Foundations of Applied Cryptography
 Adam O'Neill

Based on http://cseweb.ucsd.edu/~mihir/cse207/

Notation

$\{0,1\}^{n}$ is the set of n-bit strings and $\{0,1\}^{*}$ is the set of all strings of finite length. By ε we denote the empty string.
If S is a set then $|S|$ denotes its size. Example: $\left|\{0,1\}^{2}\right|=4$.
If x is a string then $|x|$ denotes its length. Example: $|0100|=4$.
If $m \geq 1$ is an integer then let $\mathbf{Z}_{m}=\{0,1, \ldots, m-1\} . \quad \mathbb{Z}_{m}$
By $x{ }^{(\$)} S$ we denote picking an element at random from set S and assigning it to x. Thus $\operatorname{Pr}[x=s]=1 /|S|$ for every $s \in S$.

Functions

Let $n \geq 1$ be an integer. Let X_{1}, \ldots, X_{n} and Y be (non-empty) sets. By $f: X_{1} \times \cdots \times X_{n} \rightarrow Y$ we denote that f is a function that

- Takes inputs x_{1}, \ldots, x_{n}, where $x_{i} \in X_{i}$ for $1 \leq i \leq n$
- and returns an output $y=f\left(x_{1}, \ldots, x_{n}\right) \in Y$.

We call n the number of inputs (or arguments) of f. We call $X_{1} \times \cdots \times X_{n}$ the domain of f and Y the range of f.

Example: Define $f: \mathbf{Z}_{2} \times \mathbf{Z}_{3} \rightarrow \mathbf{Z}_{3}$ by $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right) \bmod 3$. This is a function with $n=2$ inputs, domain $\mathbf{Z}_{2} \times \mathbf{Z}_{3}$ and range \mathbf{Z}_{3}.

Permutations

Suppose $f: X \rightarrow Y$ is a function with one argument. We say that it is a permutation if

- $X=Y$, meaning its domain and range are the same set.
- There is an inverse function $f^{-1}: Y \rightarrow X$ such that $f^{-1}(f(x))=x$ for all $x \in X$.
This means f must be one-to-one and onto: for every $y \in Y$ there is a unique $x \in X$ such that $f(x)=y$.

EUnctionfanticies

A family of functions (also called a function family) is a two-input function $F:$ Keys $\times \mathrm{D} \rightarrow \mathrm{R}$. For $K \in$ Keys we let $F_{K}: \mathrm{D} \rightarrow \mathrm{R}$ be defined by $F_{K}(x)=F(K, x)$ for all $x \in \mathrm{D}$.

- The set Keys is called the key space. If Keys $=\{0,1\}^{k}$ we call k the key length.
- The set D is called the input space. If $D=\{0,1\}^{\ell}$ we call ℓ the input length.
- The set R is called the output space or range. If $R=\{0,1\}^{L}$ we call L the output length.
Example: Define $F: \mathbf{Z}_{2} \times \mathbf{Z}_{3} \rightarrow \mathbf{Z}_{3}$ by $F(K, x)=(K \cdot x) \bmod 3$.
- This is a family of functions with domain $\mathbf{Z}_{2} \times \mathbf{Z}_{3}$ and range \mathbf{Z}_{3}.
- If $K=1$ then $F_{K}: \mathbf{Z}_{3} \rightarrow \mathbf{Z}_{3}$ is given by $F_{K}(x)=x \bmod 3$.

What is a blockcipher?

Let E : Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a family of functions. We say that E is a block cipher if

- $R=D$, meaning the input and output spaces are the same set.
- $E_{K}: \mathrm{D} \rightarrow \mathrm{D}$ is a permutation for every key $K \in$ Keys, meaning has an inverse $E_{K}^{-1}: \mathrm{D} \rightarrow \mathrm{D}$ such that $E_{K}^{-1}\left(E_{K}(x)\right)=x$ for all $x \in \mathrm{D}$.
We let E^{-1} : Keys $\times \mathrm{D} \rightarrow \mathrm{D}$, defined by $E^{-1}(K, y)=E_{K}^{-1}(y)$, be the inverse block cipher to E.

In practice we want that E, E^{-1} are efficiently computable.
If Keys $=\{0,1\}^{k}$ then k is the key length as before. If $D=\{0,1\}^{\ell}$ we call ℓ the block length.

Examples

$$
\begin{aligned}
& \text { Keys }=\{0,1\}^{k} \\
& D=\{0,1\}^{k} \\
& R=\{0,1\}^{k} \\
& F_{k}(x)=K \oplus x \\
& K \oplus x_{1} \oplus K \oplus x_{2}=x_{1} \oplus x_{2} \\
& O^{k} \oplus K=K C c
\end{aligned}
$$

Exercise

Above we had given the following example of a family of functions: $F: \mathbf{Z}_{2} \times \mathbf{Z}_{3} \rightarrow \mathbf{Z}_{3}$ defined by $F(K, x)=(K \cdot x) \bmod 3$.

Question: Is F a block cipher? Why or why not?

Exercise

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{D}$ be a block cipher. Is E a permutation?

- YES
- NO
- QUESTION DOESN'T MAKE SENSE
- WHO CARES?

Baby encryption scheme
 Kerkoff's
 Blockcipher Usage

Let $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ be a block cipher. It is considered public. In typical usage

- $K \leftarrow^{\S}\{0,1\}^{k}$ is known to parties S, R, but not given to adversary A.
- S, R use E_{K} for encryption

Leads to security requirements like: Hard to get K from y_{1}, y_{2}, \ldots; Hard to get x_{i} from $y_{i} ; \ldots$

Shannon’s Design Criterion (Informal)

Shannon’s Design Criterion (Informal)

- Confusion: Each bit of the output should depend on many bits of the input

Shannon’s Design Criterion (Informal)

- Confusion: Each bit of the output should depend on many bits of the input
- Diffusion: Changing one bit of the input should "re-randomize" the entire output (avalanche effect)

Shannon's Design Criterion (Informal)

- Confusion: Each bit of the output should depend on many bits of the input
- Diffusion: Changing one bit of the input should "re-randomize" the entire output (avalanche effect)
- Not really solved (for many input-outputs) until much later: Data Encryption Standard (DES)

History of DES

1972 - NBS (now NIST) asked for a block cipher for standardization 1974 - IBM designs Lucifer
Lucifer eventually evolved into DES.
Widely adopted as a standard including by ANSI and American Bankers association

Used in ATM machines
Replaced (by AES) in 2001.

DES Parameters

Key Length $k=56$
Block length $\ell=64$
So,

$$
\begin{aligned}
& \text { DES : }\{0,1\}^{56} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64} \\
& \text { DES }^{-1}:\{0,1\}^{56} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64}
\end{aligned}
$$

DES Construction

Key-Recovery Attacks

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a block cipher known to the adversary A.

- Sender Alice and receiver Bob share a target key $K \in$ Keys.
- Alice encrypts M_{i} to get $C_{i}=E_{K}\left(M_{i}\right)$ for $1 \leq i \leq q$, and transmits C_{1}, \ldots, C_{q} to Bob
- The adversary gets C_{1}, \ldots, C_{q} and also knows M_{1}, \ldots, M_{q}
- Now the adversary wants to figure out K so that it can decrypt any future ciphertext C to recover $M=E_{K}^{-1}(C)$.
\rightarrow Question: Why do we assume A knows M_{1}, \ldots, M_{q} ?
- Answer: Reasons include a posteriori revelation of data, a priori
\oplus
Γ knowledge of context, and just being conservative!

Security Metrics

We consider two measures (metrics) for how well the adversary does at this key recovery task:

- Target key recovery (TKR)
- Consistent key recovery (KR)

In each case the definition involves a game and an advantage.
The definitions will allow E to be any family of functions, not just a block cipher.

The definitions allow A to pick, not just know, M_{1}, \ldots, M_{q}. This is called a chosen-plaintext attack.
$k_{\text {keys }}=\{1,2\} \quad D=\{1,2\} \quad p^{2}=\{1,2\} \quad F_{k}(x)=x$

Consistent Keys (1,1) $(2,2)$

Def: Let E : Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a family of functions. We say that key $K^{\prime} \in$ Keys is consistent with $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$ if $E\left(K^{\prime}, M_{i}\right)=C_{i}$ for all $1 \leq i \leq q$.

Example: For $E:\{0,1\}^{2} \times\{0,1\}^{2} \rightarrow\{0,1\}^{2}$ defined by

	00	01	10	11
00	11	00	10	01
01	11	10	01	00
10	10	11	00	01
11	11	00	10	01

The entry in row K, column M
is $E(K, M)$.

- Key 00 is consistent with $(11,01)$
- Key 10 is consistent with $(11,01)$
- Key 00 is consistent with $(01,00),(11,01)$
- Key 11 is consistent with $(01,00),(11,01)$

Consistent Key Recovery

Let E : Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a family of functions, and A an adversary.
Game KR_{E}
procedure Initialize
procedure Finalize $\left(K^{\prime}\right)$
$K^{\prime} E A$
win \leftarrow true
For $j=1, \ldots, i$ do
If $E\left(K^{\prime}, M_{j}\right) \neq C_{j}$ then win \leftarrow false
If $M_{j} \in\left\{M_{1}, \ldots, M_{j-1}\right\}$ then win \leftarrow false
Return win
Definition: $\operatorname{Adv}_{E}^{\mathrm{kr}}(A)=\operatorname{Pr}\left[\mathrm{KR}_{E}^{A} \Rightarrow\right.$ true $]$.

The game returns true if (1) The key K^{\prime} returned by the adversary is consistent with $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$, and (2) M_{1}, \ldots, M_{q} are distinct.
A is a q-query adversary if it makes q distinct queries to its $\mathbf{F n}$ oracle.

Target Key Recovery Game

Game TKR_{E}	procedure $\operatorname{Fn}(M)$
procedure Initialize	Return $E(K, M)$
$K \leftarrow$ Keys	procedure Finalize $\left(K^{\prime}\right)$
	Return $\left(K=K^{\prime}\right)$

$$
\text { Definition: } \mathbf{A d v}_{E}^{\mathrm{tkr}}(A)=\operatorname{Pr}\left[\mathrm{TKR}_{E}^{A} \Rightarrow \operatorname{true}\right] .
$$

- First Initialize executes, selecting target key $K \stackrel{\oiint}{\leftarrow}$ Keys, but not giving it to A.
- Now A can call (query) Fn on any input $M \in \mathrm{D}$ of its choice to get back $C=E_{K}(M)$. It can make as many queries as it wants.
- Eventually A will halt with an output K^{\prime} which is automatically viewed as the input to Finalize
- The game returns whatever Finalize returns
- The tkr advantage of A is the probability that the game returns true

Exercise: KR of Feistel
Reductions
Suppose whs if E is TKR-secure then Feistel [E] is TKR-securel

provt. Assume there is an effinert A with nin Tkk-adruntuge a ganst Feistel [E]. Then \exists efficient TKR-adrerciog B with hogh adrais il rejar

Algorithm $13^{\operatorname{Fr}(\cdot)}$
Run A
When A malues Fu avery
x do: \{
"womt to gire $E_{k}[x]$
$y_{1} \| y_{2} \longleftarrow F_{n}\left(\theta^{2} \| x\right)$
ret y_{2} fo A
Untit A outpates ${ }^{\prime} 1$
net k^{\prime}
TK\& Reductions

A relation

Fact: Suppose that, in game KR_{E}, adversary A makes queries M_{1}, \ldots, M_{q} to $\mathbf{F n}$, thereby defining C_{1}, \ldots, C_{q}. Then the target key K is consistent with $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$.

Proposition: Let E be a family of functions. Let A be any adversary all of whose Fn queries are distinct. Then

$$
\mathbf{A d v}_{E}^{\mathrm{kr}}(A) \geq \mathbf{A d v}_{E}^{\mathrm{tkr}}(A)
$$

Why? If the K^{\prime} that A returns equals the target key K, then, by the Fact, the input-output examples $\left(M_{1}, C_{1}\right), \ldots,\left(M_{q}, C_{q}\right)$ will of course be consistent with K^{\prime}.
generic
Exhaustive Key Search

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a function family with Keys $=\left\{T_{1}, \ldots, T_{N}\right\}$ and $\mathrm{D}=\left\{x_{1}, \ldots, x_{d}\right\}$. Let $1 \leq q \leq d$ be a parameter.
adversary A_{eks}^{q}
For $j=1, \ldots, q$ do $M_{j} \leftarrow x_{j} ; C_{j} \leftarrow \mathbf{F n}\left(M_{j}\right)$
For $i=1, \ldots, N$ do
if $\left(\forall j \in\{1, \ldots, q\}: E\left(T_{i}, M_{j}\right)=C_{j}\right)$ then return T_{i}
Question: What is $\boldsymbol{A d v}_{E}^{\mathrm{kr}}\left(A_{\text {eks }}^{\ell}\right)$? $=1$ 。

Exhaustive Key Search

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a function family with Keys $=\left\{T_{1}, \ldots, T_{N}\right\}$ and $\mathrm{D}=\left\{x_{1}, \ldots, x_{d}\right\}$. Let $1 \leq q \leq d$ be a parameter.
adversary $A_{\text {eks }}$

$$
E_{k}(\langle\nu\rangle)=\langle i\rangle \quad \forall i \in\left\{d_{1}, \cdots, q\right\}
$$

For $j=1, \ldots, q$ do $M_{j} \leftarrow x_{j} ; C_{j} \leftarrow \mathbf{F n}\left(M_{j}\right)$
For $i=1, \ldots, N$ do
if $\left(\forall j \in\{1, \ldots, q\}: E\left(T_{i}, M_{j}\right)=C_{j}\right)$ then return T_{i}
Question: What is $\mathbf{A d v}_{E}^{\mathrm{tkr}}\left(A_{\text {eks }}\right)$?

Exhaustive Key Search

Let $E:$ Keys $\times \mathrm{D} \rightarrow \mathrm{R}$ be a function family with Keys $=\left\{T_{1}, \ldots, T_{N}\right\}$ and $\mathrm{D}=\left\{x_{1}, \ldots, x_{d}\right\}$. Let $1 \leq q \leq d$ be a parameter.
adversary $A_{\text {eks }}$

$$
\begin{aligned}
& \text { For } j=1, \ldots, q \text { do } M_{j} \leftarrow x_{j} ; C_{j} \leftarrow \mathbf{F n}\left(M_{j}\right) \\
& \text { For } i=1, \ldots, N \text { do } \\
& \quad \text { if }\left(\forall j \in\{1, \ldots, q\}: E\left(T_{i}, M_{j}\right)=C_{j}\right) \text { then return } T_{i}
\end{aligned}
$$

Question: What is $\mathbf{A d v}_{E}^{\mathrm{tkr}}\left(A_{\text {eks }}\right)$?

Answer: Hard to say! Say $K=T_{m}$ but there is a $i<m$ such that $E\left(T_{i}, M_{j}\right)=C_{j}$ for $1 \leq j \leq q$. Then T_{i}, rather than K, is returned.

In practice if $E:\{0,1\}^{k} \times\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$ is "real" block cipher and $q>k / \ell$, we expect that $\operatorname{Adv}_{E}^{\text {tr }}\left(A_{\text {eks }}\right)$ is close to $\begin{aligned} & \text { because } K \text { is likely the }\end{aligned}$ only key consistent with the input-output examples.

Exhaustive Key-Search on DES

DES can be computed at 1.6 Gbits/sec in hardware.

DES plaintext $=64$ bits
Chip can perform $\left(1.6 \times 10^{9}\right) / 64=2.5 \times 10^{7}$ DES computations per second

Expect $A_{\text {eks }}(q=1)$ to succeed in 2^{55} DES computations, so it takes time

$$
\begin{aligned}
\frac{2^{55}}{2.5 \times 10^{7}} & \approx 1.4 \times 10^{9} \text { seconds } \\
& \approx 45 \text { years! }
\end{aligned}
$$

Key Complementation $\Rightarrow 22.5$ years
But this is prohibitive. Does this mean DES is secure?

Differential \& Linear cryptanalysis

non-gcheric
Exhaustive key search is a generic attack: Did not attempt to "look inside" DES and find/exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage close to one and running time smaller than 2^{56} DES computations:

Attack	when	q, running time
Differential cryptanalysis	1992	2^{47}
Linear cryptanalysis	1993	2^{44}

An observation

Observation: The E computations can be performed in parallel!
In 1993, Wiener designed a dedicated DES-cracking machine:

- \$1 million
- 57 chips, each with many, many DES processors
- Finds key in 3.5 hours
$a l l b$ $E:$ Increasing Key-Length
$k_{1} \| k_{2}$
Can one use DES to design a new blockcipher with longer effective key-length?

\rightarrow Adversary $A^{\text {Enl. }}$
Let $x_{1}=x_{111}$ be a a bitrong

$$
y_{1} \leftarrow F_{n}\left(x_{1}\right) ; \text { posse as } y_{11} \text { ll y } y_{12}
$$

Let K_{1}, \ldots, K_{256}
be an enumeration of DES kens

$$
\begin{aligned}
& \text { DES keys } \\
& \text { For } i=1 \text { to } 2^{36} \text { do: }\{ \\
& \text { If } \left.y_{11}=D E S_{k_{i}}\left(x_{11}\right)\right\} \\
& \left.K_{1}^{*} \sim K_{i} ; \text { brock }\right\} \\
& \text { Fur } \left.i=1 \text { to } 2^{56} \text { do: }\right\} \\
& \text { Ff } y_{12}=D E K_{i}\left(x_{12}\right) \\
& K_{2}^{*} \approx K_{i} ; \text { brook } \\
& \text { ret } K_{1}^{*} \| K_{2}^{*}
\end{aligned}
$$

2DES

Block cipher 2DES : $\{0,1\}^{112} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64}$ is defined by

$$
2 D E S_{K_{1} K_{2}}(M)=D E S_{K_{2}}\left(D E S_{K_{1}}(M)\right)
$$

2DES

Block cipher 2DES : $\{0,1\}^{112} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64}$ is defined by

$$
2 D E S_{K_{1} K_{2}}(M)=D E S_{K_{2}}\left(D E S_{K_{1}}(M)\right)
$$

- Exhaustive key search takes 2^{112} DES computations, which is too much even for machines
- Resistant to differential and linear cryptanalysis.

Meet-in-the-Middle Attack

Suppose $K_{1} K_{2}$ is a target 2DES key and adversary has M, C such that

$$
C=2 D E S_{K_{1} K_{2}}(M)=D E S_{K_{2}}\left(D E S_{K_{1}}(M)\right)
$$

Then

$$
D E S_{K_{2}}^{-1}(C)=D E S_{K_{1}}(M)
$$

Meet-in-the-Middle Attack

Suppose $D E S_{K_{2}}^{-1}(C)=D E S_{K_{1}}(M)$ and T_{1}, \ldots, T_{N} are all possible DES keys, where $N=2^{56}$.

- Build L,R tables
- Find i, j s.t. $L[i]=R[j]$
- Guess that $K_{1} K_{2}=T_{i} T_{j}$

$$
T_{1}^{*} \| T_{2}^{*}
$$

Translating to Pseudocode

Let $T_{1}, \ldots, T_{2^{56}}$ denote an enumeration of DES keys.
adversary $A_{\text {MinM }}$
$M_{1} \leftarrow 0^{64} ; C_{1} \leftarrow \mathbf{F n}\left(M_{1}\right)$
for $i=1, \ldots, 2^{56}$ do $L[i] \leftarrow \operatorname{DES}\left(T_{i}, M_{1}\right)$
for $j=1, \ldots, 2^{56}$ do $R[j] \leftarrow \operatorname{DES}^{-1}\left(T_{j}, C_{1}\right)$
$S \leftarrow\{(i, j): L[i]=R[j]\}$
Pick some $(I, r) \in S$ and return $T_{I} \| T_{r}$
Attack takes about 2^{57} DES/DES ${ }^{-1}$ computations and has
$\operatorname{Adv}_{2 \mathrm{DES}}^{\mathrm{kr}}\left(A_{\mathrm{MinM}}\right)=1$.
This uses $q=1$ and is unlikely to return the target key. For that one should extend the attack to a larger value of q.

3DES

Block ciphers

$$
\begin{aligned}
& \text { 3DES3: }\{0,1\}^{168} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64} \\
& \text { 3DES2 : }\{0,1\}^{112} \times\{0,1\}^{64} \rightarrow\{0,1\}^{64}
\end{aligned}
$$

are defined by

$$
\begin{aligned}
& 3 \operatorname{DES}_{K_{1}\left\|K_{2}\right\| K_{3}}(M)=\operatorname{DES}_{K_{3}}\left(\operatorname{DES}_{K_{2}}^{-1}\left(\operatorname{DES}_{K_{1}}(M)\right)\right. \\
& 3 \operatorname{DES}_{K_{1} \| K_{2}}(M)=\operatorname{DES}_{K_{2}}\left(\operatorname{DES}_{K_{1}}^{-1}\left(\operatorname{DES}_{K_{2}}(M)\right)\right.
\end{aligned}
$$

Meet-in-the-middle attack on 3DES3 reduces its "effective" key length to 112.

underlying blockcipher is a random permutation 3DES Security "ideal cipher model

Figure 1: Upper bound on adversarial advantage (proven security) verses $\log _{2} q$ (where $q=$ number of queries) for the cascade construction, assuming key length $k=56$ and block length $n=64$. Single encryption is the leftmost curve, double encryption is the middle curve [3], and triple encryption in the rightmost curve, as given by Theorem 4.
bellare and rogarray

Code-Based Game-Playing Proofs and the Security of Triple Encryption

Mihir Bellare * Phillip Rogaway ${ }^{\dagger}$

November 27, 2008
(Draft 3.0)

game-playing

The fundamental lemma. The fundamental lemma says that the advantage that an adversary can obtain in distinguishing a pair of identical-until-bad games is at most the probability that its execution sets bad in one of the games (either game will do).

Lemma 2 [Fundamental lemma of game-playing] Let G and H be identical-until-bad games and let A be an adversary. Then

$$
\begin{align*}
\operatorname{Adv}\left(A^{G}, A^{H}\right) & \leq \operatorname{Pr}\left[A^{G} \text { sets bad }\right] \text { and } \tag{6}\\
\operatorname{Adv}\left(G^{A}, H^{A}\right) & \leq \operatorname{Pr}\left[G^{A} \text { sets bad }\right] \tag{7}
\end{align*}
$$

More generally, let G, H,I be identical-until-bad games. Then

$$
\begin{align*}
\left|\operatorname{Adv}\left(A^{G}, A^{H}\right)\right| & \leq \operatorname{Pr}\left[A^{I} \text { sets bad }\right] \text { and } \tag{8}\\
\left|\operatorname{Adv}\left(G^{A}, H^{A}\right)\right| & \leq \operatorname{Pr}\left[I^{A} \text { sets bad }\right] . \tag{9}
\end{align*}
$$

bad true bade true

2 The PRP/PRF Switching Lemma

ρ The lemma. The natural and conventional assumption to make about a blockcipher is that it behaves as a pseudorandom permutation (PRP). However, it usually turns out to be easier to analyze the security of a blockcipher-based construction assuming the blockcipher is secure as a pseudorandom function (PRF). The gap is then bridged (meaning, a result about the security of the construct assuming the blockcipher is a PRP is obtained) using the following lemma. In what follows, we denote by $A^{P} \Rightarrow 1$ the event that adversary A, equipped with an oracle P, outputs the bit 1. Let $\operatorname{Perm}(n)$ be the set of all permutations on $\{0,1\}^{n}$ and let Fund (n) be the set of all functions from $\{0,1\}^{n}$ to $\{0,1\}^{n}$. We assume below that π is randomly sampled from $\operatorname{Perm}(n)$ and ρ is randomly sampled from $\operatorname{Func}(n)$.

Lemma 1 [PRP/PRF Switching Lemma] Let $n \geq 1$ be an integer. Let A be an adversary that asks at most q oracle queries. Then

$$
\left|\operatorname{Pr}\left[A^{\pi} \Rightarrow 1\right]-\operatorname{Pr}\left[A^{\rho} \Rightarrow 1\right]\right| \leq \frac{q(q-1)}{2^{n+1}} .1 \text { qi: of quenes }
$$

Proof of Lemma
Consider the following Agr games: gave game

When A makes query
assume
adv doess.t
make same
query twice:

all el cements of $\{0,1\}^{n}$ not in the table Correcting line.

$$
\operatorname{Pr}\left[G_{0} \Rightarrow 1\right]-\operatorname{Pr}\left[G_{1}=21\right] \leq \operatorname{Pr}\left[G_{1} \operatorname{sel}(-\operatorname{BAr}]\right.
$$

Let COLi be event st. There is a collision on i-th query.

By union bund

$$
\begin{aligned}
& \operatorname{Pr}[B A D 13 \text { set }] \leq \sum_{i=1}^{q} \operatorname{Pr}\left[O L L_{i}\right] . \\
& P_{1}\left[\operatorname{coc} L_{i}\right] \triangleq \frac{i-1}{2^{n}} \\
& \Rightarrow \operatorname{Pr}\left[\mathrm{BOD}_{\mathrm{a}} \mathrm{set}\right] \\
& \leqslant \sum_{i=q}^{q} \frac{i-1}{2^{n}}=\frac{q(q-1)}{2^{n+1}} \\
& \begin{array}{l}
\text { sum of intent } \\
\text { first } n \text { normut } \\
\text { for }
\end{array}
\end{aligned}
$$

Increasing Block-Length?

We will later see that we would also like a blockcipher with longer block-length.

Increasing Block-Length?

We will later see that we would also like a blockcipher with longer block-length.

Increasing Block-Length?

We will later see that we would also like a blockcipher with longer block-length.

This seems much harder to do using DES.

Increasing Block-Length?

We will later see that we would also like a blockcipher with longer block-length.

This seems much harder to do using DES.

Increasing Block-Length?

We will later see that we would also like a blockcipher with longer block-length.

This seems much harder to do using DES.

Motivated the search for a new blockcipher.
adranced enoryption standerd

AES History

1998: NIST announces competition for a new block cipher

- key length 128
- block length 128
- faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6, Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC, Safer+, Deal

2001: NIST selects Rijndael to be AES.

AES Construction

generic vs hon-yeneric AES Security

Best known key-recovery attack [BoKhRe11] takes $2^{126.1}$ time, which is only marginally better than the 2^{128} time of EKS.

There are attacks on reduced-round versions of AES as well as on its sibling algorithms AES192, AES256. Many of these are "related-key" attacks. There are also effective side-channel attacks on AES such as "cache-timing" attacks [Be05,OsShTr05].

Limitations of Key Recovery

- malleability
- Stephen's attuale

Ex. pad (annecour key)
Ex. Identity block -cipher

$$
E_{k}(\underset{\sim}{x})=x
$$

So What?

Possible reaction: But DES, AES are not designed like E above, so why does this matter?

Answer: It tells us that security against key recovery is not, as a block-cipher property, sufficient for security of uses of the block cipher.
\Longleftrightarrow As designers and users we want to know what properties of a block cipher give us security when the block cipher is used.

Killer Application: Pseudo One-time Pad

- Pseudo random generator ($1 R G$) $G:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$ want $G(\xi) \approx R_{10(5)}$
Veffcient where $R_{1 \times 1}$ is random on $\{0.1\}^{1 \times 1}$

$$
\operatorname{Pr}[D(G(s)) \Rightarrow 1]-\operatorname{Pr}\left[D \left(R_{16 c s n) \neq 1]}\right.\right. \text { small }
$$

$\xrightarrow{\text { small }}$

* can compress key for or a a sing o.

$$
\operatorname{PRG}(K)=\cdot E_{K}(\langle 1\rangle) \| \ldots 川 E_{K}(\langle n\rangle)
$$

want to justify this usage.

