
Digital Signatures
Adam O’Neill

based on http://cseweb.ucsd.edu/~mihir/cse207/

Signing by hand
Signing by hand

Pay Bob $100

AliceCosmo

COSMO ALICE

Alice

ALICE

· · ·

· · ·

=?

yes

pay Bob

no

Don’t

Bank

2 / 1

Signing electronicallySigning electronically

ALICE
Pay Bob $100InternetBank

101 · · · 1

AlicescanSIGFILE
︸ ︷︷ ︸

Problem: signature is easily copied

Inference: signature must be a function of the message that only Alice
can compute

3 / 1

Digital signatures

• A digital signature will have the following attributes:

Digital signatures

• A digital signature will have the following attributes:

• Even the bank cannot forge

Digital signatures

• A digital signature will have the following attributes:

• Even the bank cannot forge

• Verifier does not need to share a key with signer or
have any secrets at all

Digital signatures

• A digital signature will have the following attributes:

• Even the bank cannot forge

• Verifier does not need to share a key with signer or
have any secrets at all

• Public keys of signers distributed as for encryption

Digital signaturesWhat about a MAC?

Let Bank and Alice share a key K

ALICE
Pay Bob $100 MAC K

T

Internet

Bank

A digital signature will have additional attributes:

• Even the bank cannot forge

• Verifier does not need to share a key with signer or, indeed, have any
secrets

Mihir Bellare UCSD 5

Digital signatures

A digital signature scheme DS = (K,S,V) is a triple of algorithms where

A
V

M

�0

M
0

�

0/1

S

pk

sk

K

Correctness: V(pk,M,S(sk ,M)) = 1 with probability one for all M.

Mihir Bellare UCSD 6

Usage

Step 1: key generation
Alice lets (pk, sk) $

 K and stores sk (securely).

Step 2: pk dissemination
Alice enables any potential verifier to get pk.

Step 3: sign
Alice can generate a signature � of a document M using sk .

Step 4: verify
Anyone holding pk can verify that � is Alice’s signature on M.

Mihir Bellare UCSD 7

Step 1 Example : RSA Key generation with openssl

Mihir Bellare UCSD 8

UsageUsage

Step 1: key generation
Alice lets (pk , sk) $←K and stores sk (securely).

Step 2: pk dissemination
Alice enables any potential verifier to get pk .

Step 3: sign
Alice can generate a signature σ of a document M using sk .

Step 4: verify
Anyone holding pk can verify that σ is Alice’s signature on M.

6 / 1

Security of a DS SchemeSecurity of a DS scheme

Possible adversary goals

• find sk

• Forge

Possible adversary abilities

• can get pk

• known message attack

• chosen message attack

9 / 1

Security of a DS SchemeSecurity of a DS scheme

Interpretation: adversary cannot get a verifier to accept σ as Alice’s
signature of M unless Alice has really previously signed M, even if
adversary can obtain Alice’s signatures on messages of the adversary’s
choice.

As with MA schemes, the definition does not require security against
replay. That is handled on top, via counters or time stamps.

11 / 1

UF-CMAFormalization: UF-CMA

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game UF-CMADS

procedure Initialize
(pk , sk) $←K; S ← ∅
return pk

procedure Finalize(M,σ)
d ← V(pk ,M,σ)
return (d = 1 ∧M /∈ S)

procedure Sign(M):

σ $← S(sk ,M)
S ← S ∪ {M}
return σ

The uf-cma advantage of A is

Advuf-cma
DS (A) = Pr

[

UF-CMAA
DS ⇒ true

]

12 / 1

Strong unforgeabilityStrong unforgeability

Adversary can’t get receiver to accept σ as Alice’s signatre on M unless

• UF: Alice previously signed M

• SUF: Alice previously signed M and produced signature σ

Adversary wins if it gets receiver to accept σ as Alice’s signature on M

and

• UF: Alice did not previously sign M

• SUF: Alice may have previously signed M but the signature(s)
produced were different from σ

14 / 1

SUF-CMAFormalization: SUF-CMA

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game SUF-CMADS

procedure Initialize:
(pk , sk) $←K; S ← ∅
return pk

procedure Finalize(M,σ):

return V(pk ,M,σ) = 1 and (M,σ) /∈ S

procedure Sign(M):

σ $← S(sk ,M)
S ← S ∪ {(M,σ)}
return σ

The suf-cma advantage of A is

Advsuf-cma
DS (A) = Pr

[

SUF-CMAA
DS ⇒ true

]

15 / 1

RSA signaturesRSA signatures

Fix an RSA generator Krsa and let the key generation algorithm be

Alg K
(N, p, q, e, d) $←Krsa

pk ← (N, e); sk ← (N, d)
return pk , sk

We will use these keys in all our RSA-based schemes and only describe
signing and verifying.

16 / 1

Idea
Plain RSA signatures: Idea

Signer pk = (N, e) and sk = (N, d)

Let f , f −1: Z∗
N → Z∗

N be the RSA function (encryption) and inverse
(decryption) defined by

f (x) = xe mod N and f −1(y) = yd mod N .

Sign by “decrypting” the message y :

x = SN,d (y) = f −1(y) = yd mod N

Verify by “encrypting” signature x :

VN,e(x) = 1 iff f (x) = y iff xe ≡ y mod N .

17 / 1

Plain RSA signaturesPlain RSA signature scheme

Signer pk = (N, e) and sk = (N, d)

Alg SN,d (y):

x ← yd mod N

return x

Alg VN,e(y , x):

if xe ≡ y (mod N) then return 1
return 0

Here y ∈ Z∗
N is the message and x ∈ Z∗

N is the signature.

18 / 1

Attacks

Historical perspective
DH signatures

When Diffie and Hellman introduced public-key cryptography they
suggested the DS scheme

S(sk ,M) = D(sk ,M)

V(pk ,M,σ) = 1 iff E (pk ,σ) = M

where (E ,D) is a public-key encryption scheme.

But

• This views public-key encryption as deterministic; they really mean
trapdoor permutations in our language

• Plain RSA is an example

• It doesn’t work!

Nonetheless, many textbooks still view digital signatures this way.

23 / 1

Another issue
Other issues

In plain RSA, the message is an element of Z∗
N . We really want to be

able to sign strings of arbitrary length.

24 / 1

Hash-based RSA sigs
Throwing in a hash function

Let H: {0, 1}∗ → Z∗
N be a public hash function and let pk = (N, e) and

sk = (N, d) be the signer’s keys. The hash-then-decrypt scheme is

Alg SN,d (M):
y ← H(M)
x ← yd mod N

return x

Alg VN,e(M, x):
y ← H(M)
if xe ≡ y (mod N) then return 1
return 0

Succinctly,
SN,d(M) = H(M)d mod N

Different choices of H give rise to different schemes.

25 / 1

Hash function requirements
What we need from H

Suppose an adversary can find a collision for H, meaning distinct
M1,M2 with H(M1) = H(M2).

Then
H(M1)

d ≡ H(M2)
d (mod N)

meaning M1,M2 have the same signature.

So forgery is easy:

• Obtain from signing oracle the signature x1 = H(M1)d mod N of
M1

• Output M2 and its signature x1

Conclusion: H needs to be collision-resistant

26 / 1

Preventing previous attacksPreventing previous attacks

For plain RSA

• 1 is a signature of 1

• SN,d(y1y2) = SN,d(y1) · SN,d (y2)

But with hash-then-decrypt RSA

• H(1)d !≡ 1 so 1 is not a signature of 1

• SN,d(M1M2) = H(M1M2)d !≡ H(M1)d · H(M2)d (mod N)

A “good” choice of H prevents known attacks.

27 / 1

RSA PKCS #1 sigs
RSA PKCS#1 signatures

Signer has pk = (N, e) and sk = (N, d) where |N| = 1024. Let
h: {0, 1}∗ → {0, 1}160 be a hash function (like SHA-1) and let
n = |N|8 = 1024/8 = 128.

Then
HPKCS(M) = 00||01||FF || . . . ||FF

︸ ︷︷ ︸

n−22

|| h(M)
︸ ︷︷ ︸

20

And
SN,d (M) = HPKCS(M)d mod N

Then

• HPKCS is CR as long as h is CR

• HPKCS(1) "≡ 1 (mod N)

• HPKCS(y1y2) "≡ HPKCS (y1) · HPKCS (y2) (mod N)

• etc
28 / 1

Security
Does 1-wayness prevent forgery?

Forger’s goal

A

N, e

yd mod N

A

M

H y

y here need not be random

Inverter’s goal

y

yd mod NA
N, e

y here is random

Problem: 1-wayness of RSA does not imply hardness of computing
yd mod N if y is not random

29 / 1

The Problem
HPKCS revisited

Recall
HPKCS (M) = 00||01||FF || . . . ||FF ||h(M)

But first n − 20 = 108 bytes out of n are fixed so HPKCS (M) does not
look “random” even if h is a RO or perfect.

We cannot hope to show RSA PKCS#1 signatures are secure assuming
(only) that RSA is 1-wayno matter what we assume about h and even if
h is a random oracle.

30 / 1

Goal
Goal

We will validate the hash-then-decrypt paradigm

SN,d(M) = H(M)d mod N

by showing the signature scheme is provably UF-CMA assuming RSA is
1-way as long as H is a RO.

This says the paradigm has no “structural weaknesses” and we should
be able to get security with “good” choices of H.

31 / 1

Choice of hashChoice of H

A “good” choice of H might be something like

H(M) = first n bytes of

SHA1(1 ||M) || SHA1(2 ||M) || · · · || SHA1(11 ||M)

32 / 1

Full-Domain Hash
Full-Domain-Hash (FDH) [BR96]

Signer pk = (N, e) and sk = (N, d)

algorithm SH
N,d (M)

return H(M)d mod N

algorithm VH
N,e(M, x)

if xe ≡ H(M) (mod N) then return 1
else return 0

Here H: {0, 1}∗ → Z∗
N is a random oracle.

33 / 1

UF-CMA in the RO Model
UF-CMA in RO model

Let DS = (K,S,V) be a signature scheme and A an adversary.

Game UF-CMADS

procedure Initialize:
(pk , sk) $←K; S ← ∅
return pk

procedure Finalize(M,σ):

return VH(pk ,M,σ) = 1 and M /∈ S

procedure Sign(M):

σ $← SH(sk ,M)
S ← S ∪ {M}
return σ

procedure H(M):

if H[M] = ⊥ then H[M] $←R
return H[M]

Here R is the range of H.

The uf-cma advantage of A is

Advuf-cma
DS (A) = Pr

[

UF-CMAA
SD ⇒ true

]

34 / 1

Security of FDHSecurity of FDH in RO model

Theorem: [BR96] Let Krsa be a RSA generator and DS = (K,S,V) the
associated FDH RO-model signature scheme. Let A be a uf-cma
adversary making qs signing queries and qH queries to the RO H and
having running time at most t. Then there is an inverter I such that

Advuf-cma
DS (A) ≤ (qs + qH + 1) · Advowf

Krsa
(I) .

Furthermore the running time of I is that of A plus the time for
O(qs + qH + 1) computations of the RSA function.

35 / 1

RO proofs for encryption
RO proofs for encryption

There is a “crucial” hash query Q such that

• If A does not query Q it has 0 advantage

• If A queries Q an overlying algorithm can “see” it and solve some
presumed hard computational problem

Example: In the RO EG KEM, Q = gxy where pk = gx and gy is in
challenge ciphertext.

36 / 1

Programming the RO
Programming the RO

For signatures we exploit the RO model in a new way by replying to RO
queries with carefully constructed objects. In particular the inverter I
that on input y aims to compute yd mod N might reply to a RO query
M made by A via

• y or some function thereof

• xe mod N for x $← Z∗
N chosen by I

Thus I is “programming” H(M) to equal values of I ’s choice.

37 / 1

Inverter
Simplification

Assume that if A

• Makes Sign query M, it has previously made H-query M

• Outputs (M,�) then it has previously made H-query M and not made
Sign query M

Can easily modify A to have these properties at the cost of increasing the
number of H-queries to

q = qs + qH + 1 .

Also assume A never repeats a H-query.

Mihir Bellare UCSD 41

Inverter for case qs > 0

adversary I (N, e, y)

g
$

 {1, . . . , qH}; j 0

(M,�) $

 A
HSim,SignSim(N, e)

Return �

subroutine SignSim(M)
j Ind(M)
Return xj

subroutine HSim(M)
j j + 1; Mj M; Ind(M) j

If j = g then H[M] y ; xj ?

else xj
$

 Z⇤
N
; H[M] x

e

j
mod N

Return H[M]

Mihir Bellare UCSD 42

Analysis intuition

Let i be such that A outputs (M,�) with M = Mi . Then if i = g

• �e
⌘ H(Mi) ⌘ y (mod N) so inverter finds � = y

d mod N

• All A’s queries are correctly answered

Since i = g with probability 1/q we have

Adv
ow
Krsa

(I) �
1

q
· Adv

uf-cma
DS (A) .

Mihir Bellare UCSD 43

Fundamental Lemma variant

A formal proof can be given based on the following:

Lemma [BR06] Let Gi ,Gj be identical-until-bad games and A an adversary.
Then for any y

Pr
h
G

A

i) y ^ G
A

i doesn’t set bad
i
= Pr

h
G

A

j) y ^ G
A

j doesn’t set bad
i

Mihir Bellare UCSD 44

Analysis

Games G0, G1

procedure Initialize
(N, p, q, e, d) $←Krsa

g
$← {1, . . . , qH}; j ← 0; y $← Z∗

N

return (N, e)

procedure Sign(M)
j ← Ind(M)

if j = g then xj ← yd mod N

return xj

procedure H(M)
j ← j + 1; Mj ← M; Ind(M)← j

if j = g then H[M]← y ; xj ← ⊥

else xj
$← Z∗

N ; H[M]← xej mod N

return H[M]

procedure Finalize(M,σ)
j ← Ind(M)
if j #= g then bad← true
return (σe ≡ H[M] (mod N))

54 / 1

Analysis

Let Badi be the event that Gi sets bad. Then

Advowf
Krsa

(I) ≥ Pr
[

GA
0 ⇒ true ∧ Bad0

]

= Pr
[

GA
1 ⇒ true ∧ Bad1

]

where last line is due to Fundamental Lemma variant. But the events
“GA

1 ⇒ true and “Bad1” are independent so

= Pr
[

GA
1 ⇒ true

]

· Pr
[

Bad1
]

= Advuf-cma
DS (A) ·

1

q

55 / 1

Choosing a modulus size
Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t ·2−80. The following shows modulus size k and cost
c of one exponentiation, with qH = 260 and qs = 245 in the FDH case:

Task k c

Inverting RSA 1024 1
Breaking FDH as per [BR96] reduction 3700 47

This (for simplicity) neglects the running time difference between A, I .

This motivates getting tighter reductions for FDH, or alternative
schemes with tighter reductions.

58 / 1

Better analysis
Better analysis of FDH in RO model

Theorem: [Co00] Let Krsa be a RSA generator and DS = (K,S,V) the
associated FDH RO-model signature scheme. Let A be a uf-cma
adversary making qs signing queries and qH queries to the RO H and
having running time at most t. Then there is an inverter I such that

Advuf-cma
DS (A) ≤ O(qs) ·Adv

owf
Krsa

(I) .

Furthermore the running time of I is that of A plus the time for
O(qs + qH + 1) computations of the RSA function.

59 / 1

Proof Idea

Choosing a modulus size
Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t ·2−80. The following shows modulus size k and cost
c of one exponentiation, with qH = 260 and qs = 245 in the FDH case:

Task k c

Inverting RSA 1024 1
Breaking FDH as per [BR96] reduction 3700 47
Breaking FDH as per [Co00] reduction 2800 21

60 / 1

RSA-PSS
PSS [BR96]

Signer pk = (N, e) and sk = (N, d)

algorithm Sh,g1,g2
N,d (M)

r
$← {0, 1}160

w ← h(M || r)
r∗ ← g1(w) ⊕ r

y ← 0 || w || r∗ || g2(w)
return yd mod N

algorithm Vh,g1,g2
N,e (M, x)

y ← xe mod N

b || w || r∗ || P ← y

r ← r∗ ⊕ g1(w)
if (g2(w) #= P) then return 0
if (b = 1) then return 0
if (h(M || r) #= w) then return 0
return 1

Here h, g1: {0, 1}∗ → {0, 1}160 and g2: {0, 1}∗ → {0, 1}k−321 are
random oracles where k = |N|.

61 / 1

Choosing a modulus size
Choosing a modulus size

Say we want 80-bits of security, meaning a time t attacker should have
advantage at most t · 2−80. The following shows modulus size k and
cost c of one exponentiation, with qH = 260 and qs = 245 in the FDH
and PSS cases:

Task k c

Inverting RSA 1024 1
Breaking FDH as per [BR96] reduction 3700 47
Breaking FDH as per [Co00] reduction 2800 21
Breaking PSS as per [BR96] reduction 1024 1

62 / 1

Choosing a modulus sizeChoosing a modulus size

There are no attacks showing that FDH is less secure than RSA,
meaning there are no attacks indicating FDH with a 1024 bit modulus
has less than 80 bits of security. But to get the provable guarantees we
must use larger modulii as shown, or use PSS.

63 / 1

ElGamal sigs
ElGamal Signatures

Let G = Z∗
p = 〈g〉 where p is prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

Algorithm Sx(m)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

nnnnn

Algorithm VX (m, (r , s))
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Correctness check: If (r , s) $← Sx(m) then

X r ·r s = gxrgks = gxr+ks = gxr+k(m−xr)k−1 mod (p−1) = gxr+m−xr = gm

so VX (m, (r , s)) = 1.

65 / 1

Security
Security of ElGamal Signatures

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

Algorithm Sx(m)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (m, (r , s))
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

Suppose given X = gx and m the adversary wants to compute r , s so
that X r · r s ≡ gm mod p. It could:

• Pick r and try to solve for s = DLogZ∗

p ,r
(gmX−r)

• Pick s and try to solve for r ...?

66 / 1

Forgery!
Forgery of ElGamal Signatures

Adversary has better luck if it picks m itself:

Adversary A(X)
r ← gX mod p; s ← (−r) mod (p − 1); m← s

return (m, (r , s))

Then:

X r · r s = X gX (gX)−gX = X gXg−gXX−gX = g−gX

=g−r = gm

so (r , s) is a valid forgery on m.

67 / 1

ElGamal with hashing
ElGamal with hashing

Let G = Z∗
p = 〈g〉 where p is a prime.

Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zp−1

H : {0, 1}∗ → Zp−1 a hash function.

Algorithm Sx(M)
m← H(M)

k
$← Z∗

p−1

r ← gk mod p

s ← (m − xr) · k−1 mod (p − 1)
return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
if (r /∈ G or s /∈ Zp−1)

then return 0
if (X r · r s ≡ gm mod p)

then return 1
else return 0

68 / 1

DSA
DSA

• Fix primes p, q such that q divides p − 1

• Let G = Z∗
p = 〈h〉 and g = h(p−1)/q so that g ∈ G has order q

• H: {0, 1}∗ → Zq a hash function

• Signer keys: pk = X = gx ∈ Z∗
p and sk = x

$← Zq

Algorithm Sx(M)
m← H(M)

k
$← Z∗

q

r ← (gk mod p) mod q

s ← (m + xr) · k−1 mod q

return (r , s)

Algorithm VX (M, (r , s))
m← H(M)
w ← s−1 mod q

u1 ← mw mod q

u2 ← rw mod q

v ← (gu1X u2 mod p) mod q

if (v = r) then return 1
else return 0

Details: Signature is regenerated if s = 0.
70 / 1

Discussion
Discussion

DSA as shown works only over the group of integers modulo a prime,
but there is also a version ECDSA of it for elliptic curve groups.

In ElGamal and DSA/ECDSA, the expensive part of signing, namely the
exponentiation, can be done off-line.

No proof that ElGamal or DSA is UF-CMA under a standard
assumption (DL, CDH, ...) is known, even if H is a RO. Proofs are
known for variants.

71 / 1

Schnorr Signatures
Schnorr Signatures

• Let G = 〈g〉 be a cyclic group of prime order p

• H: {0, 1}∗ → Zp a hash function

• Signer keys: pk = X = gx ∈ G and sk = x
$← Zp

Algorithm Sx(M)

r
$← Zp

R ← g r

c ← H(R‖M)
a← xc + r mod p

return (R , a)

Algorithm VX (M, (R , a))
if R '∈ G then return 0
c ← H(R‖M)
if ga = RX c then return 1
else return 0

73 / 1

DiscussionSchnorr Signatures

The Schnorr scheme works in an arbitrary (prime-order) group. When
implemented in a 160-bit elliptic curve group, it is as efficient as
ECDSA. It can be proven UF-CMA in the random oracle model under
the discrete log assumption [PS,AABN]. The security reduction,
however, is quite loose.

72 / 1

