Foundations of Applied Cryptography

Adam O'Neill

Based on http://cseweb.ucsd.edu/~mihir/cse207/

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

One idea is to list requirements:

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

One idea is to list requirements:

• Key recovery is hard.

We want to define a notion of a "good" blockcipher, where "good" means natural uses of the blockcipher are secure.

One idea is to list requirements:

- Key recovery is hard.
- Message recovery is hard.

not very convincins.

What if we want to define the notion of "intelligent" for a computer program?

What if we want to define the notion of "intelligent" for a computer program? Again, one idea is to list requirements:

What if we want to define the notion of "intelligent" for a computer program?

Again, one idea is to list requirements:

• It can be happy.

What if we want to define the notion of "intelligent" for a computer program?

Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers

What if we want to define the notion of "intelligent" for a computer program?

Again, one idea is to list requirements:

- It can be happy.
- It can multiply numbers
- ... but only small numbers.

Turing's Answer

A program is "intelligent" if its input/output behavior is indistinguishable from that of a human.

The Turing Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in rooom 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of "intelligence" of P is the extent to which the tester fails.

The Analogy

Random Functions

Game Rand_R // here R is a set $[u \mathcal{V}]$ $[u \mathcal{V}]$ $[u \mathcal{V}]$ procedure Fn(x) $f T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} R$ $f T[x] = \bot$ then T[x]

Adversary A

- Make queries to **Fn**
- Eventually halts with some output

We denote by

$$\Pr\left[\operatorname{Rand}_{R}^{A} \Rightarrow d\right]$$

the probability that A outputs d

Random Functions Tintivited to 1 (enpty)

Game Rand_{{0,1}³} **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \stackrel{\$}{\leftarrow} \{0,1\}^3$ return T[x] **adversary** A $y \leftarrow Fn(01)$ return (y = 000)

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^3}^{\mathcal{A}} \Rightarrow \operatorname{true}\right] = 8$$

Random Functions

Random Functions

Game Rand_{{0,1}³} **procedure Fn**(x) if T[x] = \perp then T[x] $\stackrel{\$}{\leftarrow}$ {0,1}³ return T[x] Pr [Rand_{{0,1}³} \Rightarrow true] = $\underbrace{\bigwedge}_{\mathcal{S}}$

Function Families $\{F_k\}_{k \in K \in Y^S}$

A family of functions F: Keys $(F) \times \text{Dom}(F) \rightarrow \text{Range}(F)$ is a two-argument map. For $K \in \text{Keys}(F)$ we let F_K : $\text{Dom}(F) \rightarrow \text{Range}(F)$ be defined by

$$\forall x \in \mathsf{Dom}(F) : F_{\mathcal{K}}(x) = F(\mathcal{K}, x)$$

Examples:

- DES: Keys = $\{0,1\}^{56}$, D = R = $\{0,1\}^{64}$
- Any block cipher: D = R and each F_K is a permutation

Intuition

Notion	Real object	Ideal object
PRF	Family of functions	Random function
	(eg. a block cipher)	

F is a PRF if the input-output behavior of F_K looks to a tester like the input-output behavior of a random function.

Tester does not get the key K!

The Games

Let F: Keys $(F) \times Dom(F) \rightarrow Range(F)$ be a family of functions.

PRF advantage

A's output d	Intended meaning: I think I am in game	
1	Real	
0	Random	

 $\operatorname{Adv}_{F}^{\operatorname{prf}}(A) \approx 1$ means A is doing well and F is not prf-secure. $\operatorname{Adv}_{F}^{\operatorname{prf}}(A) \approx 0$ (or ≤ 0) means A is doing poorly and F resists the attack A is mounting.

PRF Security Func. Fam.

Adversary advantage depends on its

- strategy
- resources: Running time t and number q of oracle queries

Security: *F* is a (secure) PRF if $Adv_F^{prf}(A)$ s "small" for ALL *A* that use "practical" amounts of resources.

Example: 80-bit security could mean that for all n = 1, ..., 80 we have

 $\mathsf{Adv}_F^{\mathrm{prf}}(A) \leq 2^{-n}$

for any A with time and number of oracle queries at most 2^{80-n} .

Insecurity: *F* is insecure (not a PRF) if we can specify an *A* using "few" resources that achieves "high" advantage.

Examples

Define $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \rightarrow \{0,1\}^{\ell}$ by $F_{K}(x) = K \oplus x$ for all $K, x \in \{0,1\}^{\ell}$. Is F a secure PRF?

Game Real_F procedure Initialize $K \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} \{0,1\}^{\ell}$ procedure $\operatorname{Fn}(x)$ Return $K \oplus x$ Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \xleftarrow{} \{0,1\}^{\ell}$ Return T[x]

So we are asking: Can we design a low-resource A so that $\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] - \Pr\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]$ is close to 1?

Examples

Exploitable weakness of F: For all K we have

 $F_{K}(0^{\ell}) \oplus F_{K}(1^{\ell}) = (K \oplus 0^{\ell}) \oplus (K \oplus 1^{\ell}) = 1^{\ell}$

Examples

Exploitable weakness of F: For all K we have

$$F_{\mathcal{K}}(0^{\ell})\oplus F_{\mathcal{K}}(1^{\ell})=(\mathcal{K}\oplus 0^{\ell})\oplus (\mathcal{K}\oplus 1^{\ell})=1^{\ell}$$

Real game analysis

$$F: \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$$

adversary A if $\mathbf{Fn}(0^{\ell}) \oplus \mathbf{Fn}(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

> Game Real_F procedure Initialize $K \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}^\ell$ procedure Fn(x)Return $K \oplus x$ 1 F

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] = \int_{A}^{A}$$

Rand game analysis

 $F: \ \{0,1\}^\ell \times \{0,1\}^\ell \to \{0,1\}^\ell \text{ is defined by } F_{\mathcal{K}}(x) = \mathcal{K} \oplus x.$

Putting It Together

 $F: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \rightarrow \{0,1\}^{\ell}$ is defined by $F_{\mathcal{K}}(x) = \mathcal{K} \oplus x$.

adversary A if $Fn(0^{\ell}) \oplus Fn(1^{\ell}) = 1^{\ell}$ then return 1 else return 0

and A is efficient .

6

Conclusion: F is not a secure PRF.

Blockciphers as PRFs

Let $E \colon \{0,1\}^k imes \{0,1\}^\ell o \{0,1\}^\ell$ be a block cipher.

Game Real_{*E*} **procedure Initialize** $K \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} \{0,1\}^k$ **procedure Fn**(*x*) Return $E_K(x)$

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ procedure $\operatorname{Fn}(x)$ if $\operatorname{T}[x] = \bot$ then $\operatorname{T}[x] \xleftarrow{\$} \{0,1\}^{\ell}$ Return $\operatorname{T}[x]$

Can we design A so that

$$\mathbf{Adv}_{E}^{\mathrm{prf}}(A) = \Pr\left[\mathrm{Real}_{E}^{A} \Rightarrow 1\right] - \Pr\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]$$

is close to 1?

Exhaustive Key Search Attack proportion

to key length

Birthday Attack - advantage proportional to block-length

Birthday Attack

We have q people $1, \ldots, q$ with birthdays $y_1, \ldots, y_q \in \{1, \ldots, 365\}$. Assume each person's birthday is a random day of the year. Let

> $C(365, q) = \Pr[2 \text{ or more persons have same birthday}]$ = $\Pr[y_1, \dots, y_q \text{ are not all different}]$

- What is the value of C(365, q)?
- How large does q have to be before C(365, q) is at least 1/2?

Naive intuition:

- $C(365, q) \approx q/365$
- q has to be around 365

The reality

- $C(365, q) \approx q^2/365$
- q has to be only around 23

Birthday Collision Bounds

C(365, q) is the probability that some two people have the same birthday in a room of q people with random birthdays

q	C(365, q)
15	0.253
18	0.347
20	0.411
21	0.444
23	0.507
25	0.569
27	0.627
30	0.706
35	0.814
40	0.891
50	0.970

Birthday problem

Pick $y_1, \ldots, y_a \leftarrow \{1, \ldots, N\}$ and let $\begin{cases} C(N,q) = \Pr[y_1,\ldots,y_q \text{ not all distinct}] \end{cases}$ Birthday setting: N = 365Fact: $C(N,q) \approx \left(\frac{q^2}{2N}\right)$ Want apper Élower-bounds on C(N19]. Upper-bound: les COLL: be the event that there's a collision when i-th element y; is chosen. c(n,q) = Pr[Vcolli] & Z Pr[Colli]

Birthday collision formula

Let $y_1, \ldots, y_a \stackrel{\$}{\leftarrow} \{1, \ldots, N\}$. Then $1 - C(N, q) = \Pr[y_1, \dots, y_q \text{ all distinct}]$ $= 1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \cdots \cdot \frac{N-(q-1)}{N}$ $= \prod^{q-1} \left(1 - \frac{i}{N} \right)$ SO $C(N,q) = 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$ $q_{j} - i=1$ $|-\dot{x} \leq e^{-x}$ $|-e^{-\alpha(\alpha-1)/2}$

Birthday bounds

Let

$$C(N,q) = \Pr[y_1, \dots, y_q \text{ not all distinct}]$$

Fact: Then
$$0.3 \cdot \frac{q(q-1)}{N} \leq C(N,q) \leq 0.5 \cdot \frac{q(q-1)}{N}$$

where the lower bound holds for $1 \leq q \leq \sqrt{2N}$.

Birthday attack adversary

Defining property of a block cipher: E_K is a permutation for every K

So if x_1, \ldots, x_q are distinct then

- $\mathbf{Fn} = E_K \Rightarrow \mathbf{Fn}(x_1), \dots, \mathbf{Fn}(x_q)$ distinct
- **Fn** random \Rightarrow **Fn**(x_1),..., **Fn**(x_q) not necessarily distinct

This leads to the following attack:

Real game analysis

Let $E: \{0,1\}^k imes \{0,1\}^\ell o \{0,1\}^\ell$ be a block cipher

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathbf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$\Pr\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right] = \square$$

Rand game analysis

Let E: $\{0,1\}^K \times \{0,1\}^\ell \to \{0,1\}^\ell$ be a block cipher

Game $\operatorname{Rand}_{\{0,1\}^{\ell}}$ **procedure Fn**(x) if $T[x] = \bot$ then $T[x] \xleftarrow{} \{0,1\}^{\ell}$ Return T[x]

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathsf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

Then

$$\Pr\left[\operatorname{Rand}_{\{0,1\}^{\ell}}^{\mathcal{A}} \Rightarrow 1\right] = \Pr\left[y_1, \ldots, y_q \text{ all distinct}\right] = \underbrace{1 - C(2^{\ell}, q)}_{\text{because } y_1, \ldots, y_q}$$
 are randomly chosen from $\{0, 1\}^{\ell}$.

Birthday attack conclusion

 $E: \{0,1\}^k imes \{0,1\}^\ell o \{0,1\}^\ell$ a block cipher

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^{\ell}$ be distinct for $i = 1, \ldots, q$ do $y_i \leftarrow \mathsf{Fn}(x_i)$ if y_1, \ldots, y_q are all distinct then return 1 else return 0

$$\mathbf{Adv}_{E}^{\mathrm{prf}}(A) = \overbrace{\mathsf{Pr}\left[\mathrm{Real}_{E}^{A} \Rightarrow 1\right]}^{1} - \overbrace{\mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^{\ell}}^{A} \Rightarrow 1\right]}^{1-C(2^{\ell},q)}$$
$$= C(2^{\ell},q) \ge 0.3 \cdot \frac{q(q-1)}{2^{\ell}}$$

SO

$$q \approx 2^{\ell/2} \Rightarrow \operatorname{\mathsf{Adv}}_E^{\operatorname{prf}}(A) \approx 1$$
.

Conclusion: If $E : \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell/2}$ queries.

Depends on block length, not key length!

rpseudorandom function

PRP vs PRF

Let F: Keys $(F) \times Dom(F) \rightarrow Range(F)$ be a family of functions.

Game Real_F **procedure Initialize** $K \stackrel{\hspace{0.1em}\hspace{0.1em}}{\leftarrow} \operatorname{Keys}(F)$ **procedure Fn**(x) Return $F_K(x)$

Game Rand_{Range}(F) procedure Fn(x) $T[x] \stackrel{\$}{\leftarrow} Range(F) \stackrel{?}{\leftarrow} \stackrel{?}{\leftarrow} abready$ Return T[x]

Associated to F, A are the probabilities

$$\Pr\left[\operatorname{Real}_{F}^{A} \Rightarrow 1\right] \qquad \Pr\left[\operatorname{Rand}_{\operatorname{Range}(F)}^{A} \Rightarrow 1\right]$$

that A outputs 1 in each world. The advantage of A is

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(A) = \Pr\left[\mathrm{Real}_{F}^{A} \Rightarrow 1\right] - \Pr\left[\mathrm{Rand}_{\mathsf{Range}(F)}^{A} \Rightarrow 1\right]$$

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

PRF-Security Implications

PRF-security can be seen as a "master property" for blockciphers that implies all other security properties we want.

E.g., we can show that PRF-security implies security against key-recovery.

KR security vs PRF security

We have seen two possible metrics of security for a block cipher E

- (T)KR-security: It should be hard to find the target key, or a key consistent with input-output examples of a hidden target key.
- PRF-security: It should be hard to distinguish the input-output behavior of E_K from that of a random function.
- Fact: PRF-security of *E* implies
 - KR (and hence TKR) security of E
 - Many other security attributes of E

This is a validation of the choice of PRF security as our main metric.

Reduction Wts if I adversary A st. Adversary B st. Advert(A) is large then I adversary B st. Advert(A) is large.

 We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
 - Exhaustive key-search.

- We believe DES, AES are "good" blockciphers in the sense that there is no significantly "better than generic" attacks under the PRF notion.
- Generic attacks:
 - Exhaustive key-search.
 - Birthday attack.

Exercise

We are given a PRF $F: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^k$ and want to build a PRF $G: \{0,1\}^k \times \{0,1\}^k \to \{0,1\}^{2k}$. Which of the following work?

- 1. Function G(K, x) $y_1 \leftarrow F(K, x)$; $y_2 \leftarrow F(K, \overline{x})$; Return $y_1 || y_2$
- 2. Function G(K, x) $y_1 \leftarrow F(K, x)$; $y_2 \leftarrow F(K, y_1)$; Return $y_1 || y_2$
- **3.** $\frac{\text{Function } G(K, x)}{L \leftarrow F(K, x) ; y_1} \leftarrow F(L, 0^k) ; y_2 \leftarrow F(L, 1^k) ; \text{Return } y_1 \| y_2$
- 4. Function G(K, x)[Your favorite code here]