\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quiz 9/24
(1) Suppose a blockcipher E is a PRF. Does PRF security necessarily hold if the key to $E N D$ is set such that the first half of the bits, ore zero's?
(2) $C T R-\$$ generates a "YES "pseudo one-time pad"
(3) If F is a PRF, then for y? random 12 , from $F_{K}(x)$ it is hard to guess the first bit of x.
(4) A mode of operation specifies how to use a blockcipher to. encrypt large amounts of data. YES
(5) If (F) is a PRF, then necessarily given $F_{K}(T /)$ for random K it is Ward to recover k.

$$
\mathrm{kDM}
$$

G
is a counter exampu
assume

$$
\underset{\rightarrow E}{\operatorname{ascume}} E:\{0,1\}^{x} \infty\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

active

$$
\begin{aligned}
& E^{\prime}:\{0,1\}^{2 k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
& \text { guesses better prion } \\
& E_{0,1 / 2}^{\prime}=E_{0,11 k_{2}}^{(x)}(x)
\end{aligned}
$$

Let A be the first-bit-guesser. Define PRF adversary

$$
\begin{aligned}
& B^{\text {Fec. }} \\
& x \leftarrow\{0,1\}^{n} \\
& y \in F_{n}(x) \\
& \text { b }-A(y) \\
& \text { If } b=x[1] \text { ret } 1 \\
& \text { Else ret } O \\
& \text { Let } G=\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { be a } \\
& \text { PRF, 首fine } \sigma:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\left\{0,73^{n}\right. \\
& \rightarrow b_{k}^{\prime}(x)= \begin{cases}6_{k}(x) & \text { it } x \neq k \\
k & 0 . w\end{cases}
\end{aligned}
$$

Suppose A is a PRF, adversary against G^{\prime}. Then define B against G :

Adversary $B^{F_{n}(\cdot)}$ Run A

When A makes query x do.

If x is the key halt \& ret 1
Else ret $F_{n}(x)$
Until A outports b Ret b
(Randomness)
Extractors
Let X, Y be R.V.'s (same $\begin{gathered}\text { doman) }\end{gathered}$

$$
\begin{aligned}
& X: D \rightarrow[0,1] \\
& \sum_{d \in D} \operatorname{Pr}_{x}[d]=1 \\
& X \approx_{s} Y
\end{aligned}
$$

For un

$$
\begin{aligned}
\text { adverson } \operatorname{Adv}(A)= & \operatorname{Pr}[A(X) \Rightarrow 1] \\
\text { detime: } & -\operatorname{Pr}[A(Y)=1]
\end{aligned}
$$

$\forall A$'s advantaye is small un bomded A ostatistical bounded $A \rightarrow$ Computational

$$
\left.X \approx{ }_{t, \varepsilon(t)}\right)
$$

Min-entropy

- log $\operatorname{Max}_{d} \operatorname{Pr}[X=d]$

Randomness Extractor:
Can we find a function

$$
H:\{0,1\}^{n} \rightarrow\{0,7\}^{n}
$$

such that unitary RV. $m \ll n \quad H(X) \approx_{s} U_{m} \quad$ on in it storms string 1
of "high mineentropy" X.
(x takes values from $\{0,1\}^{n}$)

$$
S:=\left\{x \in\left\{0,13^{n} \mid H(x)=0\right\}\right.
$$

consider X uniform on 5 efficient?

$$
g \cdot h \quad G_{o p}(g, h)
$$

Two ways to get around it:

* Restrict to "efficien thy sampleable" sources and computational indistinguishabllity
Def. It as above is a computational randomness extractor if

$$
H(x) \approx u_{m}
$$

for X. all "efficient" highoentropy

$$
x \stackrel{\beta}{\leftrightarrows} X
$$

reasonable assumption:
SHAZ56 is a
computational
randomness extractor

* Second way:

Use seeded extractors

$$
G:\{0,1\}^{s} \times\{0,1\}^{n} \rightarrow\left\{0,1 \xi^{n n}\right.
$$

\forall high min-ennopy X

$$
G\left(u_{s}, x\right) \approx_{s} u_{m}
$$

"Weak extractor"

$$
\begin{gathered}
(t, G(s, x)) \approx\left(t_{1} u_{m}\right) \\
t \longleftarrow\left\{0,1 s_{s}\right.
\end{gathered}
$$

"strong extractor"
Leftover Hash Lemma
Pairwise independent hash function family is a strong seeded extractor.

Pairwise Independuce:

$$
H:\{0,1\}^{k} \times\{0,1\}^{d} \rightarrow\{0,1\}^{r}
$$

is pairwise independent if

$$
\begin{gathered}
\underset{\in\{0,1\}^{d}}{\forall x_{1}, x_{2}}\left(H_{k}\left(x_{1}\right), H_{k}\left(x_{2}\right)\right) \\
\sim \\
\sim \\
\left(u_{1}, u_{2}\right)
\end{gathered}
$$

where $K \stackrel{\Im}{\leftrightarrows}\{0,1\}^{k}$
$u_{1,} u_{2}$ are independent' on $\{0,1\}^{r}$

$$
\begin{gathered}
\operatorname{Pr}_{k}\left[H_{k}\left(x_{1}\right)=y_{1} \wedge\right. \\
\left.17_{k}\left(x_{2}\right)=y_{2}\right] \\
=\frac{1}{2^{2 r}}=\left(\frac{1}{2 r}\right]^{2} \\
\forall x_{1}, x_{2} \in\left\{0,13^{d}\right. \\
\forall y_{1}, y_{2} \in\left\{0,13^{r}\right.
\end{gathered}
$$

Lemma. Let $H:\{0,1\}^{k} \times\{0,1\}^{d} \rightarrow\{0,1\}^{r}$ be pairwise independent. Then for all X st $-1 \infty(X) \geq 2 \cdot \log \left(\frac{1}{\varepsilon}\right)+1+r$

$$
\left(k, H_{k}(x)\right) \approx_{\varepsilon}(k, u)
$$

min-entropy

