Foundations of Applied Cryptography

Adam O'Neill

Based on http://cseweb.ucsd.edu/~mihir/cse207/

Setting the Stage

• We have studied our first lower-level primitive, blockciphers.

Setting the Stage

- We have studied our first lower-level primitive, blockciphers.
- Today we will study how to use it to build our first higher-level primitive, symmetric-key encryption.

Syntax

A symmetric encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms:

 ${\mathcal K}$ and ${\mathcal E}$ may be randomized, but ${\mathcal D}$ must be deterministic.

Correctness

More formally: For all keys K that may be output by \mathcal{K} , and for all M in the *message space*, we have

$$Pr[\mathcal{D}_{\mathcal{K}}(\mathcal{E}_{\mathcal{K}}(M)) = M] = 1$$
,

where the probability is over the coins of \mathcal{E} .

A scheme will usually specify an associated message space.

Blockcipher Modes of Operation

 $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n \text{ a block cipher}$ Notation: x[i] is the i-th n-bit block of a string x, so that $x = x[1] \dots x[m]$ if |x| = nm.

Always:

Alg
$$\mathcal{K}$$

 $\mathcal{K} \xleftarrow{\$} \{0,1\}^k$
return K

Modes of operation

Block cipher provides parties sharing K with

which enables them to encrypt a 1-block message.

How do we encrypt a long message using a primitive that only applies to n-bit blocks?

Electronic Codebook Mode

 $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ where:

 $\begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{E}_{\mathcal{K}}(M) \\ \hline \text{for } i = 1, \dots, m \text{ do} \\ \mathcal{C}[i] \leftarrow \mathcal{E}_{\mathcal{K}}(M[i]) \\ \text{return } \mathsf{C} \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{D}_{\mathcal{K}}(C) \\ \hline \text{for } i = 1, \dots, m \text{ do} \\ M[i] \leftarrow \mathcal{E}_{\mathcal{K}}^{-1}(\mathcal{C}[i]) \\ \text{return } \mathsf{M} \end{array}$

Weakness of ECB

Weakness: $M_1 = M_2 \Rightarrow C_1 = C_2$

Why is the above true? Because E_K is deterministic:

Why does this matter?

Weakness of ECB

Suppose we know that there are only two possible messages, $Y = 1^n$ and $N = 0^n$, for example representing

- FIRE or DON'T FIRE a missile
- BUY or SELL a stock
- Vote YES or NO

Then ECB algorithm will be $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{E}_{\mathcal{K}}(M)$.

Is this avoidable?

Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be ANY encryption scheme.

Suppose $M_1, M_2 \in \{Y, N\}$ and

- Sender sends ciphertexts $C_1 \leftarrow \mathcal{E}_K(M_1)$ and $C_2 \leftarrow \mathcal{E}_K(M_2)$
- Adversary A knows that $M_1 = Y$

Adversary says: If $C_2 = C_1$ then M_2 must be Y else it must be N.

Does this attack work?

Introducing Randomized Encryption

For encryption to be secure it must be randomized

That is, algorithm $\mathcal{E}_{\mathcal{K}}$ flips coins.

If the same message is encrypted twice, we are likely to get back different answers. That is, if $M_1 = M_2$ and we let

$$C_1 \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}\leftarrow \mathcal{E}_{\mathcal{K}}(M_1) \text{ and } C_2 \stackrel{\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}\hspace{0.1em}}\leftarrow \mathcal{E}_{\mathcal{K}}(M_2)$$

then

$$Pr[C_1 = C_2]$$

will (should) be small, where the probability is over the coins of \mathcal{E} .

Randomized Encryption

There are many possible ciphertexts corresponding to each message.

If so, how can we decrypt?

We will see examples soon.

Randomized Encryption

A fundamental departure from classical and conventional notions of encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption mechanisms which associate to each message a number of different possible ciphertexts.

CBC-\$:

Cipher-block Chaining Mode with Random IV

$$\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 where:

Correct decryption relies on E being a block cipher.

CTR-\$ Mode

Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^\ell$ be a family of functions. If $X \in \{0,1\}^n$ and $i \in \mathbb{N}$ then X + i denotes the *n*-bit string formed by converting X to an integer, adding *i* modulo 2^n , and converting the result back to an *n*-bit string. Below the message is a sequence of ℓ -bit blocks:

→ CTR-\$ Mode

$$\frac{\operatorname{Alg} \mathcal{E}_{\mathcal{K}}(M)}{C[0] \stackrel{\$}{\leftarrow} \{0,1\}^{n}} \\
\text{for } i = 1, \dots, m \text{ do} \\
P[i] \leftarrow E_{\mathcal{K}}(C[0] + i) \\
C[i] \leftarrow P[i] \oplus M[i] \\
\text{return } C
\end{aligned}$$

$$\frac{\operatorname{Alg} \mathcal{D}_{\mathcal{K}}(C)}{\operatorname{for } i = 1, \dots, m \text{ do} \\
P[i] \leftarrow E_{\mathcal{K}}(C[0] + i) \\
M[i] \leftarrow P[i] \oplus C[i] \\
\text{return } M
\end{aligned}$$

i)

- \mathcal{D} does not use $E_{\mathcal{K}}^{-1}$! This is why CTR\$ can use a family of functions *E* that is not required to be a blockcipher.
 - Encryption and Decryption are parallelizable.

Voting with CBC-\$

Suppose we encrypt $M_1, M_2 \in \{Y, N\}$ with CBC\$.

Adversary A sees $C_1 = C_1[0]C_1[1]$ and $C_2 = C_2[0]C_2[1]$.

Suppose A knows that $M_1 = Y$.

Can A determine whether $M_2 = Y$ or $M_2 = N$?

Assessing Security

 How to determine which modes of operations are "good" ones?

Assessing Security

- How to determine which modes of operations are "good" ones?
- E.g., CBC-S seems better than ECB. But is it secure? Or are there still attacks?

Assessing Security

- How to determine which modes of operations are "good" ones?
- E.g., CBC-\$ seems better than ECB. But is it secure? Or are there still attacks?
- Important since CBC-\$ is widely used.

Security requirements

Suppose sender computes

$$C_{1} \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} \bullet}{\hspace{0.1em}} \mathcal{E}_{K}(M_{1}) \hspace{0.1em} ; \hspace{0.1em} \cdots \hspace{0.1em} ; \hspace{0.1em} C_{q} \stackrel{\hspace{0.1em} \leftarrow \hspace{0.1em} \bullet}{\hspace{0.1em}} \mathcal{E}_{K}(M_{q})$$
Adversary A has C_{1}, \ldots, C_{q}

$$\underbrace{ \begin{array}{c|c} What \text{ if } A \\ \hline \\ \hline \\ Retrieves \begin{array}{c} K \\ \\ Retrieves \begin{array}{c} M_{1} \end{array} & Bad! \\ \hline \\ \end{array}}$$

But also we want to hide all partial information about the data stream, such as

- Does $M_1 = M_2?$ ~
- What is first bit of M_1 ? ~
- What is XOR of first bits of M_1, M_2 ?

Something we won't hide: the length of the message

Intuition

The master property MP is called IND-CPA (indistinguishability under chosen plaintext attack).

Consider encrypting one of two possible message streams, either

or

where $|M_0^i| = |M_1^i|$ for all $1 \le i \le q$. Adversary, given ciphertexts C^1, \ldots, C^q and both data streams, has to figure out which of the two streams was encrypted.

 $M_0^1, ..., M_0^q$ $M_1^1, ..., M_1^q$,

We will even let the adversary pick the messages: It picks (M_0^1, M_1^1) and gets back C^1 , then picks (M_0^2, M_1^2) and gets back C^2 , and so on.

Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme

Game Left_{SE}Game Right_{SE}procedure Initializeprocedure Initialize $K \leftarrow {}^{\$} \mathcal{K}$ procedure LR(M_0, M_1)procedure LR(M_0, M_1)procedure LR(M_0, M_1)Return $C \leftarrow {}^{\$} \mathcal{E}_K(M_0)$ Return $C \leftarrow {}^{\$} \mathcal{E}_K(M_1)$

Associated to \mathcal{SE}, A are the probabilities

$$\Pr\left[\operatorname{Left}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow 1\right] \qquad \Pr\left[\operatorname{Right}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow 1\right]$$

that A outputs 1 in each world. The (ind-cpa) advantage of A is

$$\mathbf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{SE}}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{Right}^{\mathcal{A}}_{\mathcal{SE}} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathrm{Left}^{\mathcal{A}}_{\mathcal{SE}} \Rightarrow 1\right]$$

Message length restriction $(m_0, m_1) \Rightarrow [m_0] = [m_0]$

It is required that $|M_0| = |M_1|$ in any query M_0, M_1 that A makes to **LR**. An adversary A violating this condition is considered invalid.

This reflects that encryption is not aiming to hide the length of messages.

Advantage Interpretation

 $\operatorname{Adv}_{\mathcal{SE}}^{\operatorname{ind-cpa}}(A) \approx 1$ means A is doing well and \mathcal{SE} is not ind-cpa-secure. $\operatorname{Adv}_{\mathcal{SE}}^{\operatorname{ind-cpa}}(A) \approx 0$ (or ≤ 0) means A is doing poorly and \mathcal{SE} resists the attack A is mounting.

Adversary resources are its running time t and the number q of its oracle queries, the latter representing the number of messages encrypted.

Security: $S\mathcal{E}$ is IND-CPA-secure if $Adv_{S\mathcal{E}}^{ind-cpa}(A)$ is "small" for ALL A that use "practical" amounts of resources.

Insecurity: SE is not IND-CPA-secure if we can specify an explicit A that uses "few" resources yet achieves "high" ind-cpa-advantage.

Security Analysis of ECB

Let $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. Recall that ECB mode defines symmetric encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ with

$$\mathcal{E}_{\mathcal{K}}(M) = E_{\mathcal{K}}(M[1])E_{\mathcal{K}}(M[2])\cdots E_{\mathcal{K}}(M[m])$$

Can we design A so that

$$\twoheadrightarrow \mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{SE}}(A) = \mathsf{Pr}\left[\mathrm{Right}^{\mathcal{A}}_{\mathcal{SE}} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathrm{Left}^{\mathcal{A}}_{\mathcal{SE}} \Rightarrow 1\right]$$

is close to 1?

Adversary

Let
$$\mathcal{E}_{\mathcal{K}}(M) = E_{\mathcal{K}}(M[1]) \cdots E_{\mathcal{K}}(M[m]).$$

Analysis

IND-CPA

We claim that if encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA secure then the ciphertext hides ALL partial information about the plaintext.

For example, from $C_1 \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{E}_{\mathcal{K}}(M_1)$ and $C_2 \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{E}_{\mathcal{K}}(M_2)$ the adversary cannot

- get *M*₁
- get 1st bit of M_1
- get XOR of the 1st bits of M_1, M_2
- etc.

Security Analysis of CTR-\$

Let $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher and $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ the corresponding CTR\$ symmetric encryption scheme. Suppose 1-block messages M_0, M_1 are encrypted:

Let us say we are **lucky** If $C_0[0] = C_1[0]$. If so:

 $C_0[1] = C_1[1]$ if and only if $M_0 = M_1$

So if we are lucky we can detect message equality and violate IND-CPA.

birthday attack on 14. of CTR-

Let $1 \le q < 2^n$ be a parameter and let $\langle i \rangle$ be integer *i* encoded as an ℓ -bit string.

Right Game Analysis

 $\{0,1\}^n$

 $P \oplus M_1$

adversary A
for
$$i = 1, ..., q$$
 do
 $C^{i}[0]C^{i}[1] \stackrel{\$}{\leftarrow} LR(\langle i \rangle, \langle 0 \rangle)$ Game Right
 $S \leftarrow \{(j, t) : C^{j}[0] = C^{t}[0] \text{ and } j < t\}$ procedure Initialize
 $K \stackrel{\$}{\leftarrow} \mathcal{K}$ $S \leftarrow \{(j, t) : C^{j}[0] = C^{t}[0] \text{ and } j < t\}$ procedure LR(M_{0}, M_{1})If $S \neq \emptyset$, then
 $(j, t) \stackrel{\$}{\leftarrow} S$
If $C^{j}[1] = C^{t}[1]$ then return 1 $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^{n}$
 $P \leftarrow E(K, C[0] + 1)$
 $C[1] \leftarrow P \oplus M_{1}$
Return $C[0]C[1]$

If $C^{j}[0] = C^{t}[0]$ (lucky) then $\widetilde{C^{j}[1]} = \langle 0 \rangle \oplus E_{\mathcal{H}}(C^{j}[0] + 1) = \langle 0 \rangle \oplus E_{\mathcal{H}}(C^{t}[0] + 1) = C^{t}[1]$ SO $\Pr\left[\operatorname{Right}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow 1\right] = \Pr\left[S \neq \emptyset\right] = C(2^n, q)$

Left game analysis

adversary AGame Left_{SE}for i = 1, ..., q do $C^i[0]C^i[1] \stackrel{\$}{\leftarrow} LR(\langle i \rangle, \langle 0 \rangle)$ procedure Initialize $S \leftarrow \{(j, t) : C^j[0] = C^t[0] \text{ and } j < t\}$ $K \stackrel{\$}{\leftarrow} \mathcal{K}$ If $S \neq \emptyset$, then $c[0] \stackrel{\$}{\leftarrow} S$ $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^n$ $P \leftarrow E(K, C[0] + 1)$ $C[1] \leftarrow P \oplus M_0$ return 0Return C[0]C[1]

If
$$C^{j}[0] = C^{t}[0]$$
 (lucky) then

$$C^{j}[1] = \langle j \rangle \oplus E_{\mathcal{K}}(C^{j}[0] + 1) \neq \langle t \rangle \oplus E_{\mathcal{K}}(C^{t}[0] + 1) = C^{t}[1]$$
so
 $\Pr\left[\operatorname{Left}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow 1\right] = 0.$

Conclusion

$$\begin{aligned} \mathsf{Adv}_{\mathcal{SE}}^{\mathrm{ind-cpa}}(\mathcal{A}) &= \mathsf{Pr}\left[\mathrm{Right}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathrm{Left}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow 1\right] \\ &= C(2^n, q) - 0 \geq 0.3 \cdot \frac{q(q-1)}{2^n} \end{aligned}$$

Conclusion: CTR\$ can be broken (in the IND-CPA sense) in about $2^{n/2}$ queries, where *n* is the block length of the underlying block cipher, regardless of the cryptanalytic strength of the block cipher.

Security of CTR-\$

So far: A *q*-query adversary can break CTR\$ with advantage $\approx \frac{q^2}{2^{n+1}}$ Question: Is there any better attack?

Security of CTR-\$

So far: A q-query adversary can break CTR\$ with advantage $\approx \frac{q^2}{2^{n+1}}$

Question: Is there any better attack?

Answer: NO!

We can prove that the best q-query attack short of breaking the block cipher has advantage at most

 $\frac{\sigma^2}{2^n}$

where σ is the total number of blocks encrypted.

Example: If q 1-block messages are encrypted then $\sigma = q$ so the adversary advantage is not more than $q^2/2^n$.

For E = AES this means up to 2⁶⁴ blocks may be securely encrypted, which is good.

Theorem Statement

Theorem: [BDJR98] Let $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher and $SE = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ the corresponding CTR\$ symmetric encryption scheme. Let A be an ind-cpa adversary against SE that has running time tand makes at most q **LR** queries, these totalling at most σ blocks. Then there is a prf-adversary B against E such that

$$\operatorname{\mathsf{Adv}}_{\mathcal{SE}}^{\operatorname{ind-cpa}}(A) \leq 2 \operatorname{\mathsf{-Adv}}_{E}^{\operatorname{prf}}(B) + \frac{\sigma^{2}}{2^{n}}$$

Furthermore, *B* makes at most σ oracle queries and has running time $t + \Theta(\sigma \cdot n)$.

$$\frac{1}{2}\left(A_{d_{Y}}(A) - \frac{\sigma^{2}}{2}\right) \leq A_{d_{Y}}(B)$$

Proof Inuition/Preliminaries

Consider the CTR\$ scheme with E_K replaced by a random function **Fn** with range $\{0,1\}^{\ell}$.

Analyzing this is a thought experiment, but we can ask whether it is IND-CPA secure.

If so, the assumption that E is a PRF says CTR\$ with E is IND-CPA secure.

A PRF "rolls" op " an exponentially tong random tope. Why? The tape is $F_{k}((1)) [IF_{k}((2))]...$

Let E be the event that the points

 $C_1[0] + 1, \ldots, C_1[0] + m, \ldots, C_q[0] + 1, \ldots, C_q[0] + m,$

on which Fn is evaluated across the q encryptions, are all distinct.

Case 1: *E* happens. Then the encryption is a one-time-pad: ciphertexts are random, independent strings, regardless of which message is encrypted. So *A* has zero advantage.

Case 2: E doesn't happen. Then A may have high advantage but it does not matter because Pr[E] doesn't happen is small. (It is the small additive term in the theorem.)

Let $N, q, m \ge 1$ be integers and let $Z_N = \{0, 1, \dots, N-1\}$. Let + be addition modulo N. Consider the game

For
$$i = 1, \ldots, q$$
 do
 $c_i \stackrel{\hspace{0.1em}\hspace{0.1em}{\scriptscriptstyle\bullet}}{\leftarrow} \{c_i + 1, \ldots, c_i + m\}$

For $1 \leq i < j \leq q$ define the events $B_{i,j} : I_i \cap I_j \neq \emptyset$ and $B : \bigvee_{1 \leq i < j \leq q} B_{i,j}$. Then let

$$IIP(N, q, m) = Pr[B]$$
.

Problem: Upper bound IIP(N, q, m) as a function of N, q, m.

Claim: IIP(*N*, *q*, *m*)
$$\leq \frac{q(q-1)}{2} \frac{(2m-1)}{N}$$

Two formulations of advantage

A Game-Playing Proof

Let SE = (K, E, D) be a symmetric encryption scheme and A an adversary.

$Game\ \mathrm{Guess}_{\mathcal{SE}}$	procedure $LR(M_0, M_1)$
	$\operatorname{return}\ C \xleftarrow{\hspace{0.15cm}{}^{\hspace{15cm}\$}} \mathcal{E}_K(M_b)$
procedure Initialize	procedure Finalize(b')
$K \leftarrow \mathcal{K}; b \leftarrow \{0, 1\}$	$\operatorname{return}\ (b=b')$

Proposition:
$$\operatorname{Adv}_{\mathcal{SE}}^{\operatorname{ind-cpa}}(A) = 2 \cdot \Pr\left[\operatorname{Guess}_{\mathcal{SE}}^{\mathcal{A}} \Rightarrow \operatorname{true}\right] - 1.$$

The proof uses a sequence of games and invokes the fundamental lemma of game playing [BR96].

The games have the following Initialize and Finalize procedures:

Initialize// G_0 Initialize// G_1, G_2, G_3 Finalize// All games $b \stackrel{\$}{\leftarrow} \{0,1\}; S \leftarrow \emptyset$ $b \stackrel{\$}{\leftarrow} \{0,1\}; S \leftarrow \emptyset$ Return (b = b') $K \stackrel{\$}{\leftarrow} \{0,1\}^k$

For brevity we omit writing these procedures explicitly in the games, but you should remember they are there.

Also for brevity if G is a game and A is an adversary then we let

 $\Pr[G^A] = \Pr[G^A \Rightarrow true]$

55

Game
$$G_0$$

procedure LR (M_0, M_1)
 $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^n$
for $i = 1, ..., m$ do
 $P \leftarrow C[0] + i$
if $P \notin S$ then $T[P] \leftarrow E_K(P)$
 $C[i] \leftarrow T[P] \oplus M_b[i]$
 $S \leftarrow S \cup \{P\}$
return C

Game G_1 **procedure LR**(M_0, M_1) $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^n$ for i = 1, ..., m do $P \leftarrow C[0] + i$ if $P \notin S$ then $T[P] \stackrel{\$}{\leftarrow} \{0, 1\}^\ell$ $C[i] \leftarrow T[P] \oplus M_b[i]$ $S \leftarrow S \cup \{P\}$ return C

Then

$$\mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{SE}}(A) = 2 \cdot \mathsf{Pr}\left[G_0^A\right] - 1$$

Proof of Claim 1

Clearly $\Pr[G_0^A] = \Pr[G_1^A] + (\Pr[G_0^A] - \Pr[G_1^A]).$

Claim 1: We can design prf-adversary B so that $\Pr[G_0^A] - \Pr[G_1^A] \le \mathbf{Adv}_E^{\mathrm{prf}}(B)$ Claim 2: $\Pr[G_1^A] \le \frac{1}{2} + \frac{(q-1)\sigma}{2^n}$

Given these, we have

$$\begin{aligned} \mathsf{Adv}_{\mathcal{SE}}^{\mathrm{ind-cpa}}(A) &\leq 2 \cdot \left(\frac{1}{2} + \frac{(q-1)\sigma}{2^n}\right) - 1 + 2 \cdot \mathsf{Adv}_E^{\mathrm{prf}}(B) \\ &= \frac{2(q-1)\sigma}{2^n} + 2 \cdot \mathsf{Adv}_E^{\mathrm{prf}}(B) \end{aligned}$$

which proves the theorem. It remains to prove the claims.

 $\{\cdot\}^{\ell}$

Where we are

$$\begin{array}{l} \underbrace{ \text{adversary } B } \\ b \stackrel{\$}{\leftarrow} \{0,1\}; \ S \leftarrow \emptyset \\ b' \stackrel{\$}{\leftarrow} A^{\text{LRSim}} \\ \text{if } (b = b') \text{ then return 1} \\ \text{else return 0} \end{array} \right| \begin{array}{l} \text{subroutine } \text{LRSim}(M_0, M_1) \\ C[0] \stackrel{\$}{\leftarrow} \{0,1\}^n \\ \text{for } i = 1, ..., m \text{ do} \\ P \leftarrow C[0] + i \\ \text{if } P \notin S \text{ then } T[P] \leftarrow \mathbf{Fn}(P) \\ C[i] \leftarrow T[P] \oplus M_b[i] \\ S \leftarrow S \cup \{P\} \\ \text{return } C \end{array} \right|$$

$$\Pr\left[\operatorname{Real}_{E}^{B} \Rightarrow 1\right] = \Pr\left[G_{0}^{A}\right]$$
$$\Pr\left[\operatorname{Rand}_{\{0,1\}^{n}}^{B} \Rightarrow 1\right] = \Pr\left[G_{1}^{A}\right]$$

Subtracting, we get Claim 1.

Game $|G_2|$, G_3 Game G₁ procedure $LR(M_0, M_1)$ procedure $LR(M_0, M_1)$ $C[0] \stackrel{\$}{\leftarrow} \{0,1\}^n$ $C[0] \xleftarrow{\$} \{0,1\}^n$ for i = 1, ..., m do for i = 1, ..., m do $P \leftarrow C[0] + i$ $P \leftarrow C[0] + i$ $C[i] \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$ If $P \notin S$ then If $P \in S$ then $\mathsf{T}[P] \xleftarrow{\hspace{0.1em}\$} \{0,1\}^{\ell}$ bad \leftarrow true; $|C[i] \leftarrow T[P] \oplus M_b[i]$ $C[i] \leftarrow T[P] \oplus M_b[i]$ $\mathsf{T}[P] \leftarrow C[i] \oplus \overline{M_b[i]}$ $S \leftarrow S \cup \{P\}$ $S \leftarrow S \cup \{P\}$ return Creturn C

$$\mathsf{Pr}[G_1^{\mathcal{A}}] = \mathsf{Pr}[G_2^{\mathcal{A}}] = \mathsf{Pr}[G_3^{\mathcal{A}}] + \left(\mathsf{Pr}[G_2^{\mathcal{A}}] - \mathsf{Pr}[G_3^{\mathcal{A}}]\right)$$

Game G_3 procedure LR(M_0, M_1) $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^n$ for i = 1, ..., m do $P \leftarrow C[0] + i; C[i] \stackrel{\$}{\leftarrow} \{0, 1\}^\ell$ If $P \in S$ then bad \leftarrow true $T[P] \leftarrow C[i] \oplus M_b[i]; S \leftarrow S \cup \{P\}$ return C

Ciphertext C in G_3 is always random, independently of b, so

$$\Pr\left[G_3^{\mathcal{A}}\right] = \frac{1}{2}.$$

Game
$$G_2$$
, G_3
procedure LR(M_0, M_1)
 $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^n$
for $i = 1, ..., m$ do
 $P \leftarrow C[0] + i; C[i] \stackrel{\$}{\leftarrow} \{0, 1\}^\ell$
If $P \in S$ then
bad \leftarrow true; $C[i] \leftarrow T[P] \oplus M_b[i]$
 $T[P] \leftarrow C[i] \oplus M_b[i]; S \leftarrow S \cup \{P\}$
return C

 G_2 and G_3 are identical-until-bad, so Fundamental Lemma implies

$$\Pr\left[G_2^A\right] - \Pr\left[G_3^A\right] \leq \Pr\left[G_3^A \text{ sets bad}\right].$$

Game
$$G_3$$

procedure $LR(M_0, M_1)$
 $C[0] \stackrel{\$}{\leftarrow} \{0, 1\}^n$
for $i = 1, ..., m$ do
 $P \leftarrow C[0] + i; C[i] \stackrel{\$}{\leftarrow} \{0, 1\}^\ell$
If $P \in S$ then bad \leftarrow true
 $T[P] \leftarrow C[i] \oplus M_b[i]; S \leftarrow S \cup \{P\}$
return C

$$\begin{array}{rcl} \Pr\left[G_3^A \operatorname{sets} \mathsf{bad}\right] &\leq & \operatorname{IIP}(2^n,q,m) \leq \frac{q(q-1)}{2} \frac{2m-1}{2^n} \\ &\leq & \frac{mq(q-1)}{2^n} \\ &\leq & \frac{(q-1)\sigma}{2^n} \end{array}. \end{array}$$

• Analogous theorem holds for CBC-\$.

- Analogous theorem holds for CBC-\$.
- Provides a quantitative guarantee on how many blocks can be securely encrypted using these modes (assuming the underlying block cipher is good).

Semantic Security