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Communication and computation (for data-at-rest)
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An ancient art, e.g. Julius Caesar used
cryptography

Transformed into a science starting with the work of
Shannon (1949)

Took off in the 1970s and 1980s



Usage

v Amazon.com Checkout Sign In - Firefox

File Edit View Go Bookmarks Tools Help
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# Getting Started [ Latest BBC Headlines
‘. Homepage for CSE 207 l Amazon.com Checkout Sig... l
amazoncom.

SIGN IN

Ordering from Amazon.com is quick and easy

Enter your e-mail address:

¢ | am a new customer.
(You'll create a password later)

e https invokes the TLS protocol

e TLS uses cryptography

e TLS is in ubiquitous use for secure communication: shopping,
banking, Netflix, gmail, Facebook, ...



Other Uses

Other uses of cryptography:
e ATM machines

e Bitcoin

e Messaging apps: whatsapp, viber, line, telegraph, goldbug,
chatsecure, ...

e Google authenticator

11,748 android apps use cryptography (encryption), and 10,327 get it
wrong [EBFK13]



Classical Setting

Public network

——

Adversary: clever person with powerful computer

Security goals:

e Data privacy: Ensure adversary does not see or obtain the data
(message) M.

e Data integrity and authenticity: Ensure M really originates with
Alice and has not been modified in transit.
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Adversary A Bob

Cryptonium pipe: Cannot see inside or alter content.

All our goals would be achieved!



Cryptographic Schemes

Adversary A

£: encryption algorithm Ke: encryption key
D: decryption algorithm Ky: decryption key
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Settings

Adversary A

E: encryption algorithm Ke: encryption key
D: decryption algorithm Ky: decryption key

Settings:
e public-key (assymmetric): K. public, K; secret
e private-key (symmetric): K. = Ky secret



Key Distribution

Adversary A

£: encryption algorithm Ke: encryption key
D: decryption algorithm Ky: decryption key

How do keys get distributed? Magic, for now!



concerns

Adversary A

Our concerns:

ow to define security goals?
ow to design &, D7

ow to gain confidence that £, D achieve our goals?
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Why is this hard”

One cannot anticipate in advance what an
adversary will do

“lesting” Is not possible in this setting

Different than other areas of computer science
where heuristics on “typical inputs™ apply



Early History

Substitution ciphers/Caesar ciphers:

Ke = Ky = m: XL — X, a secret permutation

eg., 2 ={AB,C,...} and 7 is as follows:

o |A|B|C|D
(o) | E| A Z | U

E(CAB) = n(C)n(A)m(B)
—Z7ZEA

D, (ZEA) = n~ Y Z)n Y (E)r 1(A)
—C AB

Not very secure! (Common newspaper puzzle)
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Shannon’s Work

Ke = Ky = K < {0,1}%

K chosen at random
from {0, 1}*

For any M ¢ {0,1}*
-Ex(M) =Ko M
-D(CO)=Ka C

Theorem (Shannon): OTP is perfectly secure as long as only one message
encrypted.

“Perfect” secrecy, a notion Shannon defines, captures mathematical impossibility
of breaking an encryption scheme.
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Information Theoretic
ENncryption

ND\/U\/\/\PU\/\
l’(l SR Lo %-b(~ Y eon
%6_16 Sou’v\p\wg 3 e road oun

_L’Q d:)g’ LS O\ d\’S\*ﬂ‘bm\‘mM s S

5 Gz A S SN ¥ \\\’\3 S O'LC_U’D\/(/LY\’L/j
o s,

P\( ﬂfszmj Lor Surm Log egd & S,
géfg‘pSJ




EV\ VY \]0\/l0“\§

( %)@@\ W\ mse s pate

\é @i \OC, Ov\k\p\/\/kr’s O\ rumed o \V-"’“f

p (m) meqfﬁ by LI\ C

YA 22— &BFCL\ OW\(PWH o~ ke

sf ¢ wor (&

Cocre gss \%ma/l/\ ¢ e
P[P (el = wn |

S ove s



Perfect Security
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Definition 0.1. A cryptosystem (K, &, D) is perfectly secure if for all distributions D on messages
and every message g and every ciphertext c
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Shannon - Security =

Definition 0.2. A cryptosystem (IC, £,
texts ¢

is Shannon secuye if for all messages mq, m; and cipher-

ﬁ_r

Pr[E(K,myg) =c|]=Pr|[E(K,m1) = c]
where the probability is over K <s K. @ -
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An Equivalence
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Modern Cryptography

Gets around Shannon’s Theorem by developing a
computational science

Security of a practical scheme must rely not on
impossibility but on computational intractability

Not only of imminent practical value, cryptography
s full of counter-intuitive solutions to cool problems!



Security Theorems

Rather than:

“It is impossible to break the scheme”

We might be able to say:
“No attack using < 290 time succeeds with probability > 270"

|.e., Attacks can exist as long as cost to mount them is prohibitive, where
Cost = computing time/memory, $$$



