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ABSTRACT
Overlapping Coalition Formation (OCF) games [3, 4] are coop-
erative games where the players can simultaneously participate in
several coalitions. Capturing the notion of stability in OCF games
is a difficult task: a player may deviate by abandoning some, but
not all of the coalitions he is involved in, and the crucial ques-
tion is whether he then gets to keep his payoff from the unaffected
coalitions. In [4] the authors introduce three stability concepts for
OCF games—the conservative, refined, and optimistic core—that
are based on different answers to this question. In this paper, we
propose a unified framework for the study of stability in the OCF
setting, which encompasses the concepts considered in [4] as well
as a wide variety of alternative stability concepts. Our approach is
based on the notion of an arbitrator, which can be thought of as an
external party that determines payoff to deviators. We give a com-
plete characterization of outcomes that are stable under arbitration.
In particular, our results provide a criterion for the outcome to be
in the refined or optimistic core, thus complementing the results
in [4] for the conservative core, and answering questions left open
in [4]. We also introduce a notion of the nucleolus for arbitrated
OCF games, and argue that it is non–empty. Finally, we extend the
definition of the Shapley value [12] to the OCF setting, and provide
an axiomatic characterization for it.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Theory
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1. INTRODUCTION
Cooperation among agents plays a crucial role in the functioning of
multi-agent systems. Therefore, developing a better understanding
of coalition formation processes is an important research agenda in
the multiagent community, and a lot of recent research effort has
been spent on the design and analysis of cooperation mechanisms
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for realistic multi-agent environments [15, 10, 5, 14, 8]. In such en-
vironments, agents are often selfish, and therefore need to be given
incentives to act together and share the benefits of cooperation in a
fair manner. Cooperative game theory [9, 18] provides the theoret-
ical underpinnings for the study of such settings. Traditionally, it
models a multiagent system as a (transferable-utility) game. Such
a game can be described by its characteristic function, which for
every set of agents specifies the profit that these agents can attain
by working together. The agents are expected to split into teams,
i.e., form a coalition structure; the profits of each team are then
distributed among its members.

Remarkably, the traditional model assumes that each agent par-
ticipates in exactly one coalition. However, this is often not the
case in real-life settings, where agents form multiple coalitions on
the fly in order to perform a specific task and only devote part of
their attention and resources to each such coalition. Indeed, She-
hory and Kraus in their seminal paper [14] already mention that
agents can benefit from forming overlapping coalitions, and pro-
pose algorithms for iterative formation of an overlapping coalition
structure for their setting. This line of work has been continued
by Dang et al. [5], where the authors consider overlapping coali-
tion formation in sensor networks. However, these papers assume
that agents are fully cooperative, and will always form the socially
optimal (overlapping) coalition structure. While this assumption is
appropriate for the specific scenarios considered in these papers,
in general, agents may want to maximize their own welfare, and a
fully expressive model for overlapping coalition formation should
take incentive issues into account.

Recently, Chalkiadakis et al. [3, 4] addressed this problem by
proposing a game-theoretic model for overlapping coalition forma-
tion. In their model, each agent is endowed with a certain amount
of resources, which he is free to distribute across multiple coali-
tions. The value of such (partial) coalition is determined both by
the identities of agents that participate in it and the amount of re-
sources that they contribute. Chalkiadakis et al. [3, 4] focus on the
study of stability in their model. Compared to the non-overlapping
setting, the stability of an overlapping coalition structure is a del-
icate issue: if an agent is participating in several projects at once
and decides to withdraw all or some of her contributions from one
of them, can she expect to continue to receive the payoff from the
coalitions that were not harmed by the deviation? In [4], the au-
thors propose three different stability concepts—the conservative
core, the refined core, and the optimistic core—that correspond to
three possible ways of answering this question. Briefly, under the
conservative core the deviators do not expect to get any payoffs
from their coalitions with non-deviators. In contrast, in the refined
core they continue to get payoffs from coalitions not affected by
the deviation. Finally, in the optimistic core the deviators may get



some payoffs from an affected coalition, as long as they continue
to contribute to it, and the members of that coalition were able to
regroup and and focus on a different task so that each non-deviator
still gets as much profit as before from that coalition.

While the three concepts of the core proposed in [4] all corre-
spond to reasonable reactions to deviation, this list is by no means
exhaustive. For instance, a player may want to punish the devia-
tors and refuse to cooperate with them altogether as soon as they
lower the value of one of the coalitions he is involved in, even if
other coalitions between that player and the deviator remain unaf-
fected. Alternatively, the players may form a social network, and
stop collaborating with a deviator if his behavior harmed one of
their friends. Yet another possibility is that a central authority im-
poses a fine on each of the deviators, making the deviation costly.

In this paper, we propose a stability concept that captures all
of the scenarios considered above. Our approach is based on the
notion of an arbitrator: a function that takes the description of
a deviation as an argument and returns the payoff that the devia-
tors receive from each coalition. Different arbitrators correspond
to different sets of stable outcomes, or arbitrated cores. We show
that the three core concepts proposed in [4] can be viewed as spe-
cial cases of our model. Further, paper [4] characterizes the set
of outcomes that belong to the conservative core. We extend this
characterization to all arbitrated cores. In particular, this allows us
to characterize the outcomes in the refined core and the optimistic
core, thus answering the open question proposed in [4].

Now, while the core is an attractive stability concept, it is known
that some games have an empty core. This is true even in the
overlapping model for most realistic arbitrators. Thus, it is de-
sirable to have a solution concept that identifies “the most stable”
(overlapping) coalitions, yet is guaranteed to be non-empty. In the
non-overlapping setting, this role is fulfilled by the nucleolus [11].
Motivated by this intuition, we introduce a concept of nucleolus
for the OCF setting, and demonstrate that it is always non-empty.
However, in contrast to the traditional model, we show that in OCF
games the nucleolus may contain more than one outcome.

Finally, we extend the definition of the Shapley value [12] to the
OCF setting. Just as in the classic case, we present a set of natural
axioms, and demonstrate that our variant of the OCF Shapley value
is characterized by these axioms.

The rest of this paper is organized as follows. After presenting
the necessary background material in Section 2, we introduce the
notion of arbitration and arbitrated core in Section 3, and present
our characterization of the outcome in the arbitrated core in Sec-
tion 4. Section 5 focuses on the nucleolus for OCF games, and
Section 6 describes our extension of the Shapley value to the OCF
setting. Section 7 presents our conclusions and suggests directions
for future work.

2. PRELIMINARIES
We begin by describing our notation and the formal model of OCF
games. Our definitions mostly follow those in [4]. We, however,
describe deviation in a manner more conducive to our analysis.

Notation Throughout the paper, we write N = {1, . . . , n}. Given
a vector x = (x1, . . . , xn) ∈ Rn and a set S ⊆ N , we write
x(S) =

∑
i∈S x

i, x|S equals x on the S coordinates and is 0
otherwise, and eS is the indicator vector of S.

Classic TU Cooperative Games A transferable utility (TU) coop-
erative game is defined by a set of players N and a characteristic
function u : 2N → R with u(∅) = 0. The set of feasible pay-
offs for a game G = (N,u) is the set of all vectors x ∈ Rn such
that x(N) = u(N). A solution concept is a function that assigns

every TU game G = (N,u) a set of feasible payoff vectors. A
solution concept that assigns G a single point is called a value. For
a detailed discussion of solution concepts and their axiomatization
see [9], Section 2.3, pp. 19–25.
OCF Games Let N = {1 . . . n} be a set of agents. A partial
coalition of players in S ⊆ N is a vector c ∈ [0, 1]n, where ci = 0
for all i 6∈ S. That is, each player in S may contribute a fraction
of their resources to c. In what follows, we will omit the word
“partial”, and refer to vectors in [0, 1]n as coalitions.

DEFINITION 2.1. An OCF game G = (N, v) is given by a set
of players N and a characteristic function v : [0, 1]n → R assign-
ing a real value to each partial coalition; we require v((0)n) = 0.

A coalition structure overN is a n×k matrix CS = (c1, . . . , ck),
where k is the number of coalitions. We require that for all i ∈ N
it holds that

∑k
j=1 c

i
j ≤ 1. This means that CS is a valid division

of players’ resources. Coalition structures over subsets of N are
defined in a similar manner. Throughout the paper, we will assume
that v is monotone; thus, we can assume that all players would
want to invest all their resources, i.e.

∑k
j=1 c

i
j = 1; such coalition

structures are called efficient. We denote the set of all possible
coalition structures over S as CSS . We also overload notation and
define v(CS) =

∑k
j=1 v(cj). Two coalition structures CS =

(c1, . . . , ck) and CS ′ = (d1, . . . ,dk) are equivalent if there is
some permutation σ such that for all 1 ≤ j ≤ k, cj = dσ(j).

Similarly to [4], we would sometimes like to limit the maximum
number of coalitions players can form; indeed, oftentimes an agent
who gives less than a certain fraction of her resources to a coalition
can no longer contribute to a coalition. If the number of coalitions
is limited by U ∈ N we say that the game G is U -finite.

For any CS ∈ CSS , we call the vector w(CS) =
∑k
j=1 cj the

weight vector of CS . Note that w(CS) ∈ [0, 1]n, and if CS is
efficient then w(CS) is the indicator vector for the set S.

For each S ⊆ N we denote by v∗(S) the maximum value achiev-
able by S: v∗(S) = sup{v(CS) | CS ∈ CSS}. Note that (N, v∗)
can be viewed as a classic TU cooperative game; we will refer to
(N, v∗) as the crisp analogue of G. We extend the function v∗ to
partial coalitions by setting v∗(c) = sup{v(CS) | w(CS) ≤ c};
v∗ is the superadditive cover of v. Note that v∗(eJ) = v∗(J).
We remark that we borrow the term “crisp” from Aubin, who intro-
duced the concept of fuzzy games (and their crisp analogues) in [1].
Like OCF games, fuzzy games are also defined by functions from
[0, 1]n to R. However, they are based on very different intuition,
and, in particular, employ a very different notion of stability. We
refer the reader to [4] for a detailed discussion of the differences
between OCF games and fuzzy games.

It is often useful to think of the agents as using their resources to
complete a given set of tasks. Such games are described in [4] and
are called Threshold Task Games (TTGs). A TTG comprises of a
finite list of tasks, T = {t1, ..., tk}, each tl requires some weight
w(tl) ≥ 0 for its completion, and gives a certain payoff p(tl) ≥ 0.
Each player i has some weight wi ≥ 0 that he may allocate to the
completion of any task. The worth of a coalition is

v(c) = max{p(tl) : w(tl) ≤
n∑
i=1

ciwi}.

We say that a function v has Efficient Coalition Structure (ECS)
property if for any J ⊆ N and any wJ ≤ eJ there exists a coalition
structure CSJ ∈ CSJ such that v∗(wJ) = v(CSJ). All U-finite
continuous functions have the ECS property, since the set of all
coalition structures with weight less than wJ is compact (due to
U-finiteness); v is continuous and hence achieves a maximum over



a compact set. TTGs also have the ECS property, as well as games
with superadditive valuations.

We now define how agents share their payoffs. The set of payoff
vectors X∗(G) of a game G = (N, v) is the set of all feasible
payoff vectors for its crisp analogue:

X∗(G) = {x ∈ Rn+ |
n∑
i=1

xi ≤ v∗(N)}.

An OCF solution concept is a function that assigns every OCF
game a subset of its payoff vectors. Note that the definition of a
payoff vector allows transfers between different partial coalitions.
However, usually we want to divide payoffs in a way that respects
the coalition structure. The next definition paves the way for this.

DEFINITION 2.2. An imputation for a coalition structure CS =
(c1, ..., ck) ∈ CSN is a n×k matrix x = (x1, ...,xk) ∈Mn×k(R+)
that satisfies:

• Individual Rationality:
∑k
j=1 x

i
j ≥ v∗({i}) for all i ∈ N .

• Payoff Distribution: for all 1 ≤ j ≤ k we have
∑n
i=1 x

i
j ≤

v(cj), and if cij = 0 then xij = 0.

An imputation is a way for members of each partial coalition to di-
vide profits among themselves; observe that inter-coalitional trans-
fers are not allowed. We call a tuple (CS ,x) of a coalition structure
and an imputation a feasible outcome, let I(CS) denote the set of
all matrices x such that (CS ,x) is a feasible outcome, and letF(S)
denote the set of all feasible outcomes over S.

Let (CS ,x) ∈ F(N) be a feasible outcome. We define the
payoff to an agent i ∈ N as pi(CS ,x) =

∑k
j=1 x

i
j . This is

the total payoff of i from all coalitions in CS . Similarly, the to-
tal payoff to a set J is pJ(CS ,x) =

∑
i∈J pi(CS ,x). Note

that the vector (p1(CS ,x), ..., pn(CS ,x)) is a payoff vector for
G, since pN (CS ,x) =

∑n
i=1 pi(CS ,x) =

∑n
i=1

∑k
j=1 x

i
j =∑k

j=1

∑n
i=1 x

i
j ≤

∑k
j=1 v(cj) = v(CS) ≤ v∗(N).

The support of a coalition c ∈ [0, 1]n is the set of all players who
devote their resources to c. They are "interested parties" that may
be hurt by any change to c; we write supp(c) = {i ∈ N | ci > 0}.

Given a coalition structure CS = (c1, . . . , ck) and some M ⊆
{1, . . . , k}, the coalitions whose indices are in M form a coalition
structure; this coalition structure is denoted R(CS ,M).

Given a set J ⊆ N , we denote KJ = {j ∈ {1, . . . , k} |
supp(cj) ⊆ J}.

DEFINITION 2.3. The coalition structure CS reduced to J is
defined as

CS |J = R(CS ,KJ).

These are all coalitions that are supported only by members of J .
We let CS |J denote the complement of CS |J in CS ; CS |J is the
coalition structure consisting of all coalitions in CS that have non–
J members in their support.

DEFINITION 2.4. A coalition structure CS ′ is a deviation of J
from CS if:

(1) CS |J = (c1 . . . cm), CS ′|J = (d1 . . .dm) and there is
some permutation of m elements, σ, such that for all 1 ≤
l ≤ m:

∀i /∈ J : dil = ciσ(l) and ∀i ∈ J : dil ≤ ciσ(l)

(2) w(CS ′|J) = w(CS |J) +
∑k
l=1(cσ(l) − dl).

Note that if we assume that CS ′ is efficient, then condition (1)
implies condition (2). The deviation CS ′ describes how a set J
retracts resources from some coalitions and uses them in order to
maximize its own welfare. Given a deviation CS ′ of J from CS ,
we define v∗(CS , J,CS ′) to be v∗(w(CS ′|J)); if J withdraws all
of its resources from CS|J , then the total weight available to J
is eJ , and v∗(CS , J,CS ′) = v∗(J). For brevity, given some cl
in CS |J that J deviated from, we refer to the coalition after the
deviation as devCS ′(cl).

3. THE ARBITRATION FUNCTION
To discuss stability in OCF games, we need to describe how agents
react if some J deviates from (CS ,x). Paper [4] presents three
different alternatives for such a reaction. The conservative devi-
ation, or c-deviation, completely denies payoffs to J , even from
coalitions that J did not affect. A relaxation of this approach leads
to the notion of a refined deviation, or r-deviation. Under this devi-
ation rule, deviators receive their share of the profit from all coali-
tions that were unaffected by the deviation, i.e. if no member of the
deviating subset J changed his contribution to a coalition c, then
J’s payoff from c is the same as before the deviation. Under the
optimistic deviation, or o-deviation, the players in J receive their
share of the profits from any coalition in which all non-deviators
can still earn the same payoff as before the deviation. Paper [4]
defines three notions of the core that correspond to the deviations.

One could easily think of many other reactions to deviation; J
receives only half of its original payoffs in all coalitions outside
of J’s support, J receives payoff only from those agents who are
not worse off after the deviation, and many others. Note that all
such rules can be thought of as a payoff function that is given the
original coalition structure and J’s deviation, and then decides on
an appropriate payoff to J . We call this function an arbitration
function or an arbitrator. This function decides how much J gets
from each coalition, given the nature of its deviation.

3.1 Arbitration Functions
Suppose that we are given an outcome (CS ,x) ∈ F(N), a set of
agents J ⊆ N and a deviation CS ′ of J from CS . Set CS |J =

(c1 . . . cm) and CS ′|J = (d1 . . .dm).

DEFINITION 3.1. The arbitration function is a mapping that as-
signs a real value to each coalition in CS |J .

A(CS ,x, J,CS ′) =
(
φl(CS ,x, J,CS

′)
)m
l=1

where φl is a function that determines how much the coalition cl
is willing to give J given its deviation. We require φl to satisfy the
following constraints:

(1) φl is non–negative.

(2) φl(CS ,x, J,CS ′) is only distributable between J∩supp(cl).

(3) If v(devCS ′(cl))−pN\J(cl,x) ≥ 0, then φl(CS ,x, J,CS ′) ≤
v(devCS ′(cl))−pN\J(cl,x), otherwise φl(CS ,x,CS ′) =
0.

(4) φl is deviation-monotone: If K ⊆ J withdraws less re-
sources from cl, then its payoff from φl is higher.

Condition (2) means that members of J that were not entitled to
payoffs from cl before the deviation are not entitled to payoffs after
deviating; condition (3) states that a deviating set J must ensure
that all members of N\J in the support of cl are paid what they
received under x if it hopes to receive any profit from cl; condition



(4) guarantees that the arbitrator behaves in a reasonable manner:
agents know that their payoff from cl is inversely proportional to
the degree to which they hurt cl. We illustrate the logic behind the
concept of an arbitrator in the following example.

EXAMPLE 3.2. Consider a two-player TTG where there are
three tasks: t1, t2, t3 with w(t1) = 5, w(t2) = 3, w(t3) = 2
and p(t1) = 10, p(t2) = 7, p(t3) = 4. We have two agents:
Alice, who has weight 4, and Bob, who has weight 1. The total
weight of Alice and Bob is 5; they can complete t2 and t3 together
and earn a total of 11. However, for the sake of our discussion,
suppose that Alice and Bob agree on completing t1 using all of their
weight, and dividing the payoff between them so that Alice receives
6 and Bob receives 4. The corresponding outcome is: (( 1

1 ) , ( 6
4 )).

Consider the following deviation by Alice; she withdraws 2 units
of weight in order to complete t3 on her own. This means that she
still contributes 1 unit of weight to working with Bob, and they can
still complete t2, earning 7. According to condition (3) Bob must
receive at least what he did before the deviation. Therefore, the
most that Alice can expect to get from t2 is 3, under any arbitrator.

REMARK 3.3. We can allow the arbitrator more flexibility by
permitting it to collect fines/make additional payments to the devi-
ating subset. This can be captured by adding a freely distributable
value, or a function Ψ(CS ,x, J,CS ′) to the arbitrator, where Ψ is
also deviation-monotone. This model is more general as Ψ can be
distributed among all members of J in any way they wish, while φl
may only be distributed among the members of J ∩ supp(cl). Ψ
can be, for example, a constant arbitration fee that must be paid by
a deviating set. This fee is not related to any specific coalition, so
the cost can be distributed between the agents in J in any way they
see fit. All proofs in our paper go through for this more general
model.

DEFINITION 3.4. The arbitration value of A is

v∗(CS , J,CS ′) +

m∑
l=1

φl(CS ,x, J,CS
′)

and denoted val(A,CS ,x, J,CS ′).

The arbitration value is the total payoff to a deviating set J given
its deviation. The payoff is comprised of the most that J can make
on its own plus the total payoff J receives from the coalitions it
formed with non-J members; the greater the arbitration value, the
higher the incentive to deviate.

3.2 The Arbitrated Core
In the spirit of the definition given in [3], we now define a profitable
deviation of a subset in an arbitrated game.

DEFINITION 3.5. LetA be an arbitrator overG. AnA-profitable
deviation of J from an outcome (CS ,x) is an outcome (CS ′,y),
where

1. CS ′ is a deviation of J from CS .

2. For all cl in CS |J , pJ({devCS ′(cl)},y) ≤ φl(CS ,x,CS ′).

3. For all cl in CS |J , if φl(CS ,x,CS ′) > 0, then for all i ∈
N\J , the payoff to i from the coalition devCS ′(cl) is equal
to her payoff under cl.

4. v(CS ′|J) = v∗(CS , J,CS ′) and y reduced to the coalitions
in CS ′|J is an imputation over J .

5. For any j ∈ J , pj(CS ′,y) > pj(CS,x).

Condition 3 implies that a coalition cl agrees to pay a deviating J
only if each non–J member gets the same payoff it received under
x.

DEFINITION 3.6. The A-core of G = (N, v) is the set of all
feasible outcomes in F(N) that no subset of agents has an A-
profitable deviation from. The A-core is denoted C(A, G).

EXAMPLE 3.7. The arbitration function for the c-core is φl ≡
0. The arbitration function for the r-core is pJ(cl,x) if cl is the
same after the deviation and is 0 otherwise. The arbitration function
for the o-core is max{0, v(devCS ′(cl)) − pN\J(cl,x)}. We can
define other forms of arbitrators. Set

N ′ = {i ∈ N : i /∈ J and ∃cl, i ∈ supp(cl), devCS ′(cl) 6= cl}.

N ′ is the set of all non-members of J who were hurt in some way
by J’s deviation. One could naturally assume that players in N ′

would not like to pay members of J anymore in any coalition. In
this case, the arbitration function would be pJ(cl,x) if supp(cl)∩
N ′ = ∅ and 0 otherwise. We denote the core that corresponds to
this arbitrator the sensitive core.

Note that if J can A1-profitably deviate using some deviation CS ′

and A1(CS ,x, J,CS ′) ≤ A2(CS ,x, J,CS ′) (coordinate-wise),
then J canA2-profitably deviate from (CS ,x). This implies that if
for all outcomes (CS ,x) and all deviations CS ′ of any J ⊆ N we
have A1(CS ,x, J,CS ′) ≤ A2(CS ,x, J,CS ′), then C(A2, G) ⊆
C(A1, G). Particularly we have

o-core ⊆ r-core ⊆ sensitive-core ⊆ c-core

This is a generalization of the result shown in [4].

4. CHARACTERIZATION OF THE ARBI-
TRATED CORE

We now give a general characterization of the core under some
arbitration function A. Our proof method is similar to the proof of
the characterization result given in [4].

THEOREM 4.1. If G = (N, v) has the ECS property, then an
outcome (CS ,x) ∈ F(N) is in C(A, G) if and only if for any J ⊆
N and deviation CS ′ we have pJ(CS ,x) ≥ val(A,CS ,x, J,CS ′).

Simply put, an outcome is stable if and only if for any coalition J
and any deviation proposed by J , the payoff that the members of J
can obtain under A does not exceed their current payoff.

PROOF. Suppose first that for every J ⊆ N and every deviation
CS ′ of J from CS we have pJ(CS ,x) ≥ val(A,CS ,x, J,CS ′).
Therefore, for all y ∈ I(CS ′),

pJ(CS ′,y) ≤ val(A,CS ,x, J,CS ′) ≤ pJ(CS ,x).

Hence, there exists a player j ∈ J that does not strictly benefit
from (CS ′,y), and J cannot A-profitably deviate from (CS ,x).

Conversely, suppose that for some nonempty J ⊆ N there exists
a deviation CS ′ such that pJ(CS ,x) < val(A,CS ,x, J,CS ′).
We show that (CS ,x) is not in the A-core of G. Let CS |J =
(c1 . . . cm). For all j ∈ J let pj = pj(CS ,x) and for all cl in
CS |J , let rl = φl(CS ,x, J,CS

′). As v has the ECS property,
v∗(CS , J,CS ′) = v(CSM ) for some coalition structure CSM ∈
CSJ .

val(A,CS ,x, J,CS ′) = v(CSM ) +
∑m
l=1 rl, which is strictly

greater than pJ(CS ,x); while J can strictly gain by deviating, it
is possible that the members of J cannot divide the payoffs from
the deviation in a manner that strictly benefits all of them. We now



show that there is a subset of J that can profitably deviate. Recall
that rl may only be distributed among Jl = supp(cl) ∩ J . Given
rl, we define the set of all viable payoff divisions of rl among the
members of Jl as

∆l = {ρ ∈ Rn+ |
n∑
i=1

ρi = rl and ρi = 0 for all i /∈ Jl}.

Note that ∆l is compact. Given (CS ,x), we define its total loss
function

TL(CS,x) : I(CSM )×
m∏
l=1

∆l → R.

Given an imputation y ∈ I(CSM ) and (ρl)
m
l=1 ∈

∏m
l=1 ∆l, we

define the total payoff to player j ∈ J as

qj = pj(CSM ,y) +

m∑
l=1

ρjl .

The total loss of a payoff division is

TL(CS,x)(y, (ρl)
m
l=1) =

∑
j∈J|pj>qj

pj − qj .

TL(CS,x) is a continuous, real valued function over a compact
set, so there is some payoff division (y, (ρl)

m
l=1) that minimizes

TL(CS,x). Given a loss–minimizing payoff division (y, (ρl)
m
l=1),

we construct a directed graph Γ = (V,E) where V = J , and there
is a directed edge from i ∈ J to j ∈ J if and only if i can legally
transfer payments to j; this can happen if an only if both i and j are
in the support of some coalition c and i receives a positive payoff
from c. We color the vertices of the graph as follows: a vertex j
is green if pj < qj , white if pj = qj , and red if pj > qj . Since∑
j∈J qj > pJ(CS , x), the graph has at least one green vertex. If

all vertices are green, then pj < qj for all j ∈ J , i.e., CS′ is a
profitable deviation for all players in J , and we are done. We now
assume that there is at least one non–green vertex.

Note that if g ∈ J is green, then if there is an edge from g to
some j, then g can transfer a small amount of payoff 0 < δ <
qg − pg to j. If δ is small enough, then the resulting outcome is
still a viable imputation. Similarly, j can legally transfer the same
amount to any vertex that j is connected to. Therefore, if there is
a path from a green vertex g to some j, then g can transfer a small
amount δ to j while remaining green. Following [4], we observe
that since we chose a payoff distribution that minimizes TL(CS,x),
if there is a path from a green vertex g to some vertex i, then i
is not red. Thus, we can assume w.l.o.g. that if a vertex i is not
green, then there is no path from a green vertex to i. Let GJ be
the set of all green vertices; we claim that GJ can A-profitably
deviate. Indeed, note that making J\GJ return to their original
contributions according to CS will not negatively affect GJ (here
we use the fact that A is deviation–monotone); if GJ decides to
deviate from CS , without having J\GJ deviate as well, its payoffs
cannot decrease. Therefore,GJ canA-profitably deviate from CS ,
and we are done.

4.1 The Refined and Optimistic Cores
Theorem 4.1 immediately implies the characterization of the con-

servative core given in [4]. Let Ac denote the conservative arbitra-
tor; under Ac we have φl(CS ,x, J,CS ′) ≡ 0, so any deviating
set should not leave any of its resources in any coalition, but rather
devote all of its resources to maximize v∗(CS , J,CS ′). Therefore,

sup
CS ′
{val(Ac,CS ,x, J,CS ′)} = sup

CS ′
{v∗(CS , J,CS ′)} = v∗(J).

Our characterization result indeed shows that (CS ,x) is c-stable if
and only if for all J ⊆ N , pJ(CS ,x) ≥ v∗(J).

Theorem 4.1 also gives an intuitive characterization of the re-
fined and optimistic cores; under the refined arbitrator, denoted
Ar , a deviating subset J can expect payoff only from coalitions
it did not change. Thus, if J decides to deviate from a coalition,
it should withdraw all of its resources from that coalition. The
arbitration value of Ar is v∗(CS , J,CS ′) + pJ(U,x), where U
is a matrix whose columns are the coalitions unchanged by J’s
deviation. Consequently, an outcome (CS ,x) is in the r-core if
and only if for all J ⊆ N and any deviation of J , CS ′, we have
pJ(CS ,x) ≥ v∗(CS , J,CS ′) + pJ(U,x). To conclude, an out-
come (CS ,x) is in the r-core if and only if for any J ⊆ N and any
matrix Q whose column vectors are coalitions in CS|J we have

pJ(CS |J ,x) + pJ(Q,x) ≥ v∗(w(CS |J) + w(Q)|J).

Note that if Q = CS |J , we get the c-core condition.
Under the optimistic arbitrator, denotedAo, J can expect payoff

from a coalition c if all non-J members of c get the payoff they re-
ceived under x. Thus, the payoff available to J is v(devCS ′(cl))−
pN\J(cl,x). Let us denote by P (CS) the coalitions from which
J can expect payoff if it makes the deviation CS ′, and by P (CS ′)
the same coalitions after J’s deviation. We define N(CS) to be
the coalitions that will not pay J . By Theorem 4.1 we have that
(CS ,x) ∈ C(Ao, G) if and only if

pJ(CS ,x) ≥ v∗(CS , J,CS ′) + v(P (CS ′))− pN\J(P (CS),x).

Since pN (P (CS),x) = v(P (CS)), it follows that (CS ,x) ∈
C(Ao, G) if and only if

pJ(N(CS),x) ≥ v∗(CS , J,CS ′) + v(P (CS ′))− v(P (CS)).

Note that if we only consider deviations where J withdraws all of
its resources from N(CS) and does not change its contribution to
P (CS), then we get the characterization of the r-core. Also note
that checking if an outcome is in the r-core or c-core can be done
by considering a finite number of deviations, but for o-core this is
not the case.

5. THE NUCLEOLUS OF AN ARBITRATED
OCF GAME

Although the core of a game is a useful solution concept, it may
be empty in some cases; it is desirable to have a solution concept
that is more robust, and, in particular, is guaranteed to be non-
empty for all (reasonable) OCF games. In the non-overlapping
setting, this role is fulfilled by the nucleolus [11]. We extend the
notion of nucleolus to OCF games, and show that it exhibits many
of the desirable properties of its non-OCF counterpart.

LetA∗(CS ,x, J) denote the most that J ⊆ N can receive from
an arbitrator given an outcome (CS ,x). In this section, we only
consider OCF games for which A∗(CS ,x, J) is a well–defined
real value for any CS , x and J .

DEFINITION 5.1. Given an outcome (CS ,x), the excess of J ⊆
N is defined as e(CS ,x, J) = A∗(CS ,x, J)− pJ(CS ,x).

The excess is a measure of a subset’s “unhappiness” with a given
outcome: the lower the excess, the happier the subset. Note also
that Theorem 4.1 states that (CS ,x) ∈ C(A, G) if and only if
e(CS ,x, J) ≤ 0 for all J ⊆ N . Given an outcome (CS ,x), we
define its excess vector as

θ(CS ,x) = (e(CS ,x, S1), e(CS ,x, S2), ..., e(CS ,x, S2n),



where e(CS ,x, S1) ≥ ... ≥ e(CS ,x, S2n). We write (CS ,x) �L
(CS ′,y) if θ(CS ,x) is lexicographically smaller than θ(CS ′,y).

We point out that Definition 5.1 coincides with the definition of
excess for classic TU cooperative games; given a classic TU game
(N,u), the most that the set J can get is simply u(J), and the
excess is defined as the difference between u(J) and the payoff to
J . This analogous definition gives rise to an analogous definition
of an arbitrated nucleolus.

Given an OCF game G = (N, v) arbitrated byA, the arbitrated
nucleolus of G, denoted N (A, G), is the set of all outcomes in
F(N) that are minimal with respect to �L. Observe that just like
in the non-overlapping case, if C(A, G) 6= ∅, then N (A, G) ⊆
C(A, G).

5.1 Non-Emptiness of the Nucleolus
Unlike the arbitrated core, the nucleolus is never empty as long

as A∗(CS ,x, J) is continuous with respect to (CS ,x). In fact, it
suffices that the excess of a set be achievable by using some devi-
ation from a given outcome. This is true for the arbitrators defined
above, assuming that v has the ECS property.

THEOREM 5.2. If v has the ECS property andA∗(CS ,x, J) is
continuous w.r.t (CS ,x), thenN (A, G) 6= ∅

PROOF. First, we would like to note that the excess vector is
comprised of continuous functions over F(N). Indeed, observe
that for any outcome (CS ,x) and any k = 1, . . . , 2n we have

θk(CS ,x) = max
S1,...,Sk⊆N

{min{e(CS ,x, S1), ..., e(CS ,x, Sk)}},

where all S1, ..., Sk are different subsets ofN . SinceA∗(CS ,x, J)
is continuous, so is the excess. Thus, θk is obtained by combining
continuous functions using a finite number of min and max opera-
tions, and therefore it is continuous as well.

Set X1 = {(CS ,x) = argmin(CS ′,y)∈F(N){θ1(CS ′,y)}},
and for every k = 2, . . . , 2n, let

Xk = {(CS ,x) = argmin(CS ′,y)∈Xk−1
{θk(CS ′,y)}}.

X2n ⊆ N (A, G), since if (CS ,x) ∈ Xk then θk(CS ,x) ≤
θk(CS ′,y) for every k = 1, ..., 2n. Thus, it remains to show that
X2n is non-empty. Now, the set F(N) is compact and non-empty.
From elementary calculus, we know that ifC ⊆ Rm is a non-empty
compact set, and f : C → R is a continuous function, then the set
X = {x ∈ C | f(x) = miny∈C{f(y)}} is a non-empty compact
set. Hence, X1 is compact and non-empty, and inductively so is
X2n . Consequently,N (A, G) 6= ∅.

5.2 Properties of the Nucleolus
The nucleolus in the non-overlapping setting exhibits some at-

tractive properties. For example, in the non-overlapping setting,
the nucleolus is a single point [9, 18]. In the arbitrated OCF set-
ting, however, the nucleolus may have a richer structure.

EXAMPLE 5.3. Consider the following TTG: N = {1, 2}.
Both players have weight of 1 and there is one task t with w(t) =
2, p(t) = 20. Assume that G is arbitrated by the refined arbitrator.
The r-core of the game is not empty and the only coalition struc-
ture that is in the r-core is CS = ( 1

1 ). Let us consider a payoff
distribution where player 1 gets 10 − ε and player 2 gets 10 + ε
where 0 < ε < 10. The maximum value that can be provided to
player 1 under the refined arbitrator is if he offers CS as his ob-
jection; any other deviation will leave him with nothing. Indeed,
A∗(CS ,x, {1}) = p1(CS ,x) = 10− ε, thus his excess is 0. One
can verify that all nucleolus outcomes have excess of 0 for all sets

in this game. However, if the same game is arbitrated by the conser-
vative arbitrator, then the excess of player 1 is 0−(10−ε) = ε−10,
which will make him sensitive to the fact that he is being cheated.

Example 5.3 demonstrates that outcomes in N (A, G) need not
be unique, nor distribute payoff among players in the same manner.
However, it turns out that if A∗(CS ,x, J) is convex as a func-
tion of x when J and CS are fixed, then for any two outcomes in
the nucleolus that have the same coalition structure, each subset of
players has the same excess under both of these outcomes. First,
we need the following technical lemma:

LEMMA 5.4. If (CS ,x), (CS ,y) ∈ N (A, G) and z = x+y
2

,
then (CS , z) ∈ N (A, G).

PROOF. Suppose that (CS ,x), (CS ,y) ∈ N (A, G). Both out-
comes must have the same excess vector, i.e. θ(CS ,x) = θ(CS ,y).
Set z = x+y

2
. Since I(CS) is convex, z ∈ I(CS). Consider

θ(CS , z). Denote

θ(CS ,x) = (e(CS ,x, J1), ..., e(CS ,x, J2n)),

θ(CS ,y) = (e(CS ,y,K1), ..., e(CS ,y,K2n)),

θ(CS , z) = (e(CS , z, L1), ..., e(CS , z, L2n)).

Given a deviation CS ′ of J from CS , we have

A∗(CS , z, J) ≤ A
∗(CS ,x, J) +A∗(CS ,y, J)

2
,

since A∗ is convex. Since the payoffs to J are linear in the impu-
tations, we conclude that

e(CS , z, J) ≤ 1

2
e(CS ,x, J) +

1

2
e(CS ,y, J).

Denote e(CS ,x, Jl) = e(CS ,y,Kl) = Vl. We get

e(CS , z, L1) ≤ e(CS ,x, L1) + e(CS ,y, L1)

2
≤ V1.

If at any point the inequality is strict, e(CS , z, L1) < V1 and
θ(CS , z) is strictly smaller lexicographically than θ(CS ,x), a con-
tradiction. We similarly conclude that e(CS , z, Lk) = Vk for all
k = 1, . . . , 2n. Therefore θ(CS , z) = θ(CS ,x) = θ(CS ,y), and
(CS , z) ∈ N (A, G).

THEOREM 5.5. Let G = (N, v) be a game arbitrated by some
convex arbitratorA. If (CS ,x), (CS ,y) ∈ N (A, G) then for any
J ⊆ N we have e(CS ,x, J) = e(CS ,y, J).

PROOF. The proof scheme is somewhat similar to the proof that
the nucleolus for non-OCF games is unique [18, 9]. Let (CS ,x)
and (CS ,y) be in N (A, G). Set z = x+y

2
. Using the same no-

tation as in Lemma 5.4, we know that e(CS ,x, J1) is equal to
e(CS ,y,K1) and e(CS , z, L1), so

e(CS ,x, J1) + e(CS ,y,K1) = 2e(CS , z, L1).

As shown in Lemma 5.4,

2e(CS , z, L1) ≤ e(CS ,x, L1) + e(CS ,y, L1).

By definition of J1, e(CS ,x, L1) ≤ e(CS ,x, J1) and similarly,
e(CS ,y, L1) ≤ e(CS ,y,K1). This implies that

e(CS ,y,K1) = e(CS ,y, L1) = e(CS ,x, J1) = e(CS ,x, L1).

We can swap L1 with J1 in the excess ordering of (CS ,x) without
changing the excess vector. This can be done inductively for any
Lk. We conclude that if (CS ,x), (CS ,y) ∈ N (A, G) then all sets
have the same excess in both outcomes.



The conservative arbitrator is constant at v∗(J), and thus convex.
This allows us to use Theorem 5.5 to show that for the conservative
arbitration function any two outcomes in the nucleolus correspond
to identical payoff vectors.

COROLLARY 5.6. If G is arbitrated by the conservative arbi-
trator, then for any (CS ,x), (CS ,y) ∈ N (Ac, G) and any i ∈ N ,
pi(CS ,x) = pi(CS ,y).

PROOF. Consider two outcomes (CS ,x), (CS ,y) ∈ N (Ac, G)
and a player i. By Theorem 5.5, Ac∗(CS ,x, J) − pi(CS ,x) =
Ac∗(CS ,x, J)−pi(CS ,y). On the other hand,Ac∗(CS ,x, J) =
Ac∗(CS ,y, J) = v∗({i}), so pi(CS ,x) must equal pi(CS ,y).

We remark that one can also show that the refined arbitrator is con-
vex. However, as illustrated by Example 5.3, the conclusion of
Corollary 5.6 does not hold for the refined arbitrator, since the value
of A∗r(CS , z, J) may depend on the vector z.

6. THE SHAPLEY VALUE OF OCF GAMES
Introduced by L.S. Shapley in [12], the Shapley value is a cen-

tral solution concept in classic cooperative game theory. We offer
two possible extensions of the Shapley value to OCF games; one
assumes a fixed coalition structure and is somewhat similar to the
Shapley value for coalition structures defined in [2], while the other
takes into account the ability of sets to maximize their profits us-
ing coalition structures and is similar to the classic notion defined
in [12]. We show that both values are unique with regard to spe-
cific sets of axioms1. In this section, we denote the Shapley value
for crisp games by sv .

Our first definition assumes that the coalition structure CS is
given; it is possible that the agents have agreed on some division
of labor, or one was assigned to them by a central authority. The
following definition of a value provides an axiomatic method of
assessing the contribution of each player to CS . Given a game
G = (N, v) and a coalition c ∈ [0, 1]n we set forth the following
axioms for a value (Φ1(N, v, c), . . . ,Φn(N, v, c)).

(1) Coalitional Efficiency:
∑n
i=1 Φi(N, v, c) = v(c).

(2) Symmetry: Two players i, j ∈ N are OCF-symmetric if
for all x ∈ [0, 1]n, v(x) = v(xi∼j), where xi∼j is x with
the i-th and j-th coordinates exchanged. If i, j are OCF-
symmetric, then Φi(N, v, c) = Φj(N, v, c).

(3) Dummy Player: Set c−i to be c with the ith coordinate set
to 0. If v(c−i) = v(c) then Φi(N, v, c) = 0.

(4) Additivity: Φi(N, v, c) + Φi(N,u, c) = Φi(N,u+ v, c).

We define αv : [0, 1]n × 2N → R as αv(c, S) = v(c|S). Given
a coalition c, the coalitional OCF Shapley value of c, denoted
SV i(N, v, c), is sv i(αv(c, ·)). One can verify that

• αv(c, N) = v(c);

• if two players are OCF-symmetric then they are symmetric
in αv(c, ·);

• if i is a dummy thenαv(c, S∪{i}) = v(cS∪{i}) = v(cS) =
αv(c, S), hence i is dummy in αv(c, ·);

• αu(c, S) + αv(c, S) = u(cS) + v(cS) = (u + v)(cS) =
αu+v(c, S).

1For the axiomatization of the classic Shapley value, see [9] chapter
8, pp. 151-179, as well as the detailed review in [16]

This shows that the OCF properties described above naturally trans-
late to their equivalents in non–OCF games. Hence, the coali-
tional OCF Shapley value satisfies properties (1)–(4). To show
uniqueness, we use the following construction: given a function
u : 2N → R, define v : [0, 1]n → R by setting v(x) = u(S) if
x = cS for some S ⊆ N and v(x) = 0 otherwise. Clearly, we
have αv(c, S) = u(S) for any S ⊆ N . Therefore, uniqueness of
the coalitional OCF Shapley value follows from the uniqueness of
the classic Shapley value. The coalitional OCF Shapley value can
be extended to coalition structures by setting SV i(N, v,CS) =∑k
j=1 SV i(N, v, cj), where CS = (c1 . . . ck). It is immediate

that SV (N, v,CS) is efficient, i.e., the sum of the players’ values
is v(CS), and the value of each coalition is distributed only among
those who support it.

An alternative approach for measuring power does not assume
a preexisting coalition structure, but rather measures the a–priori
marginal contribution of a player, as all players try to maximize
social welfare by forming coalition structures. Young [17] gives
a characterization of the Shapley value using the notion of strong
monotonicity; we use a similar notion for a value. We begin by
setting forth the desirable axioms.

(1) Strong Monotonicity: if for some u, v : [0, 1]n → R and
some i ∈ N we have v∗(c)− v∗(c−i) ≥ u∗(c)− u∗(c−i)
for all c ∈ [0, 1]n, then Φi(N, v) ≥ Φi(N,u).

(2) Symmetry: A value Φ is symmetric if for any two symmetric
players i, j: Φi(N, v) = Φj(N, v).

(3) Efficiency:
∑n
i=1 Φi(N, v) = v∗(N).

Axiom (1) states that if a player i has higher marginal contribution
to v∗(c) than to u∗(c) for any c, then her value in v should be
higher; this is a generalization of strong monotonicity as defined
in [17]. Also note that if two players are OCF-symmetric, then
they are symmetric as players in the crisp analogue of the game.
Finally, these notions are only well–defined assuming that the game
G has the ECS property. We define the OCF Shapley value, denoted
SV ∗(N, v), as

SV ∗i (N, v) = sv i(N, v
∗).

Strong monotonicity, efficiency and symmetry are inherited from
their classic counterparts for sv(N, v∗). Note also that the class of
crisp analogues of OCF games corresponds to the class of superad-
ditive games. Recall that a function u : 2N → R is called super-
additive if for all disjoint S, T ⊆ N it holds that v(S) + v(T ) ≤
v(S ∪T ). One can verify that the crisp analogue of any OCF game
is superadditive. Moreover, given a superadditive u : 2N → R,
one can define the function v : [0, 1] → R to be v(eS) = u(S)
and 0 otherwise; for all S ⊆ N , v∗(S) = u(S). Therefore, the
uniqueness of the Shapley value for superadditive games implies
its uniqueness for the class of crisp analogues, which in turn im-
plies its uniqueness for OCF games.

The two notions of Shapley value for OCF games considered
above do not, in general, coincide, even if the coalition structure
for which we compute the coalitional OCF Shapley value is socially
optimal.

EXAMPLE 6.1. Consider a 3-player TTG with w1 = 5, w2 =
2, w3 = 1, and two tasks, t1, t2, with p(t1) = 6, p(t2) = 12 and
w(t1) = 4, w(t2) = 8. Let us compute SV ∗(N, v). When player
1 is first or second he has marginal contribution of 6. When he is
last, his marginal contribution is 12. Therefore, SV ∗1(N, v) = 8,
and, by efficiency and symmetry, SV ∗2(N, v) = SV ∗3(N, v) = 2.
However, consider a coalition structure where players work on two



copies of t1, and each of them contributes half of his resources
to each copy. Then any player has non-zero marginal contribu-
tion only if he is last, in which case he contributes 12. Therefore
SV 1(N, v,CS) = SV 2(N, v,CS) = SV 3(N, v,CS) = 4.

In Example 6.1, player 1 can contribute significantly more than
the other players, but his coalitional OCF Shapley value is equal to
theirs in CS . This is because in the specific coalition structure CS ,
his marginal contribution is the same as his peers’; if any one of
them leaves a coalition, the value of the remaining coalition struc-
ture becomes zero.

Note also that if two players in a TTG have wi = wj , then
SV ∗i (N, v) = SV ∗j (N, v). However, this is not necessarily true
for the coalitional Shapley value.

EXAMPLE 6.2. Consider a 2-player TTG where both players
have weight w ≥ 2, and there are two tasks; w(t1) = 2w −
1, w(t2) = 1 and p(t1) = M,p(t2) = x, where (2w − 1)x ≤
M . We form CS so that player 1 contributes all of her weight to
t1, while player 2 contributes w − 1 to t1, and completes t2 by
herself. When player 1 is first, then v(( 1

0 )) = x, while under
the current coalition structure, player 2 can gain 2x on her own.
SV 1(N, v,CS) = 1

2
(x + M + x − 2x) = M

2
, and by efficiency

SV 2(N, v,CS) = M+2x
2

.

Example 6.2 implies that the difference between SV ∗i (N, v) and
SV i(N, v,CS) can be arbitrarily large.

7. CONCLUSIONS AND FUTURE WORK
Our work shows significant similarity between concepts from

classic cooperative game theory and their OCF counterparts. We
can also generalize the notion of the bargaining set [6] to OCF
games; the resulting notion shares many properties with the bar-
gaining set in crisp games. We omit these results due to space
constraints. Other solution concepts, such as the ε-core, can be
described using the arbitration function itself, using the freely dis-
tributable component mentioned in Remark 3.3.

The arbitrated OCF model is far from being fully explored. We
would like to point out a few promising directions for further re-
search. First, it is shown in [13] that the Shapley value is in the
core of a convex game. We would like to see if this result extends
to the OCF setting. While [4] define convex OCF games and show
that their c-core is not empty, it is not clear if there is an outcome
in the c-core of a convex game such that each player is paid ex-
actly her OCF Shapley value. In order to do so, we must find some
coalition structure that corresponds to such a payoff scheme.

Another promising direction is exploring processes of overlap-
ping coalition formation. While some work has been done on over-
lapping coalition formation algorithms [8], coalitional stability is
yet to be fully explored. Our work assumes that an outcome is ex-
ogenously determined, and does not describe a process under which
a stable outcome may arise. While [4] proposes a coalition forma-
tion procedure for convex OCF games, it is not clear how to extend
it to the general case. A decentralized coalition formation algo-
rithm, where agents repeatedly form and dissolve coalitions until
a stable coalition structure and payoff division are agreed upon,
would be useful in many multi-agent scenarios. The notion of ar-
bitrators may play a significant role in such a process, as the arbi-
tration function can effectively control the degree to which agents
will be inclined to deviate.

Finally, we would like to investigate the algorithmic properties
of the solution concepts defined in this paper. For example, it is
clear that it is generally hard to compute the OCF Shapley value,

even when one can compute v∗ in polynomial time. However, it
would be interesting to identify natural classes of games where the
Shapley value is tractable.
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