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Setting the Stage

 We have studied our first lower-level primitive,



Setting the Stage

 We have studied our first lower-level primitive,

* Today we will study how to use it to build our
first higher-level primitive, symmetric-key
encryption.
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A symmetric encryption scheme S€ = (K, &, D) consists of three
algorithms:
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IC and £ may be randomized, but D must be deterministic.
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Correctness
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M > £ —»cw» ol —»M

More formally: For all keys K that may be output by K, and for all M in
the message space, we have

Pr[Dk(Ex(M)) =M] =1,
where the probability is over the coins of £.

A scheme will usually specify an associated message space.



Blockcipher Modes of Operation

_ o E:{0,1}* x {0,1}" — {0,1}" a block cipher
Notation: x[i] is the i-th n-bit block of a string x, so that x = x[1] ... x[m]

if |x| = nm.

[AIgIC

K< {01}k

return K

Always:




Modes of operation

Block cipher provides parties sharing K with

O~

which enables them to encrypt a 1-block message.

How do we encrypt a long message using a primitive that only applies to
n-bit blocks?



Electronic Codebook Mode
(@U‘ﬂ
SE = (K, E,D) where:

Alg £k (M) Alg Dk (C)
fori=1,..., mdo |fori=1,..., m do
C[i] < Ex(M[i]) MI[i] + E*(Cli))
return C return M
M[1] M[2] M[m]
EK EK EK
\J \J \J

C[1] C[2] Clm]



Weakness of ECB

Weakness: M = M, = ¢ = (G

Why is the above true? Because Ek is deterministic:

Afl[l] /\Tl[m] Mo[1]
Ex - Ex Ex
31[1: Cl[m] C2[1]

Why does this matter?

M2 [m]




Weakness of ECB

Suppose we know that there are only two possible messages, Y = 1" and
N = 0", for example representing

e FIRE or DON'T FIRE a missile

e BUY or SELL a stock

e Vote YES or NO

Then ECB algorithm will be Ex(M) = Ex(M).

O~



Is this avoidable?

Let S€ = (K, &, D) be ANY encryption scheme.

Suppose My, M, € {Y, N} and
e Sender sends ciphertexts C; < Ex(M1) and G, + Ex(M>)
e Adversary A knows that M; =Y

Adversary says: If C, = (7 then M, must be Y else it must be N.

Does this attack work?



Introducing Randomized Encryption

For encryption to be secure it must be randomized
That is, algorithm Ek flips coins.

If the same message is encrypted twice, we are likely to get back different
answers. Thatis, if M; = M> and we let

Cl é SK(Ml) and C2 é (‘:K(MQ)

then
Pr[C1 p— C2]

will (should) be small, where the probability is over the coins of £.



Randomized Encryption

There are many possible ciphertexts corresponding to each message.
If so, how can we decrypt?

We will see examples soon.




Randomized Encryption

A fundamental departure from classical and conventional notions of
encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to
each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption
mechanisms which associate to each message a number of different
possible ciphertexts.



CBC-S:
Cipher-block Chaining Mode with Random IV

S€ = (K, E,D) where:

Alg Ex(M
g {sf( ) n Alg D (C)
fC[O]_<—i{0,1} . for i=1,...,mdo
or/=1,...,mdo - —1 ' '
1. mde _ MIi] < E(C[i]) @ Cli — 1]
Cli) = Ex(MI @ Cli=1) | Looum mr
return C
\'\W\(\V\\\d\ h\ﬂr[ i I\:IV[ ’ I\:I'[ "
(
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Correct decryption relies on E being a block cipher.



CTR-S Mode

Let E: {0,1}* x {0,1}" — {0, 1}* be a family of functions. If X € {0,1}"
and / € N then X 4 / denotes the n-bit string formed by converting X to
an integer, adding i modulo 2", and converting the result back to an n-bit

string. Below the message is a sequence of /-bit blocks:

Alg £x(M) Alg Dy (C)
C[O]é{o,l}n for /':]_,...,me
for i=1,...,mdo P[i] < Ex(C[0] + /)

'D[i] — EK(C[O] "‘i) i [ i
Cli] « P[i] @ M[i] Ml Pl ol

return C

return M

C[0]+1 C[0]+2 C[0]+m
v v v

C /[/O/X :O Ex Ex Ex
/ P%ﬂ PEZ] P[im] PN~ T

y
M[1]—>€i—) M[z]_.G? M[m]-»Ei—) PSUAM
col | o L o W |l cim ore




- CTR-S Mode

Alg Ex(M

8 Ek(M) Alg Dy (C)

C[o] {0, 1} for i=1,...,m do
fori=1,...,mdo P[i] « Ex(C[0] + /)

P[i] + Ex(C[0] + i)
C[i]C+ P[i] ® M|[i]
return

M|[i] < P[i] & C]i]

return M

> ¢ D does not use Ei;l! This is why CTR$ can use a family of functions
E that is not required to be a blockcipher.

e Encryption and Decryption are parallelizable.



Voting with CBC-S

Suppose we encrypt My, My € {Y, N} with CBCS$.

Ml':'\/\

s

Ek

'

{0,1}" 3 ¢y [0]——

_—e— ——— ——

C1[1]

_/

{0,1}" % G[0]—

Adversary A sees C; = C1[0]C1[1] and G = G[0] G[1].

Suppose A knows tha

t M =Y.

Can A determine whether M, = Y or M, = N?

Co[1]




Assessing Security

* How to determine which modes of operations
are “good” ones?
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Assessing Security

* How to determine which modes of operations
are “good” ones?

* E.g., CBC-S seems better than ECB. But is it
? Or are there still attacks?

* Important since CBC-S is widely used.



Security requirements

Suppose sender computes

Cr <& Ex(My); -+ Cy < Ex(My)

——

Adversary A has (Cq,..., C,

What if A

Retrieves K | Bad!
Retrieves M; | Bad!

But also we want to hide all partial information about the data stream,
such as

e Does M{ = My? =
e What is first bit of My? —=
e What is XOR of first bits of My, Mb? ~

Something we won't hide: the length of the message
"—/ﬁ




Intuition

The master property MP is called IND-CPA (indistinguishability under
chosen plaintext attack).

Consider encrypting one of two possible message streams, either
Mg, ..., Mg
07 ceey 0

or
1
Mi,....M{
where |[MJ| = |[Mj] for all 1 < i < q. Adversary, given ciphertexts C, ...,
C9 and both data streams, has to figure out which of the two streams was
encrypted.

We will even let the adversary pick the messages: It picks (M3, M{) and
gets back C!, then picks (M3, M?) and gets back C?, and so on.



Ll £ shream s Mg o WE vigWk skream gy M
IND-CPA

Let S€ = (K, £, D) be an encryption scheme

Game Leftse Game Rightgg¢
procedure Initialize procedure Initialize
K< K K<< K

procedure LR(My, M;) procedure LR(My, M)
Return C <& £x(Mo) Return C ¢ Ex(My)

Associated to S&, A are the probabilities

Pr [Leftg‘(g;»l} ‘ Pr [Rightg‘(g;»l}

that A outputs 1 in each world. The (ind-cpa) advantage of A is

AdvP2(A) = Pr [nghtsg:»l} _Pr [Leftgg:»l}



Message length restriction
(mo ,WlJ = \Mv\" \M‘\

It is required that |My| = |[My]| in any query My, M7 that A makes to LR.
An adversary A violating this condition is considered invalid.

This reflects that encryption is not aiming to hide the length of messages.



Advantage Interpretation

Advglg'Cpa(A) ~ 1 means A is doing well and S€ is not ind-cpa-secure.

AdviesP*(A) ~ 0 (or < 0) means A is doing poorly and SE resists the
attack A is mounting.

Adversary resources are its running time t and the number g of its oracle
queries, the latter representing the number of messages encrypted.

Security: SE is IND-CPA-secure if Adviae P*(A) is “small” for ALL A
that use “practical” amounts of resources.

Insecurity: S€ is not IND-CPA-secure if we can specify an explicit A that
uses ‘few" resources yet achieves “high” ind-cpa-advantage.



Security Analysis of ECB

Let £:{0,1}* x {0,1}" — {0,1}" be a block cipher. Recall that ECB
mode defines symmetric encryption scheme S€ = (K, £, D) with

Ex(M) = Ex(M[1])Ex(M[2]) - - - Ex(M[m])

Can we design A so that
K

—# AdviITPY(A) = Pr [Rightég:ﬂ} _ Pr [Leftég;q}

Is close to 17



Adversary

Let Ex(M) = Ex(M[1])- - - Ex(M[m]).

adversary A
C1 < LR(O", On); C2 < LR(ln,On)
if C; = G, then return 1 else return 0 C 15
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Analysis



IND-CPA

We claim that if encryption scheme S€ = (K, &, D) is IND-CPA secure
then the ciphertext hides ALL partial information about the plaintext.

=

For example, from C; <~ Ex(My) and G < Ex (M) the adversary cannot
o get M
e get 1st bit of My
e get XOR of the 1st bits of My, M,

e ctc.



Security Analysis of CTR-S

Let £ : {0,1} x {0,1}" — {0,1}" be a blockcipher and S&€ = (K, &, D)
the corresponding CTR$ symmetric encryption scheme. Suppose 1-block
messages My, My are encrypted:

Go[0]Go[1] - E(K, Mo) | Gi0]Gi[1] <= E(K, My)
o[0]+ C4[0]+1
C [i)] 1 |
Ex Ex
' v
Po P+
{ v
Mo —»@ M+ »@
Co[0] Cj[‘] ] C1[0] C1i[1 ]

Let us say we are lucky If (y[0] = G1[0]. If so:
Co[].] = Cl[].] if and onIy if Mo = Ml

So if we are lucky we can detect message equality and violate IND-CPA.



The Adversary

lbivthdoy attack on Y of CTR—X

Let 1 < g < 2" be a parameter and let (i) be integer i encoded as an ¢-bit

string. = .
pls#@]= (2 a)

adversary Aq ~ q*

fori=1,...,q9 do _2/,,\_

C/[0]C[1] < LR((i), (oY)

S {(.0): o] =CtoJand j< t} P LlohT =
Ifﬁ"é, then ’ fn al &1

U.t) < S = LQLV\/ %)

If C/[1] = C[1] then return 1 Py “FT A _ _
return 0 - [LC T _7:13 - C)
= — —

R n 72

b\/
—)

0
allra

—~x



Right Game Analysis

adversary A Game Rightge
fori=1,...,q do procedure Initialize
C'o]C'[1] < LR((i). (0)) KK
S+ {(j,t): ¢/[0] = C*[0] and j < t} | procedure LR(My, M;)
If S # (), then C[o] < {0,1}"
U, 1)« S P« E(K,C[0] + 1)
If C/[1] = C*[1] then return 1 Cll]+ Pa® M
return 0 Return C[0]C[1]

If CJ[O] Ct[0] (lucky) then

CJ[1]— @E@+1)_ @E@+1 :@

Pr [Rightégzﬂ] =Pr[S #0] = C(2",q)

T —

SO



Left game analysis

adversary A Game Leftgg
fori=1,...,q do procedure Initialize
C'[0]C'[1] < LR((i), (0)) K&K
S+ {(,1): CJ[O] = Ct[0] and j < t} procedure LR(My, M)
If S # (), then C[0] < {0,1}"
(j,t)< S P+ E(K,C[0] +1)
If _C__{lﬂ__:i[}_] then return 1 C[1] + P & My
return 0 Return C[0]C[1]

If C/[0] = C¥[0] (lucky) then
A1) = () @ Ex(CI]0] + 1 A)t) @ Ex(CE[0] + 1) = CF[1]
) P ® e E——

Pr {Leftégzﬂ} ~0.



Conclusion

AdvidPr(A) = Pr [Rightg»‘g;»l} — Pr [Leftégzsl}

1
— C(2",q) -0 > 0.3-%

=S,y

Conclusion: CTR$ can be broken (in the IND-CPA sense) in about 2"/?
queries, where n is the block length of the underlying block cipher,
regardless of the cryptanalytic strength of the block cipher.



Security of CTR-S

g2

So far: A g-query adversary can break CTR$ with advantage ~ 57

Question: |Is there any better attack?



Security of CTR-S

2

So far: A g-query adversary can break CTR$ with advantage ~ 57

Question: s there any better attack?

Answer: NO!

We can prove that the best g-query attack short of breaking the block

cipher has advantage at most

0.2

2n
where o is the total number of blocks encrypted.

Example: If g 1-block messages are encrypted then 0 = g so the adversary
advantage is not more than g2/2".

For E = AES this means up to 2°* blocks may be securely encrypted,
which is good.



Theorem Statement

Theorem: [BDJR98] Let E : {0,1}* x {0,1}" — {0,1}" be a block cipher
and S€ = (K, &, D) the corresponding CTR$ symmetric encryption
scheme. Let A be an ind-cpa adversary against S& that has running time t
and makes at most g LR queries, these totalling at most o blocks. Then
there is a prf-adversary B against E such that

2
Advigs P (A) < 2- Advprf(B) + %

—a—
Furthermore, B makes at most o oracle queries and has running time

t+©(o - n).
(/Lcﬂ\[ (A \‘g: > < Ad\\/(@)
— L



Proof Inuition/Preliminaries

Consider the CTR$ scheme with Ex replaced by a random function Fn

with range {0, 1}6 ‘—m
Alg Egn(M) C[(1]+1 C[(1]+2 C[Oﬂ+m
C[0] < {0,1}" Fn = Fn
for i=1,...,mdo P%ﬂ sz] P[¢m]
P[i] <+ Fn(C[0] + /) } } }
C[I] « P[I] D M[I] M[1]—>C—? M[Z]»(—? M[m]-»(—?
return C C[o] Cl1] Ci2] Clml

Analyzing this is a thought experiment, but we can ask whether it is
IND-CPA secure.

If so, the assumption that E is a PRF says CTR$ with E is IND-CPA
secure.



pn PEE Ve Ws Tup erponenaliq B l/t)ftg
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Let E be the event that the points
G[o]+1,...,G[0]+m,...,G0] +1,...,C,[0] + m,
on which Fn is evaluated across the g encryptions, are all distinct.

Case 1: E happens. Then the encryption is a one-time-pad: ciphertexts
are random, independent strings, regardless of which message is encrypted.
So A has zero advantage.

Case 2: E doesn't happen. Then A may have high advantage but it does
not matter because Pr[E] doesn’t happen is small. (It is the small additive
term in the theorem.)



Let N,q, m > 1 be integers and let Zy, ={0,1,...,N —1}. Let + be
addition modulo N. Consider the game

Fori=1,...,q9 do
i Zy i < {ci+1,...,¢ci+ m}
For 1 </ < j < g define the events
B,',j - N /J = ) and B : \/1§i<quBi,j .
Then let
ITP(N, g, m) = Pr[B] .

Problem: Upper bound ITP(N, g, m) as a function of N, g, m.



q(g—1)(2m—1)

Claim: IIP(N <
aim (N,q,m) < 5 N



Two fremalodaing  of gdusYre g



A Game-Playing Proof

Let S€ = (K, £, D) be a symmetric encryption scheme and A an adversary.

Game Guessgg procedure LR(My, M;)

return C < Ex(M))
pro;:edure I$n|t|aI|ze procedure Finalize(b')
K< K; be{0,1} return (b = b’)

Proposition: Adv'se P*(A) = 2 - Pr |Guessag=true| — 1.



The proof uses a sequence of games and invokes the fundamental lemma
of game playing [BR96].

The games have the following Initialize and Finalize procedures:

Initialize // Go | Initialize // Gi, G, G; | Finalize // All games
b<{0,1}; S « 0 b {0,1}; S« 0 Return (b = b')
K < {0,1}k

For brevity we omit writing these procedures explicitly in the games, but
you should remember they are there.

Also for brevity if G is a game and A is an adversary then we let

Pr[G#] = Pr[G” = true]



Game Gy Game G
procedure LR( My, M) procedure LR(My, M)
C[0] < {0,1}" C[0] & {0,1}"
fori=1,...,mdo fori=1,...,mdo
P« C[0]+i P <+ C[O] +i
if P ¢ S then T[P] < Ex(P) if P ¢S then T[P] < {0,1}*
Cli] < T[P] ® My][i] Cli] < T[P] © Mp|i]
S+ SU{P} S+ Su{P}
return C return C
Then

AdvIT P (A) = 2 Pr | GfY] — 1



Clearly Pr[G§'] = Pr[G{*] + (Pr[G4'] — Pr[GY).

Claim 1. We can design prf-adversary B so that
Pr[GS'] — Pr[G{] < Adv2"(B)
. 1 (g—1)o
Claim 2: PI’[G]/_A] S 5 + T

Given these, we have

1nd cpa(A)

IA

1 —1
2. (§+(‘72—n)0) —1+2-Adv?(B)

— 2(q2_n Lo +2- Adv?(B)

which proves the theorem. It remains to prove the claims.



adversary B

b {0,1}; S« ()

b/ é ALRSim

if (b= b") then return 1
else return 0

subroutine LRSim(My, M)
C[0] < {0,1}"
fori=1,...,mdo
P« C[0]+i
if P ¢S then T[P] < Fn(P)
C[i] « T[P] & Mp]i]

S< SU{P)
return C
Pr [Realg ~1] = Pr|cA
Pr [Rand{so’l}n N 1: — Py :G{‘:

Subtracting, we get Claim 1.




Game G;

procedure LR(My, M;)
C[0] < {0,1}"
fori=1,....mdo

P <+ C[O] +i

If P¢ S then

T[P] < {0,1}*
C[i] < T[P] & Ms][i]
S+ SuU{P}

return C

Game |G|, G

procedure LR(My, M;)
C[0] < {0,1}"
for i=1,...,m do
P+ C[0] + i
Cli] < {0,1}*
If P €S then
bad <+ true; | C[i] < T[P] & Ms][i]
T[P] < C[i] ® Ms]i]
S+ SU{P}

return C

Pr{Gf'] = Pr[Gf] = Pr(G{] + (Pr[G£] - Pr[G4])



Game G;

procedure LR(My, M)
C[0] < {0,1}"
for i=1,...,mdo
P« C[0] +i; C[i]<{0,1}*
If P S then bad < true
T[P] < C[i]® Ms[i]; S+ SU{P}

return C
Ciphertext C in Gs is always random, independently of b, so

Pr [Gﬂ = %



Game |G, |, G;

procedure LR(My, M)
C[o] < {0,1}"
for i=1,...,m do
P « C[0] +i; C[i] < {0,1}*
If Pc S then
bad < true; | C[i] + T[P] & My][i]
T[P] < C[i] ® Mp[i]; S+ SU{P}

return C

G> and Gj are identical-until-bad, so Fundamental Lemma implies

Pr {GQA} — Pr [Gﬂ < Pr |:G§4 sets bad} :



Game G;

procedure LR(My, M;)
C[o] < {0,1}"
for i=1,....,m do
P « C[0] +i; C[i] < {0,1}*
If P €S then bad + true
T[P] < C[i] ® Ms[i]; S + SU{P}

return C
Pr |:Gé4 sets bad} < IIP(2",q,m) < q(qz_ 1) 2mzn_ !
< mq(gn— 1)
< (9 —1)o

2[’)



* Analogous theorem holds for CBC-S.



* Analogous theorem holds for CBC-S.

* Provides a quantitative guarantee on how
many blocks can be securely encrypted using

these modes (assuming the underlying block
cipher is good).






Semantic Se cfm“-L/



