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Notation
Notation

{0, 1}n is the set of n-bit strings and {0, 1}⇤ is the set of all strings of
finite length. By " we denote the empty string.

If S is a set then |S | denotes its size. Example: |{0, 1}2| = 4.

If x is a string then |x | denotes its length. Example: |0100| = 4.

If m � 1 is an integer then let Zm = {0, 1, . . . ,m � 1}.

By x $
 S we denote picking an element at random from set S and

assigning it to x . Thus Pr[x = s] = 1/|S | for every s 2 S .
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Functions
Functions

Let n � 1 be an integer. Let X1, . . . ,Xn and Y be (non-empty) sets.

By f : X1 ⇥ · · ·⇥ Xn ! Y we denote that f is a function that

• Takes inputs x1, . . . , xn, where xi 2 Xi for 1  i  n

• and returns an output y = f (x1, . . . , xn) 2 Y .

We call n the number of inputs (or arguments) of f . We call
X1 ⇥ · · ·⇥ Xn the domain of f and Y the range of f .

Example: Define f : Z2 ⇥ Z3 ! Z3 by f (x1, x2) = (x1 + x2) mod 3. This
is a function with n = 2 inputs, domain Z2 ⇥ Z3 and range Z3.
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Permutations

Permutations

Suppose f : X ! Y is a function with one argument. We say that it is a
permutation if

• X = Y , meaning its domain and range are the same set.

• There is an inverse function f �1 : Y ! X such that f �1(f (x)) = x
for all x 2 X .

This means f must be one-to-one and onto: for every y 2 Y there is a
unique x 2 X such that f (x) = y .
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Function familiesFunction families

A family of functions (also called a function family) is a two-input function
F : Keys⇥ D ! R. For K 2 Keys we let FK : D ! R be defined by
FK (x) = F (K , x) for all x 2 D.

• The set Keys is called the key space. If Keys = {0, 1}k we call k the
key length.

• The set D is called the input space. If D = {0, 1}` we call ` the input
length.

• The set R is called the output space or range. If R = {0, 1}L we call L
the output length.

Example: Define F : Z2 ⇥ Z3 ! Z3 by F (K , x) = (K · x) mod 3.

• This is a family of functions with domain Z2 ⇥ Z3 and range Z3.

• If K = 1 then FK : Z3 ! Z3 is given by FK (x) = x mod 3.
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What is a blockcipher?
Block ciphers: Definition

Let E : Keys⇥ D ! R be a family of functions. We say that E is a block
cipher if

• R = D, meaning the input and output spaces are the same set.

• EK : D ! D is a permutation for every key K 2 Keys, meaning has an
inverse E�1

K : D ! D such that E�1
K (EK (x)) = x for all x 2 D.

We let E�1 : Keys⇥ D ! D, defined by E�1(K , y) = E�1
K (y), be the

inverse block cipher to E .

In practice we want that E ,E�1 are e�ciently computable.

If Keys = {0, 1}k then k is the key length as before. If D = {0, 1}` we call
` the block length.
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ExerciseExercise

Above we had given the following example of a family of functions:
F : Z2 ⇥ Z3 ! Z3 defined by F (K , x) = (K · x) mod 3.

Question: Is F a block cipher? Why or why not?

Answer: No, because F0(1) = F0(2) so F0 is not a permutation.

Question: Is F1 a permutation?

Answer: Yes. But that alone does not make F a block cipher.
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ExerciseExercise

Let E : Keys⇥ D ! D be a block cipher. Is E a permutation?

• YES

• NO

• QUESTION DOESN’T MAKE SENSE

• WHO CARES?

This is an exercise in correct mathematical language.
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Blockcipher	UsageBlock cipher usage

Let E : {0, 1}k ⇥ {0, 1}` ! {0, 1}` be a block cipher. It is considered
public. In typical usage

• K $
 {0, 1}k is known to parties S , R , but not given to adversary A.

• S , R use EK for encryption

Leads to security requirements like: Hard to get K from y1, y2, . . .; Hard to
get xi from yi ; ...
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Shannon’s	Design	Criterion	(Informal)

• Confusion:	Each	bit	of	the	output	should	
depend	on	many	bits	of	the	input

• Diffusion:	Changing	one	bit	of	the	input	should	
“re-randomize”	the	entire	output	(avalanche	
effect)

• Not	really	solved	(for	many	input-outputs)	until	
much	later:	Data	Encryption	Standard	(DES)



History	of	DES

DES History

1972 – NBS (now NIST) asked for a block cipher for standardization

1974 – IBM designs Lucifer

Lucifer eventually evolved into DES.

Widely adopted as a standard including by ANSI and American Bankers
association

Used in ATM machines

Replaced (by AES) in 2001.
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DES	Parameters
DES parameters

Key Length k = 56

Block length ` = 64

So,

DES: {0, 1}56 ⇥ {0, 1}64 ! {0, 1}64

DES�1 : {0, 1}56 ⇥ {0, 1}64 ! {0, 1}64
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	DES	Construction
DES Construction

function DESK (M) // |K | = 56 and |M| = 64

(K1, . . . ,K16) KeySchedule(K ) // |Ki | = 48 for 1  i  16

M  IP(M)
Parse M as L0 k R0 // |L0| = |R0| = 32

for i = 1 to 16 do
Li  Ri�1 ; Ri  f (Ki ,Ri�1) � Li�1

C  IP�1(L16 k R16)
return C

Round i: Invertible given Ki :
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Key-Recovery	AttacksKey Recovery Attack Scenario

Let E : Keys⇥ D ! R be a block cipher known to the adversary A.

Sender Alice and receiver Bob share a target key K 2 Keys.
Alice encrypts Mi to get Ci = EK (Mi ) for 1  i  q, and transmits
C1, . . . ,Cq to Bob
The adversary gets C1, . . . ,Cq and also knows M1, . . . ,Mq

Now the adversary wants to figure out K so that it can decrypt any
future ciphertext C to recover M = E�1

K (C ).

Question: Why do we assume A knows M1, . . . ,Mq?

Answer: Reasons include a posteriori revelation of data, a priori
knowledge of context, and just being conservative!
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Security	Metrics
Key Recovery Security Metrics

We consider two measures (metrics) for how well the adversary does at
this key recovery task:

• Target key recovery (TKR)

• Consistent key recovery (KR)

In each case the definition involves a game and an advantage.

The definitions will allow E to be any family of functions, not just a block
cipher.

The definitions allow A to pick, not just know, M1, . . . ,Mq. This is called
a chosen-plaintext attack.
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Consistent	Keys
Consistent keys

Def: Let E : Keys⇥ D ! R be a family of functions. We say that key
K 0

2 Keys is consistent with (M1,C1), . . . , (Mq,Cq) if E (K 0,Mi ) = Ci for
all 1  i  q.

Example: For E : {0, 1}2 ⇥ {0, 1}2 ! {0, 1}2 defined by

00 01 10 11
00 11 00 10 01
01 11 10 01 00
10 10 11 00 01
11 11 00 10 01

The entry in row K , column M
is E (K ,M).

• Key 00 is consistent with (11, 01)

• Key 10 is consistent with (11, 01)

• Key 00 is consistent with (01, 00), (11, 01)

• Key 11 is consistent with (01, 00), (11, 01)
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Consistent	Key	RecoveryConsistent Key Recovery Definitions: Game and Advantage

Let E : Keys⇥ D! R be a family of functions, and A an adversary.

Game KRE

procedure Initialize

K $
 Keys; i  0

procedure Fn(M)
i  i + 1; Mi  M
Ci  E (K ,Mi )
Return Ci

procedure Finalize(K 0)
win true
For j = 1, . . . , i do

If E (K 0,Mj) 6= Cj then win false
If Mj 2 {M1, . . . ,Mj�1} then win false

Return win

Definition: AdvkrE (A) = Pr[KRA
E ) true].

The game returns true if (1) The key K 0 returned by the adversary is
consistent with (M1,C1), . . . , (Mq,Cq), and (2) M1, . . . ,Mq are distinct.

A is a q-query adversary if it makes q distinct queries to its Fn oracle.
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Target	Key	Recovery	Game
Target Key Recovery Definitions: Game and Advantage

Game TKRE

procedure Initialize

K $
 Keys

procedure Fn(M)
Return E (K ,M)

procedure Finalize(K 0)
Return (K = K 0)

Definition: AdvtkrE (A) = Pr[TKRA
E ) true].

First Initialize executes, selecting target key K $
 Keys, but not giving

it to A.
Now A can call (query) Fn on any input M 2 D of its choice to get
back C = EK (M). It can make as many queries as it wants.
Eventually A will halt with an output K 0 which is automatically viewed
as the input to Finalize

The game returns whatever Finalize returns
The tkr advantage of A is the probability that the game returns true
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A	relationkr advantage always exceeds tkr advantage

Fact: Suppose that, in game KRE , adversary A makes queries M1, . . . ,
Mq to Fn, thereby defining C1, . . . ,Cq. Then the target key K is
consistent with (M1,C1), . . . , (Mq,Cq).

Proposition: Let E be a family of functions. Let A be any adversary all
of whose Fn queries are distinct. Then

Adv
kr
E (A) � Adv

tkr
E (A) .

Why? If the K 0 that A returns equals the target key K , then, by the Fact,
the input-output examples (M1,C1), . . . , (Mq,Cq) will of course be
consistent with K 0.

Mihir Bellare UCSD 33



Exhaustive	Key	Search
Exhaustive Key Search attack

Let E : Keys⇥ D! R be a function family with Keys = {T1, . . . ,TN} and
D = {x1, . . . , xd}. Let 1  q  d be a parameter.

adversary Aeks

For j = 1, . . . , q do Mj  xj ; Cj  Fn(Mj)
For i = 1, . . . ,N do

if (8j 2 {1, . . . , q} : E (Ti ,Mj) = Cj) then return Ti

Question: What is AdvkrE (Aeks)?

Answer: It equals 1.

Because

• There is some i such that Ti = K , and

• K is consistent with (M1,C1), . . . , (Mq,Cq).
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Exhaustive	Key	Search
Exhaustive Key Search attack

Let E : Keys⇥ D! R be a function family with Keys = {T1, . . . ,TN} and
D = {x1, . . . , xd}. Let 1  q  d be a parameter.

adversary Aeks

For j = 1, . . . , q do Mj  xj ; Cj  Fn(Mj)
For i = 1, . . . ,N do

if (8j 2 {1, . . . , q} : E (Ti ,Mj) = Cj) then return Ti

Question: What is AdvtkrE (Aeks)?

Answer: Hard to say! Say K = Tm but there is a i < m such that
E (Ti ,Mj) = Cj for 1  j  q. Then Ti , rather than K , is returned.

In practice if E : {0, 1}k ⇥ {0, 1}` ! {0, 1}` is a “real” block cipher and
q > k/`, we expect that AdvtkrE (Aeks) is close to 1 because K is likely the
only key consistent with the input-output examples.
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Exhaustive	Key-Search	on	DESHow long does exhaustive key search take?

DES can be computed at 1.6 Gbits/sec in hardware.

DES plaintext = 64 bits

Chip can perform (1.6⇥ 109)/64 = 2.5⇥ 107 DES computations per
second

Expect Aeks (q = 1) to succeed in 255 DES computations, so it takes time

255

2.5⇥ 107
⇡ 1.4⇥ 109 seconds

⇡ 45 years!

Key Complementation ) 22.5 years

But this is prohibitive. Does this mean DES is secure?
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Differential	&	Linear	cryptanalysis
Di↵erential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to “look
inside” DES and find/exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage
close to one and running time smaller than 256 DES computations:

Attack when q, running time

Di↵erential cryptanalysis 1992 247

Linear cryptanalysis 1993 244

But merely storing 244 input-output pairs requires 281 Tera-bytes.

In practice these attacks were prohibitively expensive.
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An	observation

EKS revisited

adversary Aeks

For j = 1, . . . , q do Mj  hj � 1i; Cj  Fn(Mj)
For i = 1, . . . , 2k do

if (8j 2 {1, . . . , q} : E (Ti ,Mj) = Cj) then return Ti

Observation: The E computations can be performed in parallel!

In 1993, Wiener designed a dedicated DES-cracking machine:

• $1 million

• 57 chips, each with many, many DES processors

• Finds key in 3.5 hours
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Increasing	Key-Length

Can	one	use	DES	to	design	a	new	blockcipher	
with	longer	effective	key-length?
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2DES
2DES

Block cipher 2DES : {0, 1}112 ⇥ {0, 1}64 ! {0, 1}64 is defined by

2DESK1K2(M) = DESK2(DESK1(M))

• Exhaustive key search takes 2112 DES computations, which is too
much even for machines

• Resistant to di↵erential and linear cryptanalysis.
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Meet-in-the-Middle	Attack
Meet-in-the-middle attack on 2DES

Suppose K1K2 is a target 2DES key and adversary has M,C such that

C = 2DESK1K2(M) = DESK2(DESK1(M))

Then
DES�1

K2
(C ) = DESK1(M)
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Meet-in-the-Middle	AttackMeet-in-the-middle attack on 2DES

Suppose DES�1
K2

(C ) = DESK1(M) and T1, . . . ,TN are all possible DES

keys, where N = 256.

K1 !

T1 DES(T1,M)

Ti DES(Ti ,M)

TN DES(TN ,M)
Table L

equal
 !

DES�1(T1,C ) T1

DES�1(Tj ,C ) Tj

DES�1(TN ,C ) TN

Table R

 K2

Attack idea:

• Build L,R tables

• Find i , j s.t. L[i ] = R[j ]

• Guess that K1K2 = TiTj

Mihir Bellare UCSD 51
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Translating	to	PseudocodeMeet-in-the-middle attack on 2DES

Let T1, . . . ,T256 denote an enumeration of DES keys.

adversary AMinM

M1  064; C1  Fn(M1)
for i = 1, . . . , 256 do L[i ] DES(Ti ,M1)
for j = 1, . . . , 256 do R[j ] DES�1(Tj ,C1)
S  { (i , j) : L[i ] = R[j ] }
Pick some (l , r) 2 S and return Tl k Tr

Attack takes about 257 DES/DES�1 computations and has
Adv

kr
2DES(AMinM) = 1.

This uses q = 1 and is unlikely to return the target key. For that one
should extend the attack to a larger value of q.

Mihir Bellare UCSD 52



3DES
3DES

Block ciphers

3DES3 : {0, 1}168 ⇥ {0, 1}64 ! {0, 1}64

3DES2 : {0, 1}112 ⇥ {0, 1}64 ! {0, 1}64

are defined by

3DES3K1 k K2 k K3
(M) = DESK3(DES

�1
K2

(DESK1(M))

3DES2K1 k K2
(M) = DESK2(DES

�1
K1

(DESK2(M))

Meet-in-the-middle attack on 3DES3 reduces its “e↵ective” key length to
112.
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3DES Security

Figure 1: Upper bound on adversarial advantage (proven security) verses log2 q (where q=number of queries)
for the cascade construction, assuming key length k = 56 and block length n = 64. Single encryption is the
leftmost curve, double encryption is the middle curve [3], and triple encryption in the rightmost curve, as
given by Theorem 4.

plotted as the rightmost curve of Figure 1 for DES parameters k = 56 and n = 64. In this case
an adversary must ask more than 277.79 queries to get advantage 0.5. Also plotted are the security
curves for single and double encryption, where the adversary must ask 255 and 255.5 queries to get
advantage 0.5. For a blockcipher with k = n = 64, the adversary must about 289 queries to get
advantage 0.5. As there are matching attacks and security bounds for single and double encryption,
our result proves that, in the ideal-cipher model, triple encryption is more secure than single or
double encryption.

Our proof for triple-encryption uses game-playing in an integral way, first to recast the ad-
vantage we wish to bound to a simpler game, and later to analyze that game by investigating
another one. Ultimately one is left with a game where conventional probabilistic reasoning (a
special-purpose occupancy bound) can be applied. Game playing does not replace conventional
probabilistic reasoning; it supplements it.

As for the cascade of ! ≥ 4 blockciphers, the maximal advantage in our attack model is no
worse than it is for triple encryption, so our result proves that cascade “works” (provides improved
security over single and double encryption) for all ! ≥ 3. It is an open question if security actually
increases with increasing !.

What is the game-playing technique? One complication in any discussion about game-
playing proofs is that the term means different things to different people. To some, a game-playing
proof in cryptography is any proof where one conceptualizes the adversary’s interaction with its
environment as a kind of game, the proof proceeding by stepwise refinement to that game. Viewed
in this way, game-playing proofs have their origin in the earliest hybrid arguments, which began
with Goldwasser and Micali [25] and Yao [50]. Bellare and Goldwasser provide an early example
of an intricate proof of this flavor, demonstrating the security of a signature scheme that uses
multiple cryptographic primitives [4]. In recent years Shoup has come to use such game-based
proofs extensively [1, 16–18, 43, 45, 46, 48], as have other authors.

We believe that game-playing proofs can be most effectively studied and systematized by im-
posing some discipline on the process and, in particular, regarding games as code. This viewpoint
begins in 1994 with Kilian and Rogaway [32]. Code-based game-playing soon became the favored
technique of Rogaway, who, along with coauthors, used it in many subsequent papers [6, 10, 12–
14, 27, 28, 40–42]. Code-based game-playing typically works like this. Suppose you wish to upper
bound the advantage of an adversary A in attacking some cryptographic construction. This is the
difference between the probability that A outputs 1 in each of two different “worlds.” First, write
some code—a game—that captures the behavior of world 0. The code initializes variables, inter-
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The proceedings version of this papers, entitled The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs, appears in Advances in Cryptology – Eurocrypt 2006, LNCS
vol. 4004, Springer, pp. 409–426, 2006. This is the full version of the paper.

Code-Based Game-Playing Proofs
and the Security of Triple Encryption

Mihir Bellare ∗ Phillip Rogaway †

November 27, 2008

(Draft 3.0)

Abstract

The game-playing technique is a powerful tool for analyzing cryptographic constructions.
We illustrate this by using games as the central tool for proving security of three-key triple-
encryption, a long-standing open problem. Our result, which is in the ideal-cipher model,
demonstrates that for DES parameters (56-bit keys and 64-bit plaintexts) an adversary’s maxi-
mal advantage is small until it asks about 278 queries. Beyond this application, we develop the
foundations for game playing, formalizing a general framework for game-playing proofs and dis-
cussing techniques used within such proofs. To further exercise the game-playing framework we
show how to use games to get simple proofs for the PRP/PRF Switching Lemma, the security
of the basic CBC MAC, and the chosen-plaintext-attack security of OAEP.
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We write Pr[AG sets bad ] or Pr[GA sets bad ] to refer to the probability that the flag bad is true
at the end of the execution of the adversary A with game G, namely at the point when the Finalize
procedure terminates. It is easy to see that, for any flag bad , identical-until-bad is an equivalence
relation on games. When we say that a sequence of games G1, G2, . . . are identical-until-bad , we
mean that each pair of games in the sequence are identical-until-bad .

The fundamental lemma. The fundamental lemma says that the advantage that an adversary
can obtain in distinguishing a pair of identical-until-bad games is at most the probability that its
execution sets bad in one of the games (either game will do).

Lemma 2 [Fundamental lemma of game-playing] Let G and H be identical-until-bad games and
let A be an adversary. Then

Adv(AG, AH) ≤ Pr[AG sets bad ] and (6)

Adv(GA, HA) ≤ Pr[GA sets bad ] . (7)

More generally, let G, H, I be identical-until-bad games. Then
∣∣Adv(AG, AH)

∣∣ ≤ Pr[AI sets bad ] and (8)
∣∣Adv(GA, HA)

∣∣ ≤ Pr[IA sets bad ] . (9)

Proof: Statement (6) follows from (7) by applying the latter to games G′, H ′ formed by replacing
the Finalize procedure of games G, H, respectively, with the trivial one that simply returns the
adversary output. Similarly, (8) follows from (9). We will now prove (7) and then derive (9) from
it.

We have required that the adversary and game always terminate in finite time, and also that there
is an integer that bounds the size of any set S in any random-assignment statement s

$← S executed
by the adversary or game. This means that there exists an integer b such that the execution of
G with A and the execution of H with A perform no more than b random-assignment statements,
each of these sampling from a set of size at most b. Let C = Coins(A, G, H) = [1 .. b!]b be the set
of b-tuples of numbers, each number between 1 and b!. We call C the coins for (A, G, H). For
c = (c1, . . . , cb) ∈ C, the execution of G with A on coins c is defined as follows: on the ith random-
assignment statement, call it X

$← S, if S = {a0, . . . , am−1} is nonempty and a0 < a1 < · · · < am−1

in lexicographic order then let X take on the value aci mod m. If S = ∅ then let X take on the
value undefined. This way to perform random-assignment statements is done regardless of whether
it is A or one of the procedures from G that is is performing the random-assignment statement.
Notice that m will divide b! and so if c is chosen at random from C then the mechanism above will
return a point X drawn uniformly from S, and also the return values for each random-assignment
statement are independent. For c ∈ C we let GA(c) denote the output of G when G is executed
with A on coins c. We define the execution of H with A on coins c ∈ C, and HA(c), similarly.

Let CGone = {c ∈ C : GA(c)⇒ 1} be the set of coins c ∈ C such that G outputs 1 when executed
with A on coins c. Partition CGone into CG bad

one and CG good
one , where CG bad

one is the set of all c ∈ CGone

such that the execution of G with A on coins c sets bad and CG good
one = CGone \ CGbad

one . Similarly
define CH one, CH bad

one and CH good
one . Observe that because games G and H are identical-until-bad ,

an element c ∈ C is in CG good
one iff it is in CH good

one . Thus these sets are equal and in particular have
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many cryptographic problems, than that which is encouraged by (just) defining random-variables,
writing conventional probability expressions, conditioning, and the like. Part of the power of the
approach stems from the fact that pseudocode is the most precise and easy-to-understand language
we know for describing the sort of probabilistic, reactive environments encountered in cryptography,
and by remaining in that domain to do ones reasoning you are better able to see what is happening,
manipulate what is happening, and validate the changes.

2 The PRP/PRF Switching Lemma

The lemma. The natural and conventional assumption to make about a blockcipher is that it
behaves as a pseudorandom permutation (PRP). However, it usually turns out to be easier to
analyze the security of a blockcipher-based construction assuming the blockcipher is secure as a
pseudorandom function (PRF). The gap is then bridged (meaning, a result about the security of
the construct assuming the blockcipher is a PRP is obtained) using the following lemma. In what
follows, we denote by AP ⇒ 1 the event that adversary A, equipped with an oracle P , outputs
the bit 1. Let Perm(n) be the set of all permutations on {0, 1}n and let Func(n) be the set of
all functions from {0, 1}n to {0, 1}n. We assume below that π is randomly sampled from Perm(n)
and ρ is randomly sampled from Func(n).

Lemma 1 [PRP/PRF Switching Lemma] Let n ≥ 1 be an integer. Let A be an adversary that
asks at most q oracle queries. Then

|Pr [Aπ⇒ 1 ]− Pr [Aρ⇒ 1 ]| ≤ q(q − 1)
2n+1

.

In this section we point to some subtleties in the “standard” proof of this widely used result, as
given for example in [5, 29, 30], showing in particular that one of the claims made in these proofs
is incorrect. We then show how to prove the lemma in a simple and correct way using games.
This example provides a gentle introduction to the game-playing technique and a warning about
perils of following ones intuition when dealing with conditional probability in provable-security
cryptography.

The standard proof. The standard analysis proceeds as follows. Let Coll (“collision”) be the
event that A, interacting with oracle ρ

$← Func(n), asks distinct queries X and X ′ that return the
same answer. Let Dist (“distinct”) be the complementary event. Now

Pr[Aπ⇒ 1] = Pr[Aρ⇒ 1 | Dist] (1)
since a random permutation is the same as a random function in which everything one obtains from
distinct queries is distinct. Letting x be this common value and y = Pr[Aρ⇒ 1 | Coll] we have

|Pr[Aπ⇒ 1]− Pr[Aρ⇒ 1]| = |x− x Pr[Dist]− y Pr[Coll]| = |x(1− Pr[Dist])− y Pr[Coll]|
= |x Pr[Coll]− y Pr[Coll]| = |(x− y) Pr[Coll]| ≤ Pr[Coll]

where the final inequality follows because x, y ∈ [0, 1]. One next argues that Pr[Coll] ≤ q(q −
1)/2n+1 and so the Switching Lemma follows.

Where is the error in the simple proof above? It’s at equation (1): it needn’t be the case that
Pr[Aπ⇒1] = Pr[Aρ⇒1 | Dist], and the sentence we gave by way of justification was mathematically
meaningless. Here is a simple example to demonstrate that Pr[Aπ ⇒ 1] can be different from
Pr[Aρ⇒1 | Dist]. Let n = 1 and consider the following adversary A with oracle P : {0, 1}→ {0, 1}:

procedure Adversary A
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Increasing	Block-Length?

We	will	later	see	that	we	would	also	like	a	
blockcipher	with	longer	block-length.

This	seems	much	harder	to	do	using	DES.

Motivated	the	search	for	a	new	blockcipher.



AES	History
AES

1998: NIST announces competition for a new block cipher

• key length 128

• block length 128

• faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6,
Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC,
Safer+, Deal

2001: NIST selects Rijndael to be AES.

Mihir Bellare UCSD 38

advanced encryption standard

So



AES	Constructionif
don to

need substitution
-

furor permutationW unwon
-

pekesw



AES	Security

Security of AES

Best known key-recovery attack [BoKhRe11] takes 2126.1 time, which is
only marginally better than the 2128 time of EKS.

There are attacks on reduced-round versions of AES as well as on its
sibling algorithms AES192, AES256. Many of these are “related-key”
attacks. There are also e↵ective side-channel attacks on AES such as
“cache-timing” attacks [Be05,OsShTr05].
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Limitations of Key 
Recovery

- malleability
- Stephen 's attack

Ex
.
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So What?So what?

Possible reaction: But DES, AES are not designed like E above, so why
does this matter?

Answer: It tells us that security against key recovery is not, as a
block-cipher property, su�cient for security of uses of the block cipher.

As designers and users we want to know what properties of a block cipher
give us security when the block cipher is used.
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Killer Application:  
Pseudo One-time Pad
pseudorandom generator
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