Foundations of Applied Cryptography
 Adam O'Neill

Based on http://cseweb.ucsd.edu/~mihir/cse207/

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.
One idea is to list requirements:

What is a "good" blockcipher?

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.
One idea is to list requirements:

- Key recovery is hard.

What is a "good" blockcipher?

We want to define a notion of a "good"
blockcipher, where "good" means natural uses of the blockcipher are secure.
One idea is to list requirements:

- Key recovery is hard.
- Message recovery is hard.
not very convincing.

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

- It can be happy.

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers

Analogy to Intelligence

What if we want to define the notion of "intelligent" for a computer program?
Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers
- ... but only small numbers.

Turing's Answer

A program is "intelligent" if its input/output behavior is indistinguishable from that of a human.

The Turing Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.

The Analogy

Random Functions

Adversary A

- Make queries to Fn
- Eventually halts with some output

We denote by

$$
\operatorname{Pr}\left[\operatorname{Rand}_{R}^{A} \Rightarrow d\right]
$$

the probability that A outputs d

Random Functions T infialized to \perp (enpory)

Game $\operatorname{Rand}_{\{0,1\}^{3}}$
\rightarrow procedure $\mathbf{F n}(x)$
if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \stackrel{\S}{\leftarrow}\{0,1\}^{3}$ return $\mathrm{T}[x]$

adversary A
$\lceil y\rceil \operatorname{Fn}(01)$
return $(y=000)$

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{3}}^{A} \Rightarrow \operatorname{true}\right]=1 / 8
$$

Random Functions

Random Functions

Function Families $\left\{F_{k}\right\}_{k \in k \times y s}$

A family of functions $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ is a two-argument map. For $K \in \operatorname{Keys}(F)$ we let $F_{K}: \operatorname{Dom}(F) \rightarrow \operatorname{Range}(F)$ be defined by

$$
\forall x \in \operatorname{Dom}(F): F_{K}(x)=F(K, x)
$$

Examples:

- DES: Keys $=\{0,1\}^{56}, \mathrm{D}=\mathrm{R}=\{0,1\}^{64}$
- Any block cipher: $\mathrm{D}=\mathrm{R}$ and each F_{K} is a permutation

Intuition

Notion	Real object	Ideal object
PRF	Family of functions (eg. a block cipher)	Random function

F is a PRF if the input-output behavior of F_{K} looks to a tester like the input-output behavior of a random function.

Tester does not get the key K !

The Games

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow$ Range (F) be a family of functions.

```
Game Real \(F\)
procedure Initialize
(K) }\stackrel{$}{\leftrightarrows}\operatorname{Keys(F)
procedure Fn(x)
Return FFG(x)
Return \(F_{\text {F6 }}(x)\)
```

Game Rand ${ }_{\text {Range }}(F)$ procedure $\mathbf{F n}(x)$
$\mathrm{T}[x] \stackrel{\S}{\leftarrow}$ Range (F)
Return T[x]

Associated to F, A are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

that A outputs 1 in each world. The advantage of A is

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

PRF advantage

A's output d	Intended meaning: I think I am in game
1	Real
0	Random

$\operatorname{Adv}_{F}^{\operatorname{prf}}(A) \approx 1$ means A is doing well and F is not prf-secure.
$\operatorname{Adv}_{F}^{\operatorname{prf}}(A) \approx 0($ or $\leq 0)$ means A is doing poorly and F resists the attack A is mounting.

PRF Security Func.

function

Fam.
Adversary advantage depends on its

- strategy
- resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if $\operatorname{Adv}_{F}^{\text {prf }}(A)$ s "small" for ALL A that use
"practical" amounts of resources.
Example: 8θ-bit security could mean that for all $n=1, \ldots, 80$ we have

$$
\boldsymbol{\operatorname { A d v }} \mathbf{v}_{F}^{\mathrm{prf}}(A) \leq 2^{-n}
$$

for any A with time and number of oracle queries at most 2^{80-n}.
Insecurity: F is insecure (not a PRF) if we can specify an A using "few" resources that achieves "high" advantage.

Examples

Define $F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ by $F_{K}(x)=K \oplus x$ for all $K, x \in\{0,1\}^{\ell}$. Is F a secure PRF?

```
Game RealF
procedure Initialize
K}\mp@subsup{\leftarrow}{}{$}{0,1\mp@subsup{}}{}{\ell
procedure Fn(x)
Return K }\oplus
```

So we are asking: Can we design a low-resource A so that

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\underset{ }{\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]}-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Examples

Exploitable weakness of F : For all K we have

$$
F_{K}\left(0^{\ell}\right) \oplus F_{K}\left(1^{\ell}\right)=\left(K \oplus 0^{\ell}\right) \oplus\left(K \oplus 1^{\ell}\right)=1^{\ell}
$$

Examples

Exploitable weakness of F : For all K we have

$$
F_{K}\left(0^{\ell}\right) \oplus F_{K}\left(1^{\ell}\right)=\left(K \oplus 0^{\ell}\right) \oplus\left(K \oplus 1^{\ell}\right)=1^{\ell}
$$

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Real game analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

$$
\begin{aligned}
& \hline \text { Game Real }_{F} \\
& \text { procedure Initialize } \\
& K \leftarrow\{0,1\}^{\ell} \\
& \text { procedure } \operatorname{Fn}(x) \\
& \text { Return } K \oplus x \\
& \left.\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]=1\right\urcorner
\end{aligned}
$$

Rand game analysis

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

> | $\operatorname{Game}_{\operatorname{Rand}_{\{0,1\} \ell}}$ |
| :--- |
| procedure $\operatorname{Fn}(x)$ |
| if $\mathrm{T}[x]=\perp$ then $\mathrm{T}[x] \leftarrow^{\S}\{0,1\}^{\ell}$ |
| Return $\mathrm{T}[x]$ |

$\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\epsilon}}^{A} \Rightarrow 1\right]=\frac{1}{2 l}$

Putting It Together

$F:\{0,1\}^{\ell} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is defined by $F_{K}(x)=K \oplus x$.
adversary A
if $\mathbf{F n}\left(0^{\ell}\right) \oplus \mathbf{F n}\left(1^{\ell}\right)=1^{\ell}$ then return 1 else return 0

Then

and A is efficient .
Conclusion: F is not a secure PRF.

Blockciphers as PRFs

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher.

```
Game Reale
procedure Initialize
K}\mp@subsup{\leftarrow}{}{\S}{0,1\mp@subsup{}}{}{k
procedure Fn(x)
Return EK}(x
```

Can we design A so that

$$
\Rightarrow \operatorname{Adv}_{E}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]
$$

is close to 1 ?

Generic Attacks on blockciphers as PRFs

Generic Attacks on blockciphers as PRFs

Exhaustive Key Search Attack $\begin{aligned} & \text { ad vantage } \\ & \text { proportional }\end{aligned}$
to key length

Generic Attacks on blockciphers as PRFs

Generic Attacks on blockciphers as PRFs
Birthday Attack advantage proportional to block-lengfte

Birthday Attack

We have q people $1, \ldots, q$ with birthdays $y_{1}, \ldots, y_{q} \in\{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

$$
\begin{aligned}
C(365, q) & =\operatorname{Pr}[2 \text { or more persons have same birthday }] \\
& =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { are not all different }\right]
\end{aligned}
$$

- What is the value of $C(365, q)$?
- How large does q have to be before $C(365, q)$ is at least $1 / 2$?

Naive intuition:

- $C(365, q) \approx q / 365$
- q has to be around 365

The reality

- $C(365, q) \approx q^{2} / 365$
- q has to be only around 23

Birthday Collision Bounds

$C(365, q)$ is the probability that some two people have the same birthday in a room of q people with random birthdays

q	$C(365, q)$
15	0.253
18	0.347
20	0.411
21	0.444
23	0.507
25	0.569
27	0.627
30	0.706
35	0.814
40	0.891
50	0.970

Birthday problem

$$
\operatorname{con}(\cos , q)
$$

Pick $y_{1}, \ldots, y_{q} \leftarrow\{1, \ldots, N\}$ and let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Birthday setting: $N=365$
Fact: $C(N, q) \approx \frac{\sqrt{q^{2}}}{2 N}$

$$
\text { Want }{ }^{900} \text { upper } \varepsilon \text { lower-bounds on } C(N, q) \text {. }
$$

Upper-bound: let COLL be the event that there's a collision when i the element y_{i} is chosen.

$$
c(n, q)=\operatorname{Pr}\left[V_{i} \operatorname{col} L_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[\operatorname{col} L_{i}\right]
$$

Birthday collision formula

Let $y_{1}, \ldots, y_{q} \stackrel{\S}{\leftarrow}\{1, \ldots, N\}$. Then

$$
\begin{aligned}
1-C(N, q) & =\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { all distinct }\right] \\
& =1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdots \cdot \frac{N-(q-1)}{N} \\
& =\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
C(N, q)=1 & -\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right) \\
1-\dot{x} \leq & e^{-x} \\
& 1-e^{-q(q-1) / 2}
\end{aligned}
$$

Birthday bounds

Let

$$
C(N, q)=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { not all distinct }\right]
$$

Fact: Then

$$
0.3 \cdot \frac{q(q-1)}{N} \leq C(N, q) \leq 0.5 \cdot \frac{q(q-1)}{N}
$$

where the lower bound holds for $1 \leq q \leq \sqrt{2 N}$.

$$
\begin{aligned}
& \text { I from es an } \\
& \text { in equality applied } \\
& \text { to get pe } \\
& \text { estimate. }
\end{aligned}
$$

comes from an

Birthday attack adversary

Defining property of a block cipher: E_{K} is a permutation for every K
So if x_{1}, \ldots, x_{q} are distinct then

- $\mathbf{F n}=E_{K} \Rightarrow \mathbf{F n}\left(x_{1}\right), \ldots, \boldsymbol{F n}\left(x_{q}\right)$ distinct
- $\mathbf{F n}$ random $\Rightarrow \mathbf{F n}\left(x_{1}\right), \ldots, \boldsymbol{F n}\left(x_{q}\right)$ not necessarily distinct

This leads to the following attack:

```
adversary A
Let }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{q}{}\in{0,1\mp@subsup{}}{}{\ell}\mathrm{ be distinct
for i=1,\ldots,q do }\mp@subsup{y}{i}{}\leftarrow\boldsymbol{Fn}(\mp@subsup{x}{i}{}
if \mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{q}{}\mathrm{ are all distinct then return }\frac{1}{2}
else return 0
```


Real game analysis

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

Game Real $_{E}$
procedure Initialize
$K \leftarrow\{0,1\}^{k}$
procedure $\mathbf{F n}(x)$
Return $E_{K}(x)$

adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \boldsymbol{F n}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct
then return 1 else return 0

Then

$$
\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]=
$$

Rand game analysis

Let $E:\{0,1\}^{K} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher

$$
\begin{aligned}
& {\text { Game } \operatorname{Rand}_{\{0,1\}^{\ell}}}_{\text {procedure } \operatorname{Fn}(x)} \\
& \text { if } \mathrm{T}[x]=\perp \text { then } \mathrm{T}[x] \leftarrow^{s}\{0,1\}^{\ell} \\
& \text { Return } \mathrm{T}[x]
\end{aligned}
$$

adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, q$ do $y_{i} \leftarrow \boldsymbol{\operatorname { F n }}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

Then

$$
\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]=\operatorname{Pr}\left[y_{1}, \ldots, y_{q} \text { all distinct }\right]=1-C\left(2^{\ell}, q\right)
$$

because y_{1}, \ldots, y_{q} are randomly chosen from $\{0,1\}^{\ell}$.

Birthday attack conclusion

$E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ a block cipher
adversary A
Let $x_{1}, \ldots, x_{q} \in\{0,1\}^{\ell}$ be distinct for $i=1, \ldots, \boldsymbol{q}$ do $y_{i} \leftarrow \mathbf{F n}\left(x_{i}\right)$
if y_{1}, \ldots, y_{q} are all distinct then return 1 else return 0

$$
\begin{aligned}
\operatorname{Adv}_{E}^{\operatorname{prf}}(A) & =\overbrace{\operatorname{Pr}\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right]}^{1}-\overbrace{\operatorname{Pr}\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}^{1-C\left(2^{\ell}, q\right)} \\
& =C\left(2^{\ell}, q\right) \geq 0.3 \cdot \frac{q(q-1)}{2^{\ell}}
\end{aligned}
$$

SO

$$
q \approx 2^{\ell / 2} \Rightarrow \operatorname{Adv}_{E}^{\mathrm{prf}}(A) \approx 1
$$

Conclusion: If $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell / 2}$ queries.

Depends on block length, not key length!

	ℓ	$2^{\ell / 2}$	Status
DES, 2DES, 3DES3	64	2^{32}	Insecure
AES	128	2^{64}	Secure

gpseudo random function
 PRP vs PRF

Let $F: \operatorname{Keys}(F) \times \operatorname{Dom}(F) \rightarrow$ Range (F) be a family of functions.

```
Game RealF
procedure Initialize
K \stackrel{$}{\leftarrow}Keys(F)
procedure Fn(x)
Return F}\mp@subsup{F}{K}{}(x
Return \(F_{K}(x)\)
```

Game Rand Range(F) procedure $\mathbf{F n}(x)$
$\mathrm{T}[x] \stackrel{\S}{\leftarrow}$ Range (F) Return $\mathrm{T}[x]$

Associated to F, A are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \quad \mid \quad \operatorname{Pr}\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]
$$

that A outputs 1 in each world. The advantage of A is

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(A)=\operatorname{Pr}\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Rand}_{\text {Range }(F)}^{A} \Rightarrow 1\right]
$$

Why do we use PRF?

$$
\frac{P K G(k)=E_{k}(\langle 17)] \ldots E_{k}(\langle n\rangle)}{\text { Psendo otr }}
$$

Stort w/ PRP \rightarrow apiplypro switucing
\qquad
need shis to Hook random!

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.
E.g., we can show that PRF-security implies security against key-recovery.

KR security vs PRF security

We have seen two possible metrics of security for a block cipher E

- (T)KR-security: It should be hard to find the target key, or a key consistent with input-output examples of a hidden target key.
- PRF-security: It should be hard to distinguish the input-output behavior of E_{K} from that of a random function.

Fact: PRF-security of E implies

- KR (and hence TKR) security of E
- Many other security attributes of E

This is a validation of the choice of PRF security as our main metric.

Reduction
wis if \exists adversary A st.
$A d v_{E}^{k r}(A)$ is large then \exists adversary B st. $\Delta d V_{E}^{p r f}(A)$ is large.

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
- Exhaustive key-search.

Conclusion

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
- Exhaustive key-search.
- Birthday attack.

Exercise

We are given a PRF F: $\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ and want to build a PRF $G:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}^{2 k}$. Which of the following work?

1. Function $G(K, x)$
$y_{1} \leftarrow F(K, x) ; y_{2} \leftarrow F(K, \bar{x}) ;$ Return $y_{1} \| y_{2}$
2. Function $G(K, x)$
$y_{1} \leftarrow F(K, x) ; y_{2} \leftarrow F\left(K, y_{1}\right)$; Return $y_{1} \| y_{2}$
3. Function $G(K, x)$
$\overline{L \leftarrow F(K, x) ; y_{1}} \leftarrow F\left(L, 0^{k}\right) ; y_{2} \leftarrow F\left(L, 1^{k}\right)$; Return $y_{1} \| y_{2}$
4. Function $G(K, x)$
[Your favorite code here]
