we can build a cr-adversary Ap, such

that
Advy(Ay) < Adv; (Ap)

and the running time of Ay is that of Ay plus the time for computing h on
the outputs of Ay.

h CR = Adv; (Ap) small
Implication:
= Adv}(Ay) small

= H CR

Weonled: CF o bloclk clvher
Compression functions

Let £ : {0,1}" x {0,1}" — {0,1}" be a block cipher. Let us define
keyless compression function h: {0,1}°T" — {0,1}" by

@ . EX@

Question: Is h collision resistant?

We seek an adversary that outputs distinct xi||v1, x2||v2 satisfying

EX1(V1) — EX2(V2) :

Compression functions

Let £ :{0,1}" x {0,1}" — {0,1}" be a block cipher. Let us define
keyless compression function h: {0,1}°+" — {0,1}" by

h(x|lv) = Ex(v) .

Question: Is h collision resistant?

We seek an adversary that outputs distinct xi||v1, x2||vo satisfying

EXl(Vl) — EXz(V2) :

Answer: NO, his NOT collision-resistant, because the following adversary
A has Adv}'(A) = 1

adversary A

X100 012 vy 07y« Ey(v1); va EZN(y)
Return xq||vi, xo||vo

Compression functions

Let £:{0,1}? x {0,1}" — {0,1}" be a block cipher. Let us define
keyless compression function h: {0,1}°*" — {0,1}" by

h(x||lv) = Ex(v) @ v .

T —
Question: Is h collision resistant?

D ox Vs - AN

Compression functions

Let £:{0,1}? x {0,1}" — {0,1}" be a block cipher. Let us define
keyless compression function h: {0,1}°*" — {0,1}" by

h(x||lv) = Ex(v) @ v .

Question: Is h collision resistant?

We seek an adversary that outputs distinct xi||v1, x2||v2 satisfying
Exl(vl) D vy = EX2(V2) D v .

Answer: Unclear how to solve this equation, even though we can pick all
four variables.

Davies-Meyer

Let £ : {0,1}" x {0,1}" — {0,1}" be a block cipher. Let us define
keyless compression function h: {0,1}°+" — {0,1}" by

h(x||v) = Ex(v)Dv .

This is called the Davies-Meyer method and is used in the MD and SHA2
series of hash functions, modulo that the & may be replaced by addition.

In particular the compression function sha256 of SHA256 is underlain in
this way by the block cipher ESha2%¢ . £0 11512 x £0,1}2% — {0, 1}2%°
that we saw earlier, with the & being replaced by component-wise
addition modulo 232,

Cryptanalytic attacks

So far we have looked at attacks that do not attempt to exploit the
structure of h.

Can we get better attacks if we do exploit the structure?

Ideally not, but hash functions have fallen short!

Cryptanalytic Attacks

When Against | Time Who
1993,1996 | mdb 210 dBBo,Do]
2004 MD5 1 hour 'WaFelLaYu]
2005,2006 | MD5 1 minute | [LeWadW,KI]
2005 SHA1 | 2%° ‘WaYiYu]
2017 SHA1 | 2031 SBKAM]

Collisions found in compression function md5 of MD5 did not yield
collisions for MD5, but collisions for MD5 are now easy.

https://shattered.io/.

2017: Google, Microsoft and Mozilla browsers stop accepting SHA1-based
certificates.

The SHA256 and SHAbB12 hash functions are still viewed as secure,
meaning the best known attack is the birthday attack.

We have broken SHA-1 in practice.

This industry cryptographic hash function
standard is used for digital signatures and file
integrity verification, and protects a wide
spectrum of digital assets, including credit card
transactions, electronic documents, open-source
software repositories and software updates.

It is now practically possible to craft two colliding
PDF files and obtain a SHA-1 digital signature on
the first PDF file which can also be abused as a
valid signature on the second PDF file.

For example, bv crafting the two colliding PDF files

Collision attack: same hashes

Good doc

€]
&

Sha-T

Flame exploited MD5

Crypto breakthrough shows Flame was
designed by world-class scientists

The spy malware achieved an attack unlike any cryptographers have seen before.

DAN GOODIN - 6/7/2012, 11:20 AM

collision
Message A achieved J
prefix padding blrtt):‘tgay cgl‘lzuz-(on
P S s | block S oS
b cl collision
block S_, .

| near-
collision '
block S_ R \,/
< suffix
o A\ VT
near-
collision
Lo+ block S°

near-
collision
block S°_,

birthday near-
prgf"‘ ‘ padsqmg bits collision
' St block S*
cl
Message B J
(0]

Enlarge / An overview of a chosen-prefix collision. A similar technique was used by the Flame espionage malware that targeted
Iran. The scientific novelty of the malware underscored the sophistication of malware sponsored by wealthy nation states.

The Flame espionage malware that infected computers in Iran

achieved mathematic breakthroughs that could only have been Flame

O
O

accomplished by world-class cryptographers, two of the world's
foremost cryptography experts said.

"We have confirmed that Flame uses a yet unknown MD5 chosen-
prefix collision attack," Marc Stevens wrote in an e-mail posted to
a cryptography discussion group earlier this week. "The collision
attack itself is very interesting from a scientific viewpoint, and
there are already some practical implications." Benne de Weger, a
Stevens colleague and another expert in cryptographic collision

Revealed: Stuxnet “beta’s”
devious alternate attack on
Iran nuke program

Massive espionage malware
targeting governments
undetected for 5 years

Iranian computers targeted
by new malicious data wiper
program

New in-the-wild malware

The tightrope

Why don't cryptographers build secure hash functions?

Cryptographers seem perfectly capable of building secure hash functions.

The difficulty is that they strive for VERY HIGH SPEED.

SHA256 can run at 3.5 cycles/byte (eBACS: 2018 Intel Core i3-8121U,

https://bench.cr.yp.to/results-hash.html) or 0.6 ns per byte, and hardware
will make it even faster.

It is AMAZING that one gets ANY security at such low cost.

If you allow cryptographers a 10x slowdown, they can up rounds by 10x
and designs seem almost impossible to break.

SHAS

National Institute for Standards and Technology (NIST) held a world-wide
competition to develop a new hash function standard.

Contest webpage:
http://csrc.nist.gov/groups/ST/hash/index.html

Requested parameters:
e Design: Family of functions with 224, 256, 384, 512 bit output sizes

e Security: CR, one-wayness, near-collision resistance, others...

e Efficiency: as fast or faster than SHA2-256

SHAS

Submissions: 64

Round 1: 51

Round 2: 14: BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue,
Grostl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, Skein.

Finalists: 5: BLAKE, Grostl, JH, Keccak, Skein.
SHA3: 1: Keccak

SHA3: Sponge

Z

| e Al

C{O—»—»—»—»ﬁ—»

absorbing squeezing

pad
. M) M M) al Wa M
r< |0 > >

_/ _/ _/ u;u _/

i

f: {0,1}77¢ — {0,1}"%¢ is a (public, invertible!) permutation.

d is the number of output bits, and ¢ = 2d.

SHA3 does not use the MD paradigm used by the MD and SHA?2 series.

Shake(M, d)— Extendable-output function, returning any given number d

of bits.

A Hierarchy

= U\n\h\f@\(§0! MO\gL @V\VLDH‘GY\S

- TC&\(%&\(COM I '5v ‘*Wﬂf’ff%ﬂ%é j/t0k$b\
WV\OHW\S

= Colqz‘(l‘ov\ — ye s 1”6*0»/4 1' Nash N“&HM}

U(\ivmkc— M/d\'/{/\/gm dLO{S Wﬁf‘
OA,QQ/ (/L\g (G{’j

C%/US\ Cj{‘ % (< Q}\”‘{ H éﬁyE C ’)
| A= (.~
s}i; XQE'ZLP ?CK> |

Constructions of UHF

We start with a UHF construction using polynomials modulo a prime. Let ¢ be a (poly-bounded)
length parameter and let p be a prime. We define a hash function Hq, that hashes a message
m € ng to a single element t € Z,. The key space is K := Z,.

Let m be a message, so m = (a1, a2,...,0y) € de for some 0 < v < /. Let k € Z, be a key.
The hash function Hyoly(k, m) is defined as follows:

Hpoly (k, (CLl, - ,CLU)) = kY + alkv_l + a2kv—2 + -4 ap_1k +a, € Zp (73)

