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Setting	the	Stage

• We	have	studied	our	first	lower-level	primitive,	
blockciphers.

• Today	we	will	study	how	to	use	it	to	build	our	
first	higher-level	primitive,	symmetric-key	
encryption.



SyntaxSyntax

A symmetric encryption scheme SE = (K, E ,D) consists of three
algorithms:

K and E may be randomized, but D must be deterministic.
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CorrectnessCorrect decryption requirement

More formally: For all keys K that may be output by K, and for all M in
the message space, we have

Pr [DK (EK (M)) = M] = 1 ,

where the probability is over the coins of E .

A scheme will usually specify an associated message space.
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Blockcipher	Modes	of	Operation
Block cipher modes of operation

E : {0, 1}k × {0, 1}n → {0, 1}n a block cipher

Notation: x [i ] is the i-th n-bit block of a string x, so that x = x [1] . . . x [m]

if |x | = nm.

Always:

Alg K
K

$← {0, 1}k

return K

Mihir Bellare UCSD 4

→

O



Modes	of	operationModes of operation

Block cipher provides parties sharing K with

EK

M

C

which enables them to encrypt a 1-block message.

How do we encrypt a long message using a primitive that only applies to
n-bit blocks?
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Electronic	Codebook	ModeECB: Electronic Codebook Mode

SE = (K, E ,D) where:

Alg EK (M)

for i = 1, . . . ,m do

C [i ]← EK (M[i ])
return C

Alg DK (C )

for i = 1, . . . ,m do

M[i ]← E−1
K (C [i ])

return M

Correct decryption relies on E being a block cipher, so that EK is invertible
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Weakness	of	ECBSecurity of ECB

Weakness: M1 = M2 ) C1 = C2

Why is the above true? Because EK is deterministic:

EK. . .EK

M1[1] M1[m]

C1[1] C1[m]

EK EK. . .

M2[1] M2[m]

C2[1] C2[m]

Why does this matter?
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Weakness	of	ECBSecurity of ECB

Suppose we know that there are only two possible messages, Y = 1n and
N = 0n, for example representing

• FIRE or DON’T FIRE a missile
• BUY or SELL a stock
• Vote YES or NO

Then ECB algorithm will be EK (M) = EK (M).

EK

M

C
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Is	this	avoidable?Is this avoidable?

Let SE = (K, E ,D) be ANY encryption scheme.

Suppose M1,M2 2 {Y ,N} and

• Sender sends ciphertexts C1  EK (M1) and C2  EK (M2)

• Adversary A knows that M1 = Y

Adversary says: If C2 = C1 then M2 must be Y else it must be N.

Does this attack work?

Yes, if E is deterministic.

Mihir Bellare UCSD 10



Introducing	Randomized	Encryption
Randomized encryption

For encryption to be secure it must be randomized

That is, algorithm EK flips coins.

If the same message is encrypted twice, we are likely to get back di↵erent
answers. That is, if M1 = M2 and we let

C1
$
 EK (M1) and C2

$
 EK (M2)

then
Pr [C1 = C2]

will (should) be small, where the probability is over the coins of E .
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Randomized	EncryptionRandomized encryption

There are many possible ciphertexts corresponding to each message.

If so, how can we decrypt?

We will see examples soon.

EKM

C1

DK M

C2

Cs
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Randomized	Encryption

Randomized encryption

A fundamental departure from classical and conventional notions of
encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to
each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption
mechanisms which associate to each message a number of di↵erent
possible ciphertexts.
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CBC-$:		
Cipher-block	Chaining	Mode	with	Random	IVCBC$: Cipher Block Chaining with random IV mode

SE = (K, E ,D) where:

Alg EK (M)

C [0] $← {0, 1}n

for i = 1, . . . ,m do

C [i ]← EK (M[i ]⊕ C [i − 1])
return C

Alg DK (C )

for i = 1, . . . ,m do

M[i ]← E−1
K (C [i ])⊕ C [i − 1]

return M

Correct decryption relies on E being a block cipher.
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CBC$: Cipher Block Chaining with random IV mode

SE = (K, E ,D) where:

Alg EK (M)

C [0] $
 {0, 1}n

for i = 1, . . . ,m do
C [i ] EK (M[i ]� C [i � 1])

return C

Alg DK (C )

for i = 1, . . . ,m do
M[i ] E�1

K (C [i ])� C [i � 1]
return M

Correct decryption relies on E being a block cipher.
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CTR-$	ModeCTR$ mode

Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}` be a family of functions. If X 2 {0, 1}n

and i 2 N then X + i denotes the n-bit string formed by converting X to
an integer, adding i modulo 2n, and converting the result back to an n-bit
string. Below the message is a sequence of `-bit blocks:

Alg EK (M)

C [0] $
 {0, 1}n

for i = 1, . . . ,m do
P[i ] EK (C [0] + i)
C [i ] P[i ]�M[i ]

return C

Alg DK (C )

for i = 1, . . . ,m do
P[i ] EK (C [0] + i)
M[i ] P[i ]� C [i ]

return M
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CTR-$	ModeCTR$ mode

Alg EK (M)

C [0] $
 {0, 1}n

for i = 1, . . . ,m do
P[i ] EK (C [0] + i)
C [i ] P[i ]�M[i ]

return C

Alg DK (C )

for i = 1, . . . ,m do
P[i ] EK (C [0] + i)
M[i ] P[i ]� C [i ]

return M

• D does not use E�1
K ! This is why CTR$ can use a family of functions

E that is not required to be a blockcipher.

• Encryption and Decryption are parallelizable.
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Voting	with	CBC-$Voting with CBC$

Suppose we encrypt M1,M2 2 {Y ,N} with CBC$.

EK

M1

C1[1]{0, 1}n $
! C1[0]

EK

M2

C2[1]{0, 1}n $
! C2[0]

Adversary A sees C1 = C1[0]C1[1] and C2 = C2[0]C2[1].

Suppose A knows that M1 = Y .

Can A determine whether M2 = Y or M2 = N?

NO!
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Assessing	Security

• How	to	determine	which	modes	of	operations	
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Assessing	Security

• How	to	determine	which	modes	of	operations	
are	“good”	ones?

• E.g.,	CBC-$	seems	better	than	ECB.		But	is	it	
secure?	Or	are	there	still	attacks?

• Important	since	CBC-$	is	widely	used.



Security	requirementsSecurity requirements

Suppose sender computes

C1
$
 EK (M1) ; · · · ; Cq

$
 EK (Mq)

Adversary A has C1, . . . ,Cq

What if A

Retrieves K Bad!
Retrieves M1 Bad!

But also we want to hide all partial information about the data stream,
such as

• Does M1 = M2?

• What is first bit of M1?

• What is XOR of first bits of M1,M2?

Something we won’t hide: the length of the message
Mihir Bellare UCSD 21
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Intuition
Intuition for definition of IND-CPA

The master property MP is called IND-CPA (indistinguishability under
chosen plaintext attack).

Consider encrypting one of two possible message streams, either

M1
0 , ...,M

q
0

or
M1

1 , ...,M
q
1 ,

where |M i
0| = |M i

1| for all 1  i  q. Adversary, given ciphertexts C 1, . . . ,
Cq and both data streams, has to figure out which of the two streams was
encrypted.

We will even let the adversary pick the messages: It picks (M1
0 ,M

1
1 ) and

gets back C 1, then picks (M2
0 ,M

2
1 ) and gets back C 2, and so on.
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IND-CPAGames for ind-cpa-advantage of an adversary A

Let SE = (K, E ,D) be an encryption scheme

Game LeftSE

procedure Initialize

K
$←K

procedure LR(M0,M1)

Return C
$← EK (M0)

Game RightSE

procedure Initialize

K
$←K

procedure LR(M0,M1)

Return C
$← EK (M1)

Associated to SE ,A are the probabilities

Pr
[

LeftASE⇒1
]

Pr
[

RightASE⇒1
]

that A outputs 1 in each world. The (ind-cpa) advantage of A is

Advind-cpa
SE

(A) = Pr
[

RightASE⇒1
]

− Pr
[

LeftASE⇒1
]
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Message	length	restriction

Message length restriction

It is required that |M0| = |M1| in any query M0,M1 that A makes to LR.
An adversary A violating this condition is considered invalid.

This reflects that encryption is not aiming to hide the length of messages.
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Advantage	InterpretationThe measure of success

Advind-cpa
SE

(A) ≈ 1 means A is doing well and SE is not ind-cpa-secure.

Advind-cpa
SE

(A) ≈ 0 (or ≤ 0) means A is doing poorly and SE resists the
attack A is mounting.

Adversary resources are its running time t and the number q of its oracle
queries, the latter representing the number of messages encrypted.

Security: SE is IND-CPA-secure if Advind-cpa
SE

(A) is “small” for ALL A

that use “practical” amounts of resources.

Insecurity: SE is not IND-CPA-secure if we can specify an explicit A that
uses “few” resources yet achieves “high” ind-cpa-advantage.
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Security	Analysis	of	ECB
ECB is not IND-CPA-secure

Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n be a block cipher. Recall that ECB
mode defines symmetric encryption scheme SE = (K, E ,D) with

EK (M) = EK (M[1])EK (M[2]) · · ·EK (M[m])

Can we design A so that

Advind-cpaSE (A) = Pr
h
RightASE)1

i
� Pr

h
LeftASE)1

i

is close to 1?

Exploitable weakness of SE : M1 = M2 implies EK (M1) = EK (M2).
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Adversary

ECB is not IND-CPA-secure

Let EK (M) = EK (M[1]) · · ·EK (M[m]).

adversary A
C1  LR(0n, 0n) ; C2  LR(1n, 0n)
if C1 = C2 then return 1 else return 0

Mihir Bellare UCSD 29
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IND-CPAWhy is IND-CPA the “master” property?

We claim that if encryption scheme SE = (K, E ,D) is IND-CPA secure
then the ciphertext hides ALL partial information about the plaintext.

For example, from C1
$
 EK (M1) and C2

$
 EK (M2) the adversary cannot

• get M1

• get 1st bit of M1

• get XOR of the 1st bits of M1,M2

• etc.
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Security	Analysis	of	CTR-$Birthday attack on CTR$

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and SE = (K, E ,D)
the corresponding CTR$ symmetric encryption scheme. Suppose 1-block
messages M0,M1 are encrypted:

C0[0]C0[1]
$← E(K ,M0) C1[0]C1[1]

$← E(K ,M1)

Let us say we are lucky If C0[0] = C1[0]. If so:

C0[1] = C1[1] if and only if M0 = M1

So if we are lucky we can detect message equality and violate IND-CPA.

Mihir Bellare UCSD 38
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The	Adversary
Birthday attack on CTR$

Let 1  q < 2n be a parameter and let hii be integer i encoded as an `-bit
string.

adversary A

for i = 1, ..., q do

C i [0]C i [1] $
 LR(hii, h0i)

S  {(j , t) : C j [0] = C t [0] and j < t}
If S 6= ;, then

(j , t) $
 S

If C j [1] = C t [1] then return 1
return 0

Mihir Bellare UCSD 40
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Right	Game	Analysis
Birthday attack on CTR$: Right game analysis

adversary A

for i = 1, ..., q do

C i [0]C i [1] $
 LR(hii, h0i)

S  {(j , t) : C j [0] = C t [0] and j < t}
If S 6= ;, then

(j , t) $
 S

If C j [1] = C t [1] then return 1
return 0

Game RightSE
procedure Initialize
K $
 K

procedure LR(M0,M1)

C [0] $
 {0, 1}n

P  E (K ,C [0] + 1)
C [1] P � M1

Return C [0]C [1]

If C j [0] = C t [0] (lucky) then

C j [1] = h0i � EK (C
j [0] + 1) = h0i � EK (C

t [0] + 1) = C t [1]

so
Pr

h
RightASE)1

i
= Pr [S 6= ;] = C (2n, q)
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Left	game	analysis
Birthday attack on CTR$: Left game analysis

adversary A

for i = 1, ..., q do

C i [0]C i [1] $
 LR(hii, h0i)

S  {(j , t) : C j [0] = C t [0] and j < t}
If S 6= ;, then

(j , t) $
 S

If C j [1] = C t [1] then return 1
return 0

Game LeftSE

procedure Initialize
K $
 K

procedure LR(M0,M1)

C [0] $
 {0, 1}n

P  E (K ,C [0] + 1)
C [1] P � M0

Return C [0]C [1]

If C j [0] = C t [0] (lucky) then

C j [1] = hji � EK (C
j [0] + 1) 6= hti � EK (C

t [0] + 1) = C t [1]

so
Pr

h
LeftASE)1

i
= 0.
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ConclusionBirthday attack on CTR$

Advind-cpaSE (A) = Pr
h
RightASE)1

i
� Pr

h
LeftASE)1

i

= C (2n, q)� 0 � 0.3 ·
q(q � 1)

2n

Conclusion: CTR$ can be broken (in the IND-CPA sense) in about 2n/2

queries, where n is the block length of the underlying block cipher,
regardless of the cryptanalytic strength of the block cipher.
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Security	of	CTR-$
Security of CTR$

So far: A q-query adversary can break CTR$ with advantage ≈ q2

2n+1

Question: Is there any better attack?
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Security of CTR$

So far: A q-query adversary can break CTR$ with advantage ≈ q2

2n+1

Question: Is there any better attack?

Answer: NO!

We can prove that the best q-query attack short of breaking the block
cipher has advantage at most

σ2

2n

where σ is the total number of blocks encrypted.

Example: If q 1-block messages are encrypted then σ = q so the adversary
advantage is not more than q2/2n.

For E = AES this means up to 264 blocks may be securely encrypted,
which is good.
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Theorem	Statement
Security of CTR$

Theorem: [BDJR98] Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher
and SE = (K, E ,D) the corresponding CTR$ symmetric encryption
scheme. Let A be an ind-cpa adversary against SE that has running time t

and makes at most q LR queries, these totalling at most σ blocks. Then
there is a prf-adversary B against E such that

Advind-cpa
SE

(A) ≤ 2 · AdvprfE (B) +
σ2

2n

Furthermore, B makes at most σ oracle queries and has running time
t +Θ(σ · n).
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Proof	Inuition/PreliminariesIntuition for IND-CPA security of CTR$

Consider the CTR$ scheme with EK replaced by a random function Fn
with range {0, 1}`.

Alg EFn(M)

C [0] $
 {0, 1}n

for i = 1, . . . ,m do
P[i ] Fn(C [0] + i)
C [i ] P[i ]�M[i ]

return C

Analyzing this is a thought experiment, but we can ask whether it is
IND-CPA secure.

If so, the assumption that E is a PRF says CTR$ with E is IND-CPA
secure.
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CTR$ with a random function

Let E be the event that the points

C1[0] + 1, . . . ,C1[0] +m, . . . ,Cq[0] + 1, . . . ,Cq[0] +m ,

on which Fn is evaluated across the q encryptions, are all distinct.

Case 1: E happens. Then the encryption is a one-time-pad: ciphertexts
are random, independent strings, regardless of which message is encrypted.
So A has zero advantage.

Case 2: E doesn’t happen. Then A may have high advantage but it does
not matter because Pr[E ] doesn’t happen is small. (It is the small additive
term in the theorem.)

Mihir Bellare UCSD 50

The Union bound

Let E1, . . . ,En be events in a probability space. Then

Pr[
W

1in Ei ] 
nX

i=1

Pr[Ei ] .

Example: In the case n = 2 we have

Pr[E1 _ E2] = Pr[E1] + Pr[E2]� Pr[E1 ^ E2]

 Pr[E1] + Pr[E2] .
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Interval intersection probability

Let N, q,m � 1 be integers and let ZN = {0, 1, . . . ,N � 1}. Let + be
addition modulo N. Consider the game

For i = 1, . . . , q do

ci
$
 ZN ; Ii  {ci + 1, . . . , ci +m}

For 1  i < j  q define the events

Bi ,j : Ii \ Ij 6= ; and B :
W

1i<jqBi ,j .

Then let

IIP(N, q,m) = Pr[B] .

Problem: Upper bound IIP(N, q,m) as a function of N, q,m.
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Intuition for IND-CPA security of CTR$

Consider the CTR$ scheme with EK replaced by a random function Fn
with range {0, 1}`.

Alg EFn(M)

C [0] $
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Intuition for IND-CPA security of CTR$

Consider the CTR$ scheme with EK replaced by a random function Fn
with range {0, 1}`.

Alg EFn(M)
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Interval intersection probability

Let N, q,m � 1 be integers and let ZN = {0, 1, . . . ,N � 1}. Let + be
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Interval intersection probability

Claim: IIP(N, q,m) 
q(q � 1)

2

(2m � 1)

N

Why? For any 1  i < j  q we have

Pr[Bi ,j ] = Pr[Ii \ Ij 6= ;]

= Pr[cj 2 {ci �m + 1, . . . , ci +m � 1}] =
2m � 1

N
.

Then by the Union bound

IIP(N, q,m) = Pr[
W

1i<jq] 
X

1i<jq

Pr[Bi ,j ]

=

✓
q

2

◆
2m � 1

N
.
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Alternative formulation of advantage

Let SE = (K, E ,D) be a symmetric encryption scheme and A an adversary.

Game GuessSE

procedure Initialize
K

$
 K ; b $

 {0, 1}

procedure LR(M0,M1)

return C
$
 EK (Mb)

procedure Finalize(b0)
return (b = b

0)

Proposition: Advind-cpaSE (A) = 2 · Pr
h
GuessASE)true

i
� 1.

Proof: Observe

Pr
⇥
b
0 = 1 | b = 1

⇤
= Pr

h
RightASE)1

i

Pr
⇥
b
0 = 1 | b = 0

⇤
= Pr

h
LeftASE)1

i
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Proof of Proposition, continued
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A game-playing proof

The proof uses a sequence of games and invokes the fundamental lemma
of game playing [BR96].

The games have the following Initialize and Finalize procedures:

Initialize // G0

b
$
 {0, 1} ; S  ;

K
$
 {0, 1}k

Initialize // G1,G2,G3

b
$
 {0, 1} ; S  ;

Finalize // All games

Return (b = b
0)

For brevity we omit writing these procedures explicitly in the games, but
you should remember they are there.

Also for brevity if G is a game and A is an adversary then we let

Pr[GA] = Pr[GA
) true]
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Proof of Proposition, continued
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A game-playing proof

The proof uses a sequence of games and invokes the fundamental lemma
of game playing [BR96].

The games have the following Initialize and Finalize procedures:

Initialize // G0

b
$
 {0, 1} ; S  ;

K
$
 {0, 1}k

Initialize // G1,G2,G3

b
$
 {0, 1} ; S  ;

Finalize // All games

Return (b = b
0)

For brevity we omit writing these procedures explicitly in the games, but
you should remember they are there.

Also for brevity if G is a game and A is an adversary then we let
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Proof of Proposition, continued
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A game-playing proof

The proof uses a sequence of games and invokes the fundamental lemma
of game playing [BR96].

The games have the following Initialize and Finalize procedures:

Initialize // G0

b
$
 {0, 1} ; S  ;

K
$
 {0, 1}k

Initialize // G1,G2,G3

b
$
 {0, 1} ; S  ;

Finalize // All games

Return (b = b
0)

For brevity we omit writing these procedures explicitly in the games, but
you should remember they are there.
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Games G0,G1 for the proof

Game G0

procedure LR(M0,M1)

C [0] $
 {0, 1}n

for i = 1, ...,m do
P  C [0] + i

if P 62 S then T[P] EK (P)
C [i ] T [P] � Mb[i ]
S  S [ {P}

return C

Game G1

procedure LR(M0,M1)

C [0] $
 {0, 1}n

for i = 1, ...,m do
P  C [0] + i

if P /2 S then T[P] $
 {0, 1}`

C [i ] T[P] � Mb[i ]
S  S [ {P}

return C

Then
Advind-cpaSE (A) = 2 · Pr

h
G

A
0

i
� 1
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Analysis

Clearly Pr[GA
0 ] = Pr[GA

1 ] +
�
Pr[GA

0 ]� Pr[GA
1 ]
�
.

Claim 1: We can design prf-adversary B so that

Pr[GA
0 ]� Pr[GA

1 ]  AdvprfE (B)

Claim 2: Pr[GA
1 ] 

1

2
+

(q � 1)�

2n

Given these, we have

Advind-cpaSE (A)  2 ·

✓
1

2
+

(q � 1)�

2n

◆
� 1 + 2 · AdvprfE (B)

=
2(q � 1)�

2n
+ 2 · AdvprfE (B)

which proves the theorem. It remains to prove the claims.
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Proof of Claim 1

adversary B

b
$
 {0, 1} ; S  ;

b
0 $
 A

LRSim

if (b = b
0) then return 1

else return 0

subroutine LRSim(M0,M1)

C [0] $
 {0, 1}n

for i = 1, ...,m do
P  C [0] + i

if P /2 S then T [P] Fn(P)
C [i ] T [P] � Mb[i ]
S  S [ {P}

return C

Pr
h
RealBE ) 1

i
= Pr

h
G

A
0

i

Pr
h
RandB{0,1}n ) 1

i
= Pr

h
G

A
1

i

Subtracting, we get Claim 1.
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Where we are

It remains to prove:

Claim 2: Pr[GA
1 ] 

1

2
+

(q � 1)�

2n
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Where we are

It remains to prove:
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Introducing the “bad” flag

Game G1

procedure LR(M0,M1)

C [0] $ {0, 1}n

for i = 1, ...,m do

P  C [0] + i

If P /2 S then
T[P] $ {0, 1}`

C [i ] T[P]�Mb[i ]

S  S [ {P}
return C

Game G2 , G3

procedure LR(M0,M1)

C [0] $ {0, 1}n

for i = 1, ...,m do

P  C [0] + i

C [i ] $ {0, 1}`

If P 2 S then
bad true ; C [i ] T[P]�Mb[i ]

T[P] C [i ]�Mb[i ]

S  S [ {P}
return C

Pr[GA
1 ] = Pr[GA

2 ] = Pr[GA
3 ] +

⇣
Pr[GA

2 ]� Pr[GA
3 ]
⌘
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Analysis of G3

Game G3

procedure LR(M0,M1)

C [0] $ {0, 1}n

for i = 1, ...,m do

P  C [0] + i; C [i ] $ {0, 1}`

If P 2 S then bad true

T[P] C [i ]�Mb[i ]; S  S [ {P}
return C

Ciphertext C in G3 is always random, independently of b, so

Pr
h
G

A
3

i
=

1

2
.
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Fundamental Lemma of game playing

Games G ,H are identical-until-bad if their code di↵ers only in statements
following the setting of bad to true.

Lemma: [BR96] If G ,H are identical-until-bad, then for any adversary A
and any y

���Pr
h
G

A
) y

i
� Pr

h
H

A
) y

i���  Pr
h
H

A sets bad
i
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Using the fundamental lemma

Game G2 , G3

procedure LR(M0,M1)

C [0] $ {0, 1}n

for i = 1, ...,m do

P  C [0] + i; C [i ] $ {0, 1}`

If P 2 S then
bad true ; C [i ] T[P]�Mb[i ]

T[P] C [i ]�Mb[i ]; S  S [ {P}
return C

G2 and G3 are identical-until-bad, so Fundamental Lemma implies

Pr
h
G

A
2

i
� Pr

h
G

A
3

i
 Pr

h
G

A
3 sets bad

i
.
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Analysis of G3
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Using the fundamental lemma
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Bounding the probability that G3 sets bad

Game G3

procedure LR(M0,M1)

C [0] $ {0, 1}n

for i = 1, ...,m do

P  C [0] + i; C [i ] $ {0, 1}`

If P 2 S then bad true

T[P] C [i ]�Mb[i ]; S  S [ {P}
return C

Pr
h
G

A
3 sets bad

i
 IIP(2n, q,m) 

q(q � 1)

2

2m � 1

2n


mq(q � 1)

2n


(q � 1)�

2n
.
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Security of CTR$

Theorem: [BDJR97] Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}` be a family of
functions and SE = (K, E ,D) the corresponding CTR$ symmetric
encryption scheme. Let A be an ind-cpa adversary against SE that has
running time t and makes at most q LR queries, the messages across them
totaling at most � blocks. Then there is a prf-adversary B against E such
that

Advind-cpaSE (A)  2 · AdvprfE (B) +
2(q � 1)�

2n

Furthermore, B makes at most � oracle queries and has running time
t +⇥(� · (n + `)).
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Security of CBC$

Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n be a block cipher and SE = (K, E ,D)
the corresponding CBC$ symmetric encryption scheme.

Exercise: Give an adversary A that makes q LR-queries, each consisting
of two 1-block messages, and achieves

Advind-cpaSE (A) = ⌦

✓
q
2

2n

◆

The running time of A should be about O(qn · log(qn)).

Can you generalize this to m-block messages? What is the best advantage
you can get?
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Security of CBC$

Theorem: [BDJR97] Let E : {0, 1}k ⇥ {0, 1}n ! {0, 1}n be a block cipher
and SE = (K, E ,D) the corresponding CBC$ symmetric encryption
scheme. Let A be an ind-cpa adversary against SE that has running time t

and makes at most q LR queries, the messages across them totaling at
most � blocks. Then there is a prf-adversary B against E such that

Advind-cpaSE (A)  2 · AdvprfE (B) +
�2

2n

Furthermore, B makes at most � oracle queries and has running time
t +⇥(� · n).

Exercise: Prove the above theorem.
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• Analogous	theorem	holds	for	CBC-$.



• Analogous	theorem	holds	for	CBC-$.
• Provides	a	quantitative	guarantee	on	how	
many	blocks	can	be	securely	encrypted	using	
these	modes	(assuming	the	underlying	block	
cipher	is	good).
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