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Notation

{0,1}" is the set of n-bit strings and {0, 1}* is the set of all strings of
finite length. By £ we denote the empty string.

If S is a set then |S| denotes its size. Example: [{0,1}?| = 4.
If x is a string then |x| denotes its length. Example: [0100| = 4.
If m>1is an integer thenlet Z,, = {0,1,...,m—1}. 7_LM

By x @ S we denote picking an element at random from set S and
assigning it to x. Thus Pr[x = s] =1/|S| for every s € §S.
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Functions

Let n > 1 be an integer. Let Xi,..., X, and Y be (non-empty) sets.

By f: X{ x--- x X, = Y we denote that f is a function that
e Takes inputs x1,...,Xxn, Where x; € X; for1 </ <n
e and returns an output y = f(x1,...,x,) € Y.

We call n the number of inputs (or arguments) of f. We call
X1 X -+ xX X, the domain of f and Y the range of f.

Example: Define f: Z, x Z3 — Z3 by f(Xl,XQ) = (Xl —I—X2) mod 3. This
is a function with n = 2 inputs, domain Z, X Z3 and range Z3.



Permutations

Suppose f: X — Y is a function with one argument. We say that it is a
permutation if

e X =Y, meaning its domain and range are the same set.

e There is an inverse function f~1: Y — X such that f~1(f(x)) = x
for all x € X.

This means f must be one-to-one and onto: for every y € Y there is a
unique x € X such that f(x) =y.
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A family of functions (also called a function family) is a two-input function
F : Keys x D — R. For K € Keys we let Fx : D — R be defined by
Fk(x) = F(K,x) for all x € D.

o The set Keys is called the key space. If Keys = {0,1}% we call k the
key length.

e The set D is called the input space. If D = {0,1}* we call £ the input
length.

e The set R is called the output space or range. If R = {0,1}t we call L
the output length.

Example: Define F: Zy, x Z3 — Z3 by F(K,x) = (K - x) mod 3.
e This is a family of functions with domain Z> x Z3 and range Zs.
o If K=1then Fx: Z3 — Z3 is given by Fx(x) = x mod 3.



What is a blockcipher?

Let E: Keys x D — R be a family of functions. We say that E is a block
cipher if

e R =D, meaning the input and output spaces are the same set.

o Eix: D — D is a permutation for every key K € Keys, meaning has an
inverse E,.*: D — D such that E*(Ex(x)) = x for all x € D.

We let E~1: Keys x D — D, defined by E71(K,y) = E.*(y), be the
inverse block cipher to E.

In practice we want that E, E~! are efficiently computable.

If Keys = {0,1}* then k is the key length as before. If D = {0, 1} we call
¢ the block length.



Examples
Keys= 10,19"
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Exercise

Above we had given the following example of a family of functions:
F:Z, x Z3 — Z3 defined by F(K,x) = (K - x) mod 3.

Question: Is F a block cipher? Why or why not?



Exercise

Let E: Keys x D — D be a block cipher. Is E a permutation?

e YES

e NO

QUESTION DOESN'T MAKE SENSE
WHO CARES?
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«oev Blockcipher Usage

Let E: {0,1}5 x {0,1}* = {0,1}¢ be a block cipher. It is considered
public. In typical usage

o K¢ {0,1}* is known to parties S, R, but not given to adversary A.
e S, R use Ex for encryption
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y; = Ex(X) U
e Adversary A
Leads to security requirements like: Hard to get K from vy, y»....; Hard to

get x; from y;; ...
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e Confusion: Each bit of the output should
depend on many bits of the input
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Shannon’s Design Criterion (Informal)

e Confusion: Each bit of the output should
depend on many bits of the input

* Diffusion: Changing one bit of the input should
“re-randomize” the entire output (avalanche
effect)

* Not really solved (for many input-outputs) until
much later: Data Encryption Standard (DES)



History of DES

1972 — NBS (now NIST) asked for a block cipher for standardization
1974 — IBM designs Lucifer
Lucifer eventually evolved into DES.

Widely adopted as a standard including by ANSI and American Bankers
association

Used in ATM machines
Replaced (by AES) in 2001.



DES Parameters

Key Length k = 56
Block length / = 64
So,
DES: {0,1}°° x {0,1}%* — {0,1}%

DES™: {0,1}°° x {0,1}%* — {0,1}



DES Construction

N

function DESk(M) // |K| =56 and |M| = 64
(K1, ... ) < KeySchedule(K) // |Ki| =48 for 1 <i<16
M « (P(M)
Parse MasLy || R0 // |Lo| = |Ro| = 32
for j =1 to 16 do

——

Li+Ri—1; R+ f(Ki,Ri—1) ® Li—1

C (P L16HR6

return C

Round i: Invertible given K;:




Key-Recovery Attacks

Let E: Keys X D — R be a block cipher known to the adversary A.

— Sender Alice and receiver Bob share a target key K € Keys.

— Alice encrypts M; to get C; = Ex(M;) for 1 < i < g, and transmits
C1,...,C4 to Bob

— The adversary gets (1,..., (g and also knows My, ..., M,

— Now the adversary wants to figure out K so that it can decrypt any
future ciphertext C to recover M = E.*(C).

~P Question: Why do we assume A knows My, ..., My?

® Answer: Reasons include a posteriori revelation of data, a priori
[ knowledge of context, and just being conservative!



Security Metrics

We consider two measures (metrics) for how well the adversary does at
this key recovery task:

o Target key recovery (TKR)
o Consistent key recovery (KR)

In each case the definition involves a game and an advantage.

—_— =
The definitions will allow E to be any family of functions, not just a block
cipher.
,\_\
The definitions allow A to pick, not just know, My, ..., M,. This is called

a chosen-plaintext attack.
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Consistent Keys

(1,7) (\/L) 7‘\

e

Def: Let E: Keys x D — R be a family of functions. We say that key
K’ € Keys is consistent with (M1, C1), ..., (Mg, Cq) if E(K', M;) = C; for 4
all 1 <7 <q.

Example: For E: {0,1}? x {0,1}? — {0, 1} defined by
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The entry in row K, column M



Consistent Key Recovery

Let E: Keys x D — R be a family of functions, and A an adversary.

Game KREg o / 7
procedure Initialize procedure Fmallze(iﬁ) K g A

$ . win < true
Keys: | + . .
@ eysi 10 Forj=1,...,ido

~P PFOC?dure If E(K', M;) # C; then win « false
,I,.% I+1; |f Mj S {M17"'7Mj—1} then win < false
Ci E@ M/) Return win
Return C;

—

Definition: AdviZ(A) = Pr[KR2 = true].

The game returns true if (1) The key K’ returned by the adversary is
consistent with (My, C1), ..., (Mg, Cy), and (2) My, ..., M, are distinct.

A is a g-query adversary if it makes g distinct queries to its Fn oracle.
—

— -/




Target Key Recovery Game

procedure Fn(M)
Game TKRg Return E(K, M)
procedure Initialize o
K &S Kevs procedure Finalize(K’)
Y Return (K = K’)

Definition: Advi*(A) = Pr[TKRZ = true].

First Initialize executes, selecting target key K < Keys, but not giving
it to A.

Now A can call (query) Fn on any input M € D of its choice to get
back C = Ex(M). It can make as many queries as it wants.

Eventually A will halt with an output K’ which is automatically viewed
as the input to Finalize

The game returns whatever Finalize returns

The tkr advantage of A is the probability that the game returns true
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A relation

Fact: Suppose that, in game KRg, adversary A makes queries My, ...,
M, to Fn, thereby defining Ci,..., (4. Then the target key K is
consistent with (Mq, Gy), ..., (Mg, Cy).

Proposition: Let E be a family of functions. Let A be any adversary all
of whose Fn queries are distinct. Then

AdviE(A) > AdviET(A) .

Why? If the K’ that A returns equals the target key K, then, by the Fact,
the input-output examples (My, C1), ..., (Mg, Cq) will of course be
consistent with K.



AN C
Exhaustive Key Search

Let E: Keys x D — R be a function family with Keys = {T1,..., Ty} and
D={x1,...,x4}. Let 1 < g < d be a parameter.

adversary Ay %’ ﬂt %{/(\4
=14 do M; + x;; C; + Fn(M,) T)\L/SC}\/UMSV‘/j

Fori=1,...,N do
if (Vje{l,...,q} : E(T;, M;) = C;) then return T;

Question: What is Advlg(Ae'f{S)? =1,



Tl ) =%
Exhaustive Key Search

Let E: Keys x D — R be a function family with Keys = {T7,..., Ty} and
D={x,...,xq}. Let 1 < g < d be a parameter.

adversary A. T-,//¢C/<J>> S Ve td, /"'LF(
For j=1,...,q do M; + x;; C; + Fn(M;)
Fori=1,...,N do

if (Vj S {17 . ~,Q} : E(Tia MJ) = CJ) then return T,'

Question: What is AdviT (Ag)?
———



Exhaustive Key Search

Let E: Keys x D — R be a function family with Keys = {T7,..., Ty} and
D={x,...,xq}. Let 1 < g < d be a parameter.

adversary Acks
For j=1,...,q do M; + x;; C; + Fn(M;)
Fori=1,...,N do

if (Vje{l,...,q} : E(T;,M;) = C) then return T;

Question: What is AdviT (Ag)?

Answer: Hard to say! Say K = T,, but there is a i < m such that
E(T;,M;) = C; for 1 <j < q. Then T;, rather than K, is returned.

In practice if £: {0,1}% x {0,1}* — {0,1}* is@ “real” block cipher}and
‘q > k/E’ we expect that Advi (Ag) is close ause K Is likely the
only key consistent with the input-output examples.

=l "y
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Exhaustlve Key Search on DES

DES can be computed at 1.6 Gbits/sec in hardware.
DES plaintext = 64 bits

Chip can perform (1.6 x 10°)/64 = 2.5 x 10" DES computations per
second

Expect Aqs (g = 1) to succeed in 2°° DES computations, so it takes time
255

7E < 107 ~ 1.4 x 10° seconds
~ 45 years!

Key Complementation = 22.5 years
\g—o‘

But this is prohibitive. Does this mean DES is secure?



Differential & Linear cryptanalysis
———— ——
N\ 0h - NN G
Exhaustive key search is a generic attack: Did not attempt to “look
inside” DES and find /exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage
close to one and running time smaller than 2°® DES computations:

Attack when | g, running time

Differential cryptanalysis | 1992 pall

244

Linear cryptanalysis 1993



An observation

Observation: The E computations can be performed in parallel!

In 1993, Wiener designed a dedicated DES-cracking machine:
e $1 million
e 57 chips, each with many, many DES processors

e Finds key in 3.5 hours
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= Increasing Key-Length

W\ W
Can on e DES to design a new blockcipher

with longer
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2DES

Block cipher 2DES : {0, 1} x {0,11%% — {0,1}%* is defined by

————

2DESk, x,(M) = DESk, (DESk, (M))




2DES

Block cipher 2DES : {0,1}12 x {0,1}°* — {0,11°* is defined by

2DESk, x,(M) = DESk, (DESk, (M))

e Exhaustive key search takes 2112 DES computations, which is too
much even for machines

e Resistant to differential and linear cryptanalysis.

———
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Meet-in-the-Middle Attack

Suppose K1 K5 is a target 2DES key and adversary has M, C such that
C = 2DESk, k,(M) = DESk,(DESk,(M))

Then
DES, }(C) = DESk, (M)



Meet-in-the-Middle Attack

vLO N MVle

Suppose DES;;(C) = DESK,(M) and Ti,..., Ty are all possible DES

keys, where N = 256,
T1 | DES(Ti, M) DES (T1,C) | T
— Y
i/ )
Ky —| Ti | PESCHt) 4%0“1&1 4 DES (T, 0) | Ti | « Ko
> h V¥
Tn | DES(Ty, M) ES” (Tw. €) | Tw
Table L Table R
Attack idea: = —=
e Build L,R tables
e Find i,/ s.t. L[i] = R[j]
e Guess that K1 Ko = T;T;
/\

T, ) ﬂ*



Translating to Pseudocode

Let 71,..., Toss denote an enumeration of DES keys.

adversary AniinM

/\/Il <— 064; Cl < Fl‘l(/\/ll)

for i=1,...,2% do L[i] +~ DES(T;, M1)
for j =1,...,2% do R[j] +~ DES™}(T;, 1)
S« {(0J) : Lil=RU]}

Pick some (/,r) € S and return T, || T,

Attack takes about 2°7 DES/DES ™! computations and has
Advihes(Avinm) = 1.

This uses g = 1 and is unlikely to return the target key. For that one
should extend the attack to a larger value of q.



3DES

Block ciphers
3DES3 : {0,1}1%8 x {0,1}%* — {0,1}%
3DES2: {0,1}112 x {0,1}%* — {0,1}%
are defined by
3DES3k, | k, || ks(M) = DESk,(DES, (DESk,(M))
3DES2y, || k,(M) = DES,(DES, (DESk,(M))

Meet-in-the-middle attack on 3DES3 reduces its “effective” key length to
112. W

. Lin The  fo  betHl
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3DES Security
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Figure 1: Upper bound on adversarial advantage (proven security) verses log, ¢ (where g=number of queries)
for the cascade construction, assuming key length k& = 56 and block length n = 64. Single encryption is the
leftmost curve, double encryption is the middle curve [3], and triple encryption in the rightmost curve, as
given by Theorem 4.
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Code-Based Game-Playing Proofs
and the Security of Triple Encryption

(‘
MiHIR BELLARE * PHILLIP ROoGAWAY f

November 27, 2008

(Draft 3.0)

Abstract

The game-playing technique is a powerful tool for analyzing cryptographic constructions.
We illustrate this by using games as the central tool for proving security of three-key triple-
encryption, a long-standing open problem. Our result, which is in the ideal-cipher model,
demonstrates that for DES parameters (56-bit keys and 64-bit plaintexts) an adversary’s maxi-
mal advantage is small until it asks about 27® queries. Beyond this application, we develop the
foundations for game playing, formalizing a general framework for game-playing proofs and dis-
cussing techniques used within such proofs. To further exercise the game-playing framework we
show how to use games to get simple proofs for the PRP/PRF Switching Lemma, the security
of the basic CBC MAC, and the chosen-plaintext-attack security of OAEP.

Keywords: Cryptographic analysis techniques, games, provable security, triple encryption.
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THE FUNDAMENTAL LEMMA. The fundamental lemma says that the advantage that an adversary
can obtain in distinguishing a pair of identical-until-bad games is at most the probability that its
execution sets bad in one of the games (either game will do).

Lemma 2 [Fundamental lemma of game-playing] Let G and H be identical-until-bad games and
let A be an adversary. Then

Adv(AY, A7) < Pr[AY sets bad] and (6)
Adv(G, HA) < Pr[G* sets bad] . (7)

More generally, let G, H, I be identical-until-bad games. Then

Adv(AG, AH
( )
|Adv(GA, HY)|

Pr[Al sets bad] and (8)

<
< Pr[I” sets bad] . (9)

G

)

L,

bad clrue Wod& Frue
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2 The PRP/PRF Switching Lemma

THE LEMMA. The natural and conventional assumption to make about a blockcipher is that it
behaves as a pseudorandom permutation (PRP). However, it usually turns out to be easier to
analyze the security of a blockcipher-based construction assuming the blockcipher is secure as a
pseudorandom function (PRF). The gap is then bridged (meaning, a result about the security of
the construct assuming the blockcipher is a PRP is obtained) using the following lemma. In what
follows, we denote by A" = 1 the event that adversary A, equipped with an oracle P, outputs
the bit 1. Let Perm(n) be the set of all permutations on {0,1}" and let Func(n) be the set of
all functions from {0,1}" to {0,1}". We assume below that 7 is randomly sampled from Perm(n)
and p is randomly sampled from Func(n).

Lemma 1 [PRP/PRF Switching Lemma] Let n > 1 be an integer. Let A be an adversary that
asks at most q oracle queries. Then

PrA™ = 1]-Pr[ar 1] < 4= Az f of qu )

2n+1

e—eee——————




Proof of Lemma
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Increasing Block-Length?
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blockcipher with
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Increasing Block-Length?

We will later see that we would also like a
blockcipher with

This seems much harder to do using DES.

Motivated the search for a new blockcipher.



AES History

1998: NIST announces competition for a new block cipher

e key length 128
e block length 128

e faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6,
Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC,
Safer+, Deal

2001: NIST selects Rijndael to be AES.



AES Construction
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AES Security

Best known key-recovery attack [BoKhRell] takes 2120-1 time, which is
only marginally better than the 2128 time of EKS.

There are attacks on reduced-round versions of AES as well as on its
sibling algorithms AES192, AES256. Many of these are “related-key”
attacks. There are also effective side-channel attacks on AES such as
“cache-timing” attacks [Be05,0sShTr05].



Limitations of Key
Recovery
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So What?

Possible reaction: But DES, AES are not designed like E above, so why
does this matter?

Answer: It tells us that security against key recovery is not, as a
block-cipher property, sufficient for security of uses of the block cipher.

<_3> As designers and users we want to know what properties of a block cipher
give us security when the block cipher is used.



Killer Application:

Pseudo One-time Pad7
06

L - % o )
l,\)Oun\r GQﬁ\ - decsn

e thhm b aAR
b ; ﬁije%

[ D(6C§> ) =1 fg - \”f[[)( L esn]

%

\( S“Y\AoJu
/

¥ (pwn ompress [Lf\/ Ny 67 F ms,'gﬂb.












