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An ancient art, e.g. Julius Caesar used 
cryptography

Transformed into a science starting with the work of 
Shannon (1949)

Took off in the 1970s and 1980s



UsageCryptography usage

• https invokes the TLS protocol

• TLS uses cryptography

• TLS is in ubiquitous use for secure communication: shopping,
banking, Netflix, gmail, Facebook, ...
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Other UsesCryptography usage

Other uses of cryptography:

• ATM machines

• Bitcoin

• Messaging apps: whatsapp, viber, line, telegraph, goldbug,
chatsecure, ...

• Google authenticator

• ...

11,748 android apps use cryptography (encryption), and 10,327 get it
wrong [EBFK13]

Mihir Bellare UCSD 4



Classical SettingWhat is cryptography about?

Adversary: clever person with powerful computer

Security goals:

• Data privacy: Ensure adversary does not see or obtain the data
(message) M.

• Data integrity and authenticity: Ensure M really originates with
Alice and has not been modified in transit.
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Ideal World
Ideal World

Cryptonium pipe: Cannot see inside or alter content.

All our goals would be achieved!

But cryptonium is only available on planet Crypton and is in short supply.
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Cryptographic SchemesCryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

Algorithms: standardized, implemented, public!

Mihir Bellare UCSD 11
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Cryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

Settings:

• public-key (assymmetric): Ke public, Kd secret

• private-key (symmetric): Ke = Kd secret
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Key DistributionCryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

How do keys get distributed? Magic, for now!
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ConcernsCryptographic schemes

Our concerns:

• How to define security goals?

• How to design E , D?

• How to gain confidence that E , D achieve our goals?

Mihir Bellare UCSD 14
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Why is this hard?

One cannot anticipate in advance what an 
adversary will do

“Testing” is not possible in this setting

Different than other areas of computer science 
where heuristics on “typical inputs” apply



Early HistoryEarly history

Substitution ciphers/Caesar ciphers:

Ke = Kd = ⇡ : ⌃ ! ⌃, a secret permutation

e.g., ⌃ = {A,B ,C , . . .} and ⇡ is as follows:

� A B C D · · ·
⇡(�) E A Z U · · ·

E⇡(CAB) = ⇡(C )⇡(A)⇡(B)

= Z E A

D⇡(ZEA) = ⇡�1(Z )⇡�1(E )⇡�1(A)

= C A B

Not very secure! (Common newspaper puzzle)
Mihir Bellare UCSD 18
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Shannon’s WorkShannon and One-Time-Pad (OTP) Encryption

Ke = Kd = K
$ {0, 1}k| {z }

K chosen at random
from {0, 1}k

For any M 2 {0, 1}k
– EK (M) = K �M

– DK (C ) = K � C

Theorem (Shannon): OTP is perfectly secure as long as only one message
encrypted.

“Perfect” secrecy, a notion Shannon defines, captures mathematical impossibility

of breaking an encryption scheme.

Fact: if |M| > |K |, then no scheme is perfectly secure.
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Information Theoretic 
Encryption

Notation
If s is a finite Sef then
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Encryption
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Perfect Security

COSC531, Georgetown University, Fall 2015

Instructor: Adam O’Neill

adam@cs.georgetown.edu

could be given the encryption of a message and try to guess the message, or she could be the
encryption of many messages and try to guess some partial information about them NB: In any
security model, we always assume the scheme’s algorithms themselves are known by the adversary
(this is called Kercho↵’s Principle). Finally, we propose a candidate scheme (meaning, candidates
for the algorithms we require) and prove that no adversary can break it in our security model. An
important point here is that such security proofs are “computational” in nature. A typical security
theorem looks something like this:

Theorem 1. Cryptographic scheme X above cannot be broken in security model Y with probability
more than ✏ by adversaries running in time at most t, assuming computational problem Z cannot
be solved with probability more than ✏0 by algorithms running in time t0.

In other words, security proofs do not give absolute assurance that a scheme can’t be broken (not
that they would anyway, since they are always relative to some security model), but rather they
say that it can’t be broken by resource-bounded adversaries assuming some underlying problem is
hard. Why is this?

One-Time Pad and the Need for Computational Assumptions. It turns out, if we want
security against unbounded adversaries and without making computational assumptions, we can’t
do too much. To illustrate this we consider a classical encryption scheme called the one-time pad.
First we define a notion of perfect secrecy due to Shannon.

Definition 0.1. A cryptosystem (K, E ,D) is perfectly secure if for all distributions D on messages
and every message g and every ciphertext c

Pr [ g = m | E(K,m) = c ] = Pr [m = g ]

where the probability is over K $K and m $D.

About notation: we use the notation x $A(. . .) to denote that x is assigned the output of
running randomized algorithm A on the elided inputs with fresh random coins. If A is deterministic
we drop the dollar sign. If S is a finite set then s $S denotes that s is assigned a random element
from S, and if X is a random variable or distribution (on some set) then x $X denotes that x is
assigned an element sampled according to this distribution.

A simple scheme achieves perfect security is the one-time pad (also called a Vernam cipher).
Let messages be k-bit string and define K to consist of k-bit strings as well. Algorithm K outputs
a random K 2 {0, 1}k. On inputs K,m algorithm E outputs K �m (where ‘�’ denotes bit-wise
exclusive-or). Decryption is defined in the obvious way. To see that this scheme achieves perfect
security we can define a simpler security notion as follows.

Definition 0.2. A cryptosystem (K, E ,D) is Shannon secure if for all messages m0,m1 and cipher-
texts c

Pr [ E(K,m0) = c ] = Pr [ E(K,m1) = c ]

where the probability is over K $K.

Shannon proved that these two definitions are equivalent. The proof is not di�cult and is a
good excercise. Moreover, it is a good exercise to prove that the one-time pad is Shannon secure.
(Showing that is perfectly secure directly is rather more complicated; the point of Shannon security
is that it is easier to work with yet equivalent to perfect security).

Finally, note that the scheme is very computationally e�cient except that it requires keys as
long as the messages. Shannon proved that this is inherent for any scheme meeting perfect security.
But this is not practical, motivating the computational approach discussed above.
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Shannon Security

COSC531, Georgetown University, Fall 2015

Instructor: Adam O’Neill

adam@cs.georgetown.edu

could be given the encryption of a message and try to guess the message, or she could be the
encryption of many messages and try to guess some partial information about them NB: In any
security model, we always assume the scheme’s algorithms themselves are known by the adversary
(this is called Kercho↵’s Principle). Finally, we propose a candidate scheme (meaning, candidates
for the algorithms we require) and prove that no adversary can break it in our security model. An
important point here is that such security proofs are “computational” in nature. A typical security
theorem looks something like this:

Theorem 1. Cryptographic scheme X above cannot be broken in security model Y with probability
more than ✏ by adversaries running in time at most t, assuming computational problem Z cannot
be solved with probability more than ✏0 by algorithms running in time t0.

In other words, security proofs do not give absolute assurance that a scheme can’t be broken (not
that they would anyway, since they are always relative to some security model), but rather they
say that it can’t be broken by resource-bounded adversaries assuming some underlying problem is
hard. Why is this?

One-Time Pad and the Need for Computational Assumptions. It turns out, if we want
security against unbounded adversaries and without making computational assumptions, we can’t
do too much. To illustrate this we consider a classical encryption scheme called the one-time pad.
First we define a notion of perfect secrecy due to Shannon.

Definition 0.1. A cryptosystem (K, E ,D) is perfectly secure if for all distributions D on messages
and every message g and every ciphertext c

Pr [ g = m | E(K,m) = c ] = Pr [m = g ]

where the probability is over K $K and m $D.

About notation: we use the notation x $A(. . .) to denote that x is assigned the output of
running randomized algorithm A on the elided inputs with fresh random coins. If A is deterministic
we drop the dollar sign. If S is a finite set then s $S denotes that s is assigned a random element
from S, and if X is a random variable or distribution (on some set) then x $X denotes that x is
assigned an element sampled according to this distribution.

A simple scheme achieves perfect security is the one-time pad (also called a Vernam cipher).
Let messages be k-bit string and define K to consist of k-bit strings as well. Algorithm K outputs
a random K 2 {0, 1}k. On inputs K,m algorithm E outputs K �m (where ‘�’ denotes bit-wise
exclusive-or). Decryption is defined in the obvious way. To see that this scheme achieves perfect
security we can define a simpler security notion as follows.

Definition 0.2. A cryptosystem (K, E ,D) is Shannon secure if for all messages m0,m1 and cipher-
texts c

Pr [ E(K,m0) = c ] = Pr [ E(K,m1) = c ]

where the probability is over K $K.

Shannon proved that these two definitions are equivalent. The proof is not di�cult and is a
good excercise. Moreover, it is a good exercise to prove that the one-time pad is Shannon secure.
(Showing that is perfectly secure directly is rather more complicated; the point of Shannon security
is that it is easier to work with yet equivalent to perfect security).

Finally, note that the scheme is very computationally e�cient except that it requires keys as
long as the messages. Shannon proved that this is inherent for any scheme meeting perfect security.
But this is not practical, motivating the computational approach discussed above.
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An Equivalence
theorem A scheme is perfectly
secure iff it is Shannon secure .
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Modern Cryptography

Gets around Shannon’s Theorem by developing a 
computational science

Security of a practical scheme must rely not on 
impossibility but on computational intractability 

Not only of imminent practical value, cryptography 
is full of counter-intuitive solutions to cool problems!



Security Theorems
Modern Cryptography: A Computational Science

Rather than:

“It is impossible to break the scheme”

We might be able to say:

“No attack using  2160 time succeeds with probability � 2�20
”

I.e., Attacks can exist as long as cost to mount them is prohibitive, where

Cost = computing time/memory, $$$
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