Foundations of Applied Cryptography
 Adam O'Neill

Based on http://cseweb.ucsd.edu/~mihir/cse207/

Setting the Stage

- We have studied our first lower-level primitive, blockciphers.

Setting the Stage

- We have studied our first lower-level primitive, blockciphers.
- Today we will study how to use it to build our first higher-level primitive, symmetric-key encryption.

Syntax

whsgsp

A symmetric encryption scheme $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms:

\mathcal{K} and \mathcal{E} may be randomized, but \mathcal{D} must be deterministic.

Correctness

More formally: For all keys K that may be output by \mathcal{K}, and for all M in the message space, we have

$$
\operatorname{Pr}\left[\mathcal{D}_{K}\left(\mathcal{E}_{K}(M)\right)=M\right]=1,
$$

where the probability is over the coins of \mathcal{E}.
A scheme will usually specify an associated message space.

Blockcipher Modes of Operation

$\longrightarrow E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a block cipher
Notation: $x[i]$ is the i -th n -bit block of a string x , so that $x=x[1] \ldots x[m]$
if $|x|=n m$.
Always:

Modes of operation

Block cipher provides parties sharing K with

which enables them to encrypt a 1-block message.
How do we encrypt a long message using a primitive that only applies to n-bit blocks?

Electronic Codebook Mode (ECB)

$\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where:

| $\frac{\operatorname{Alg} \mathcal{E}_{K}(M)}{\text { for } i=1, \ldots, m \text { do }}$$C[i] \leftarrow E_{K}(M[i])$$\frac{\operatorname{Alg} \mathcal{D}_{K}(C)}{\text { for } i=1, \ldots, m \text { do }}$$M[i] \leftarrow E_{K}^{-1}(C[i])$
 return M return C |
| :--- | :--- |

Weakness of ECB

Weakness: $M_{1}=M_{2} \Rightarrow C_{1}=C_{2}$
Why is the above true? Because E_{K} is deterministic:

Why does this matter?

Weakness of ECB

Suppose we know that there are only two possible messages, $Y=1^{n}$ and $N=0^{n}$, for example representing

- FIRE or DON'T FIRE a missile
- BUY or SELL a stock
- Vote YES or NO

Then ECB algorithm will be $\mathcal{E}_{K}(M)=E_{K}(M)$.

Is this avoidable?

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be ANY encryption scheme.
Suppose $M_{1}, M_{2} \in\{Y, N\}$ and

- Sender sends ciphertexts $C_{1} \leftarrow \mathcal{E}_{K}\left(M_{1}\right)$ and $C_{2} \leftarrow \mathcal{E}_{K}\left(M_{2}\right)$
- Adversary A knows that $M_{1}=Y$

Adversary says: If $C_{2}=C_{1}$ then M_{2} must be Y else it must be N.

Does this attack work?

Introducing Randomized Encryption

For encryption to be secure it must be randomized
That is, algorithm \mathcal{E}_{K} flips coins.
If the same message is encrypted twice, we are likely to get back different answers. That is, if $M_{1}=M_{2}$ and we let

$$
C_{1} \stackrel{\&}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right) \text { and } C_{2} \leftarrow^{\varsigma} \mathcal{E}_{K}\left(M_{2}\right)
$$

then

$$
\operatorname{Pr}\left[C_{1}=C_{2}\right]
$$

will (should) be small, where the probability is over the coins of \mathcal{E}.

Randomized Encryption

There are many possible ciphertexts corresponding to each message.
If so, how can we decrypt?
We will see examples soon.

Randomized Encryption

A fundamental departure from classical and conventional notions of encryption.

Clasically, encryption (e.g., substitution cipher) is a code, associating to each message a unique ciphertext.

Now, we are saying no such code is secure, and we look to encryption mechanisms which associate to each message a number of different possible ciphertexts.

CBC-\$:

Cipher-block Chaining Mode with Random IV

$$
\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D}) \text { where: }
$$

$\frac{\operatorname{Alg} \mathcal{E}_{K}(M)}{C[0] \leftarrow^{\varsigma}\{0,1\}^{n}}$
for $i=1, \ldots, m$ do
$C[i] \leftarrow E_{K}(M[i] \oplus C[i-1])$
return C

```
Alg \(\mathcal{D}_{K}(C)\)
for \(i=1, \ldots, m\) do
    \(M[i] \leftarrow E_{K}^{-1}(C[i]) \oplus C[i-1]\)
return \(M\)
```


Correct decryption relies on E being a block cipher.

CTR-\$ Mode

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{\ell}$ be a family of functions. If $X \in\{0,1\}^{n}$ and $i \in \mathbf{N}$ then $X+i$ denotes the n-bit string formed by converting X to an integer, adding i modulo 2^{n}, and converting the result back to an n-bit string. Below the message is a sequence of ℓ-bit blocks:
$\frac{\operatorname{Alg} \mathcal{E}_{K}(M)}{C[0] \hookleftarrow^{\varsigma}\{0,1\}^{n}}$
for $i=1, \ldots, m$ do
$\quad P[i] \leftarrow E_{K}(C[0]+i)$
$C[i] \leftarrow P[i] \oplus M[i]$
return C

```
Alg \(\mathcal{D}_{K}(C)\)
for \(i=1, \ldots, m\) do
    \(P[i] \leftarrow E_{K}(C[0]+i)\)
    \(M[i] \leftarrow P[i] \oplus C[i]\)
return \(M\)
```


$P[1] \| \sim n P[m]$

CTR-\$ Mode

```
Alg \(\mathcal{E}_{K}(M)\)
\(C[0] \leftarrow^{\S}\{0,1\}^{n}\)
for \(i=1, \ldots, m\) do
    \(P[i] \leftarrow E_{K}(C[0]+i)\)
    \(C[i] \leftarrow P[i] \oplus M[i]\)
return \(C\)
```

```
Alg \(\mathcal{D}_{K}(C)\)
for \(i=1, \ldots, m\) do
    \(P[i] \leftarrow E_{K}(C[0]+i)\)
    \(M[i] \leftarrow P[i] \oplus C[i]\)
return M
```

- \mathcal{D} does not use E_{K}^{-1} ! This is why CTR\$ can use a family of functions E that is not required to be a blockcipher.
- Encryption and Decryption are parallelizable.

Voting with CBC-\$

Suppose we encrypt $M_{1}, M_{2} \in\{Y, N\}$ with $\mathrm{CBC} \$$.

Adversary A sees $C_{1}=C_{1}[0] C_{1}[1]$ and $C_{2}=C_{2}[0] C_{2}[1]$.
Suppose A knows that $M_{1}=Y$.
Can A determine whether $M_{2}=Y$ or $M_{2}=N$?

Assessing Security

- How to determine which modes of operations are "good" ones?

Assessing Security

- How to determine which modes of operations are "good" ones?
- E.g., CBC- seems better than ECB. But is it secure? Or are there still attacks?

Assessing Security

- How to determine which modes of operations are "good" ones?
- E.g., CBC-\$ seems better than ECB. But is it secure? Or are there still attacks?
- Important since CBC-\$ is widely used.

Security requirements

Suppose sender computes

$$
C_{1} \stackrel{\mathcal{E}_{K}}{ }\left(M_{1}\right) ; \cdots ; C_{q} \stackrel{\mathcal{E}_{K}\left(M_{q}\right)}{ }
$$

Adversary A has C_{1}, \ldots, C_{q}

What if A	
Retrieves K	Bad!
Retrieves $\stackrel{M}{M}_{1}$	Bad!

But also we want to hide all partial information about the data stream, such as

- Does $M_{1}=M_{2}$? -
- What is first bit of M_{1} ? $=$
- What is XOR of first bits of M_{1}, M_{2} ? -

Something we won't hide: the length of the message

Intuition

The master property MP is called IND-CPA (indistinguishability under chosen plaintext attack).

Consider encrypting one of two possible message streams, either
or

$$
\begin{aligned}
& M_{0}^{1}, \ldots, M_{0}^{q} \\
& M_{1}^{1}, \ldots, M_{1}^{q}
\end{aligned}
$$

where $\left|M_{0}^{i}\right|=\left|M_{1}^{i}\right|$ for all $1 \leq i \leq q$. Adversary, given ciphertexts C^{1}, \ldots, C^{q} and both data streams, has to figure out which of the two streams was encrypted.

We will even let the adversary pick the messages: It picks (M_{0}^{1}, M_{1}^{1}) and gets back C^{1}, then picks $\left(M_{0}^{2}, M_{1}^{2}\right)$ and gets back C^{2}, and so on.
left stream: $m_{0}^{1} \ldots . . m_{0}^{q}$ vignt stream: $m_{1}^{\prime} \ldots m_{2}^{q}$

IND-CPA

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an encryption scheme

Game Right ${ }_{\mathcal{S E}}$
procedure Initialize $K \stackrel{\S}{\leftarrow} \mathcal{K}$ procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
Return $C \stackrel{\lessgtr}{\leftarrow} \mathcal{E}_{K}\left(M_{1}\right)$

Associated to $\mathcal{S E}, A$ are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

that A outputs 1 in each world. The (ind-cpa) advantage of A is

$$
\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ind}^{2 d \mathrm{cpa}}}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]
$$

Message length restriction
 $$
\left(m_{0}, m_{1}\right) \Rightarrow\left|m_{0}\right|=\left|m_{1}\right|
$$

It is required that $\left|M_{0}\right|=\left|M_{1}\right|$ in any query M_{0}, M_{1} that A makes to $\mathbf{L R}$. An adversary A violating this condition is considered invalid.

This reflects that encryption is not aiming to hide the length of messages.

Advantage Interpretation

$\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ind} \text { cpa }}(A) \approx 1$ means A is doing well and $\mathcal{S E}$ is not ind-cpa-secure.
$\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \approx 0$ (or ≤ 0) means A is doing poorly and $\mathcal{S E}$ resists the attack A is mounting.

Adversary resources are its running time t and the number q of its oracle queries, the latter representing the number of messages encrypted.
Security: $\mathcal{S E}$ is IND-CPA-secure if $\mathbf{A d v}_{\mathcal{S E}}^{\text {ind-cpa }}(A)$ is "small" for ALL A that use "practical" amounts of resources.

Insecurity: $\mathcal{S E}$ is not IND-CPA-secure if we can specify an explicit A that uses "few" resources yet achieves "high" ind-cpa-advantage.

Security Analysis of ECB

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. Recall that ECB mode defines symmetric encryption scheme $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ with

$$
\mathcal{E}_{K}(M)=E_{K}(M[1]) E_{K}(M[2]) \cdots E_{K}(M[m])
$$

Can we design A so that

$$
\rightarrow \operatorname{Adv}_{\mathcal{S} \mathcal{E}}^{\mathrm{ind}-\mathrm{cpa}}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Adversary

Let $\mathcal{E}_{K}(M)=E_{K}(M[1]) \cdots E_{K}(M[m])$.
adversary A

$$
\begin{gathered}
C_{1} \leftarrow \mathbf{L R}\left(0^{n}, 0^{n}\right) ; C_{2} \leftarrow \mathbf{L R}\left(1^{n}, 0^{n}\right) \\
\text { if } C_{1}=C_{2} \text { then return } 1 \text { else return } 0, ~ E \text { is } \\
A_{\text {determistic }}^{\text {indepa }}(A)=\operatorname{Pr}\left[R \mid O H T^{A}=1\right] \\
-\operatorname{Pr}\left[L E F T^{A} 1\right] \\
d \\
0 \\
E_{k} \text { is a } \\
\text { permutation } \\
\text { for all } K
\end{gathered}
$$

Analysis

IND-CPA

We claim that if encryption scheme $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA secure then the ciphertext hides ALL partial information about the plaintext.
For example, from $C_{1} \stackrel{乌}{s}^{s} \mathcal{E}_{K}\left(M_{1}\right)$ and $C_{2} \leftarrow^{s} \mathcal{E}_{K}\left(M_{2}\right)$ the adversary cannot

- get M_{1}
- get 1st bit of M_{1}
- get XOR of the 1st bits of M_{1}, M_{2}
- etc.

Security Analysis of CTR-\$

Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a blockcipher and $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ the corresponding CTR\$ symmetric encryption scheme. Suppose 1-block messages M_{0}, M_{1} are encrypted:

Let us say we are lucky If $C_{0}[0]=C_{1}[0]$. If so:

$$
C_{0}[1]=C_{1}[1] \text { if and only if } M_{0}=M_{1}
$$

So if we are lucky we can detect message equality and violate IND-CPA.

The Adversary
birthday attack on iV，of CTR－员

Let $1 \leq q<2^{n}$ be a parameter and let $\langle i\rangle$ be integer i encoded as an ℓ－bit string．
adversary A_{q}
for $i=1, \ldots, q$ do
$C^{i}[0] C^{i}[1] \stackrel{\&}{\leftarrow} \mathbf{L R}(\langle i\rangle, \stackrel{\langle 0\rangle}{ })$
$S \leftarrow\left\{(j, t): C^{j}[0]=C^{t}[0]\right.$ and $\left.j<t\right\}$
If $S \neq \emptyset$ ，then

$$
\operatorname{Pv}\left[R \mid G H T^{A} \Rightarrow 1\right]
$$

$$
\begin{aligned}
& (j, t) \stackrel{ }{\varsigma} S \\
& \text { If } C^{j}[1]=C^{t}[1] \text { then return } 1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}[s \neq \phi] & =C\left(2^{n}, q\right) \\
& \approx \frac{a^{z}}{\varepsilon^{n}}
\end{aligned}
$$ return 0

$\operatorname{Pr}\left[\right.$ LEFT $\left.{ }^{\wedge}=11\right]=0$.

Right Game Analysis

$\frac{\text { adversary } A}{\text { for } i=1, \ldots, q \text { do }}$| $\quad C^{i}[0] C^{i}[1] \stackrel{\Phi}{\leftarrow} \mathbf{L R}(\langle i\rangle,\langle 0\rangle)$ |
| :--- |
| $S \leftarrow\left\{(j, t): C^{j}[0]=C^{t}[0]\right.$ and $\left.j<t\right\}$ |
| If $S \neq \emptyset$, then |
| $\quad(j, t) \hookleftarrow^{\S} S$ |
| \quad If $C^{j}[1]=C^{t}[1]$ then return 1 |
| return 0 |

Game Right $_{\mathcal{S E}}$
procedure Initialize
$K \stackrel{\S}{\leftarrow}$
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \stackrel{\S}{\leftarrow}_{\leftarrow}\{0,1\}^{n}$
$P \leftarrow E(K, C[0]+1)$
$C[1] \leftarrow P \oplus M_{1}$
Return $C[0] C[1]$

If $C^{j}[0]=C^{t}[0]$ (lucky) then

$$
C^{C^{j}[1]}=\langle 0\rangle \oplus E_{K}\left(\left(C^{j}[0\}+1\right)=\langle 0\rangle \oplus E \sqrt{\left(C^{t}[0]\right.}+1\right)=\sqrt{C^{t}[1]}
$$

so

$$
\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right]=\operatorname{Pr}[S \neq \emptyset]=C\left(2^{n}, q\right)
$$

Left game analysis

```
adversary \(A\)
for \(i=1, \ldots, q\) do
    \(C^{i}[0] C^{i}[1] \stackrel{\Phi}{\leftarrow}(\langle i\rangle,\langle 0\rangle)\)
\(S \leftarrow\left\{(j, t): C^{j}[0]=C^{t}[0]\right.\) and \(\left.j<t\right\}\)
If \(S \neq \emptyset\), then
    \((j, t){ }_{\hookleftarrow}{ }^{\ominus} S\)
    If \(C^{j}[1]=C^{t}[1]\) then return 1
return 0
\((j, t) \stackrel{\&}{\leftarrow} S\)
```

If $C^{j}[0]=C^{t}[0]$ (lucky) then

$$
C^{j}[1]=\langle j\rangle \oplus \underset{\theta}{E_{K}\left(C^{j}[0]+1\right)} \underset{\infty}{\neq]^{\prime}}\langle t\rangle \oplus E_{K}\left(C^{t}[0]+1\right)=C^{t}[1]
$$

so

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S E}}^{A} \Rightarrow 1\right]=0
$$

Conclusion

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A) & =\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{S E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow 1\right] \\
& =C\left(2^{n}, q\right)-0 \geq 0.3 \cdot \frac{q(q-1)}{2^{n}}
\end{aligned}
$$

Conclusion: CTR\$ can be broken (in the IND-CPA sense) in about $2^{n / 2}$ queries, where n is the block length of the underlying block cipher, regardless of the cryptanalytic strength of the block cipher.

Security of CTR-\$

So far: A q-query adversary can break CTR\$ with advantage $\approx \frac{q^{2}}{2^{n+1}}$
Question: Is there any better attack?

Security of CTR-\$

So far: A q-query adversary can break CTR\$ with advantage $\approx \frac{q^{2}}{2^{n+1}}$
Question: Is there any better attack?

Answer: NO!
We can prove that the best q-query attack short of breaking the block cipher has advantage at most

$$
\frac{\sigma^{2}}{2^{n}}
$$

where σ is the total number of blocks encrypted.
Example: If q 1-block messages are encrypted then $\sigma=q$ so the adversary advantage is not more than $q^{2} / 2^{n}$.
For $E=$ AES this means up to 2^{64} blocks may be securely encrypted, which is good.

Theorem Statement

Theorem: [BDJR98] Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher and $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ the corresponding CTR\$ symmetric encryption scheme. Let A be an ind-cpa adversary against $\mathcal{S E}$ that has running time t and makes at most q LR queries, these totalling at most σ blocks. Then there is a prf-adversary B against E such that

$$
\mathbf{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \leq \underset{\boldsymbol{z}}{2}-\mathbf{A d v}_{E}^{\mathrm{prf}}(B)+\frac{\sigma^{2}}{2^{n}}
$$

Furthermore, B makes at most σ oracle queries and has running time $t+\Theta(\sigma \cdot n)$.

$$
\frac{1}{2}\left(A d r(-A)-\frac{v^{2}}{2^{2}}\right) \leq A d v(B)
$$

Proof Inuition/Preliminaries

Consider the CTR $\$$ scheme with E_{K} replaced by a random function $\mathbf{F n}$ with range $\{0,1\}^{\ell}$.

```
\(\boldsymbol{\operatorname { A l g }} \mathcal{E}_{\mathbf{F n}}(M)\)
\(C[0] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{n}\)
for \(i=1, \ldots, m\) do
    \(P[i] \leftarrow \mathbf{F n}(C[0]+i)\)
    \(C[i] \leftarrow P[i] \oplus M[i]\)
return \(C\)
```


Analyzing this is a thought experiment, but we can ask whether it is IND-CPA secure.

If so, the assumption that E is a PRF says CTR\$ with E is IND-CPA secure.

A PRF "rolls up" an exponentially long
random tape. Why?
The tape is $F_{k}(\langle 1\rangle) \| F_{k}(\langle 2\rangle) \mathrm{M} .$.
Let E be the event that the points

$$
C_{1}[0]+1, \ldots, C_{1}[0]+m, \ldots, C_{q}[0]+1, \ldots, C_{q}[0]+m
$$

on which $\mathbf{F n}$ is evaluated across the q encryptions, are all distinct.
Case 1: E happens. Then the encryption is a one-time-pad: ciphertexts are random, independent strings, regardless of which message is encrypted. So A has zero advantage.

Case 2: E doesn't happen. Then A may have high advantage but it does not matter because $\operatorname{Pr}[E]$ doesn't happen is small. (It is the small additive term in the theorem.)

Let $N, q, m \geq 1$ be integers and let $\mathbf{Z}_{N}=\{0,1, \ldots, N-1\}$. Let + be addition modulo N. Consider the game

For $i=1, \ldots, q$ do

$$
c_{i} \leftarrow^{\varsigma} \mathbf{Z}_{N} ; l_{i} \leftarrow\left\{c_{i}+1, \ldots, c_{i}+m\right\}
$$

For $1 \leq i<j \leq q$ define the events

$$
\mathrm{B}_{i, j}: I_{i} \cap I_{j} \neq \emptyset \quad \text { and } \quad \mathrm{B}: \bigvee_{1 \leq i<j \leq q} \mathrm{~B}_{i, j} .
$$

Then let

$$
\operatorname{IIP}(N, q, m)=\operatorname{Pr}[\mathrm{B}] .
$$

Problem: Upper bound $\operatorname{IIP}(N, q, m)$ as a function of N, q, m.

Claim: $\operatorname{IIP}(N, q, m) \leq \frac{q(q-1)}{2} \frac{(2 m-1)}{N}$

Two formulations of advantreqe

A Game-Playing Proof

Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme and A an adversary.

Game Guess $\mathcal{S E}$	procedure $\mathbf{L R}\left(M_{0}, M_{1}\right)$
procedure Initialize	return $C \leftarrow_{\leftarrow} \mathcal{E}_{K}\left(M_{b}\right)$
$K \stackrel{\&}{\leftarrow} ; b \leftarrow^{\S}\{0,1\}$	procedure Finalize $\left(b^{\prime}\right)$
	return $\left(b=b^{\prime}\right)$

Proposition: $\mathbf{A d v}_{\mathcal{S E}}^{\text {ind-cpa }}(A)=2 \cdot \operatorname{Pr}\left[\operatorname{Guess}_{\mathcal{S} \mathcal{E}}^{A} \Rightarrow\right.$ true $]-1$.

The proof uses a sequence of games and invokes the fundamental lemma of game playing [BR96].

The games have the following Initialize and Finalize procedures:

Initialize // G_{0}	Initialize // G $, G_{2}, G_{3}$	Finalize // All games
$b \leftarrow^{\S}\{0,1\} ; S \leftarrow \emptyset$	$b \leftarrow^{\S}\{0,1\} ; S \leftarrow \emptyset$	Return $\left(b=b^{\prime}\right)$
$K \leftarrow^{\varsigma}\{0,1\}^{k}$		

For brevity we omit writing these procedures explicitly in the games, but you should remember they are there.

Also for brevity if G is a game and A is an adversary then we let

$$
\operatorname{Pr}\left[G^{A}\right]=\operatorname{Pr}\left[G^{A} \Rightarrow \text { true }\right]
$$

```
Game \(G_{0}\)
procedure \(\operatorname{LR}\left(M_{0}, M_{1}\right)\)
\(C[0] \stackrel{\&}{\leftarrow}\{0,1\}^{n}\)
for \(i=1, \ldots, m\) do
    \(P \leftarrow C[0]+i\)
        if \(P \notin S\) then \(\mathrm{T}[P] \leftarrow E_{K}(P)\)
        \(C[i] \leftarrow T[P] \oplus M_{b}[i]\)
        \(S \leftarrow S \cup\{P\}\)
return \(C\)
```

```
Game \(G_{1}\)
procedure \(\operatorname{LR}\left(M_{0}, M_{1}\right)\)
\(C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}\)
for \(i=1, \ldots, m\) do
    \(P \leftarrow C[0]+i\)
    if \(P \notin S\) then \(\mathrm{T}[P] \stackrel{\S}{\leftarrow}\{0,1\}^{\ell}\)
    \(C[i] \leftarrow \mathrm{T}[P] \oplus M_{b}[i]\)
    \(S \leftarrow S \cup\{P\}\)
return \(C\)
```

Then

$$
\operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}(A)=2 \cdot \operatorname{Pr}\left[G_{0}^{A}\right]-1
$$

Clearly $\operatorname{Pr}\left[G_{0}^{A}\right]=\operatorname{Pr}\left[G_{1}^{A}\right]+\left(\operatorname{Pr}\left[G_{0}^{A}\right]-\operatorname{Pr}\left[G_{1}^{A}\right]\right)$.
Claim 1: We can design prf-adversary B so that

$$
\operatorname{Pr}\left[G_{0}^{A}\right]-\operatorname{Pr}\left[G_{1}^{A}\right] \leq \mathbf{A d v}_{E}^{\operatorname{prf}}(B)
$$

Claim 2: $\operatorname{Pr}\left[G_{1}^{A}\right] \leq \frac{1}{2}+\frac{(q-1) \sigma}{2^{n}}$
Given these, we have

$$
\begin{aligned}
& \boldsymbol{A d v}_{\mathcal{S E}}^{\mathrm{ind}-\mathrm{cpa}}(A) \leq 2 \cdot\left(\frac{1}{2}+\frac{(q-1) \sigma}{2^{n}}\right)-1+2 \cdot \mathbf{A d v}_{E}^{\mathrm{prf}}(B) \\
&=\frac{2(q-1) \sigma}{2^{n}}+2 \cdot \mathbf{A d v} \\
& E
\end{aligned}
$$

which proves the theorem. It remains to prove the claims.
adversary B
$b \leftarrow\{0,1\} ; S \leftarrow \emptyset$
$b^{\prime} \stackrel{\&}{\leftarrow} A^{\text {LRSim }}$
if $\left(b=b^{\prime}\right)$ then return 1
else return 0
subroutine $\operatorname{LRSim}\left(M_{0}, M_{1}\right)$
$C[0] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, m$ do
$P \leftarrow C[0]+i$
if $P \notin S$ then $T[P] \leftarrow \mathbf{F n}(P)$ $C[i] \leftarrow T[P] \oplus M_{b}[i]$
$S \leftarrow S \cup\{P\}$
return C

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{Real}_{E}^{B} \Rightarrow 1\right] & =\operatorname{Pr}\left[G_{0}^{A}\right] \\
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{n}}^{B} \Rightarrow 1\right] & =\operatorname{Pr}\left[G_{1}^{A}\right]
\end{aligned}
$$

Subtracting, we get Claim 1 .

Game G_{1}
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, m$ do
$P \leftarrow C[0]+i$
If $P \notin S$ then
$T[P] \stackrel{\varsigma}{\leftarrow}\{0,1\}^{\ell}$
$C[i] \leftarrow \mathrm{T}[P] \oplus M_{b}[i]$
$S \leftarrow S \cup\{P\}$
return C

Game G_{2}, G_{3}
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, m$ do
$P \leftarrow C[0]+i$
$C[i] \stackrel{\$}{\leftarrow}\{0,1\}^{\ell}$
If $P \in S$ then
bad \leftarrow true $; \quad C[i] \leftarrow \mathrm{T}[P] \oplus M_{b}[i]$
$\mathrm{T}[P] \leftarrow C[i] \oplus M_{b}[i]$
$S \leftarrow S \cup\{P\}$
return C

$$
\operatorname{Pr}\left[G_{1}^{A}\right]=\operatorname{Pr}\left[G_{2}^{A}\right]=\operatorname{Pr}\left[G_{3}^{A}\right]+\left(\operatorname{Pr}\left[G_{2}^{A}\right]-\operatorname{Pr}\left[G_{3}^{A}\right]\right)
$$

```
Game \(G_{3}\)
procedure \(\operatorname{LR}\left(M_{0}, M_{1}\right)\)
\(C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}\)
for \(i=1, \ldots, m\) do
    \(P \leftarrow C[0]+i ; C[i] \stackrel{\&}{\leftarrow}\{0,1\}^{\ell}\)
    If \(P \in S\) then bad \(\leftarrow\) true
    \(\mathrm{T}[P] \leftarrow C[i] \oplus M_{b}[i] ; S \leftarrow S \cup\{P\}\)
return \(C\)
```

Ciphertext C in G_{3} is always random, independently of b, so

$$
\operatorname{Pr}\left[G_{3}^{A}\right]=\frac{1}{2}
$$

Game G_{2}, G_{3}
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, m$ do
$P \leftarrow C[0]+i ; C[i] \stackrel{s}{\leftarrow}_{\leftarrow}\{0,1\}^{\ell}$
If $P \in S$ then bad \leftarrow true $; ~ C[i] \leftarrow \mathrm{T}[P] \oplus M_{b}[i]$
$\mathrm{T}[P] \leftarrow C[i] \oplus M_{b}[i] ; S \leftarrow S \cup\{P\}$
return C
G_{2} and G_{3} are identical-until-bad, so Fundamental Lemma implies

$$
\operatorname{Pr}\left[G_{2}^{A}\right]-\operatorname{Pr}\left[G_{3}^{A}\right] \leq \operatorname{Pr}\left[G_{3}^{A} \text { sets bad }\right]
$$

Game G_{3}
procedure $\operatorname{LR}\left(M_{0}, M_{1}\right)$
$C[0] \stackrel{\S}{\leftarrow}\{0,1\}^{n}$
for $i=1, \ldots, m$ do
$P \leftarrow C[0]+i ; C[i] \stackrel{\S}{\leftarrow}\{0,1\}^{\ell}$
If $P \in S$ then bad \leftarrow true
$\mathrm{T}[P] \leftarrow C[i] \oplus M_{b}[i] ; S \leftarrow S \cup\{P\}$
return C

$$
\begin{aligned}
\operatorname{Pr}\left[G_{3}^{A} \text { sets bad }\right] & \leq \operatorname{IIP}\left(2^{n}, q, m\right) \leq \frac{q(q-1)}{2} \frac{2 m-1}{2^{n}} \\
& \leq \frac{m q(q-1)}{2^{n}} \\
& \leq \frac{(q-1) \sigma}{2^{n}}
\end{aligned}
$$

- Analogous theorem holds for CBC-\$.
- Analogous theorem holds for CBC-\$.
- Provides a quantitative guarantee on how many blocks can be securely encrypted using these modes (assuming the underlying block cipher is good).

Semantic Security

