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Abstract

In this paper, we present new results on the fair and effi-
cient allocation of indivisible goods to agents that have mono-
tone, submodular, non-additive valuation functions over bun-
dles. In particular, we show that, if such a valuation func-
tion additionally has binary marginal gains, a socially op-
timal (i.e. utilitarian social welfare-maximizing) allocation
that achieves envy-freeness up to one item exists and can be
computed efficiently. We also prove that the Nash welfare-
maximizing and the leximin allocations both exhibit this
fairness-efficiency combination, by showing that they can be
achieved by minimizing any symmetric strictly convex func-
tion over utilitarian optimal outcomes. Moreover, for a sub-
class of these valuation functions based on maximum (un-
weighted) bipartite matching, we show that a leximin alloca-
tion can be computed in polynomial time.

1 Introduction

How should a bundle of goods be divided amongst a group
of agents with subjective valuations? Are there efficient
methods for finding good allocations? These questions have
been the focus of intense study in the CS/Econ community
in recent years. Several criteria of justice have been pro-
posed in the literature. Some criteria focus on agent wel-
fare; for example, Pareto-optimality stipulates that there is
no other allocation that improves one agent’s valuation with-
out hurting another. Other criteria consider how agents per-
ceive their bundles as compared to others’ allocation; a key
concept here is one of envy: an agent envies another if she
believes that her bundle is worth less than that of another’s
(Foley 1967). Efficient envy-free allocations are not guaran-
teed to exist (consider the case of two agents and one valu-
able item — assigning the item to any one of them results in
envy by the other). This naturally leads to the notion of envy-
freeness up to one good (EF1) (Budish 2011): for every pair
of agents ¢ and j, j’s bundle contains some item whose re-
moval results in ¢ not envying j; Lipton et al. (2004) provide
an efficient algorithm for computing an EF1 allocation. Of
particular interest are methods that simultaneously achieve
several desiderata. When agent valuations are additive, i.e.
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the value for a bundle is the sum of the values for its indi-
vidual items, Caragiannis et al. (2016) show that allocations
that satisfy both approximate envy-freeness and the popular
efficiency criterion of Pareto-optimality (PO) exist, specifi-
cally the ones that maximize the product of agents’ utilities
— also known as max Nash welfare (MNW). Barman, Kr-
ishnamurthy, and Vaish; Barman, Krishnamurthy, and Vaish
(2018a; 2018b) show that an allocation with these properties
can be computed in (pseudo-)polynomial time.

Indeed, most works on the fair allocation of indivisible
goods have focused on the additive setting; at present, lit-
tle is known about other classes of valuation functions. This
is where our work comes in.

Our contributions We focus on monotone submodular val-
uations with binary marginal gains (referred to as (0,1)-
SUB valuations). This class of valuations naturally arises
in many practical applications. In particular they include
assignment valuations with binary marginal gains (called
(0,1)-OXS valuations), which capture scenarios such as the
allocation of public housing or kindergarten slots, where
each agent is a group of individuals to whom we wish to
match items in a groupwise fair way. For (0,1)-SUB val-
uations, we establish the following existential and compu-
tational results on the compatibility of envy-freeness with
welfare-based allocation concepts.

e For (0,1)-SUB valuations, we show that an EF1 allo-
cation that also maximizes the utilitarian social welfare
(hence is Pareto-optimal) always exists and can be com-
puted in polynomial time.

e For (0,1)-SUB valuations, we show that leximin and
MNW allocations both exhibit the EF1 property.

e For (0,1)-SUB valuations, we provide a characterization
of the leximin allocations; we show that they are iden-
tical to the minimizers of any symmetric strictly convex
function over utilitarian optimal allocations. We obtain
the same characterization for MNW allocations.

e For (0, 1)-OXS valuations, we show that both leximin and
MNW allocations can be computed efficiently.

From a technical perspective, our work makes extensive use
of tools and concepts from matroid theory. For instance,
most of our results are based on an observation that the set of



Figure 1: Equivalences and implications among properties
for the (0, 1)-SUB valuation class.

non-wasteful (also called clean) bundles forms the set of in-
dependent sets of a matroid. While some papers explore the
application of matroid theory to the fair division problem
(Biswas and Barman 2018; Gourves and Monnot 2017), we
believe that ours is the first to demonstrate its strong con-
nection with fairness and efficiency guarantees. Figure 1 de-
scribes the relation between properties for (0,1)-SUB valu-
ations. Our computational results are summarized in Table 1.

Related work Our paper is related to the active area of re-
search on the fair allocation of indivisible goods. Budish
(2011) was the first to formalize the notion of EF1; but, it
implicitly appeared in Lipton et al. (2004), who designed a
polynomial time algorithm that returns an EF1 allocation for
arbitrary monotone valuations (called the envy graph algo-
rithm). Caragiannis et al. (2016) proved the seminal exis-
tence result of EF1 and Pareto-optimal allocations for non-
negative additive valuations; Barman, Krishnamurthy, and
Vaish (2018a) subsequently provided a pseudo-polynomial
time algorithm for computing such allocations. Closely re-
lated to ours is the work of Barman, Krishnamurthy, and
Vaish (2018b), who developed an efficient greedy algorithm
to find an MNW allocation when the valuation of each agent
is a concave function that depends on the number of items
approved by her. We note that this class of valuations does
not subsume the class of (0, 1)-OXS valuations (since bun-
dles of the same size may have different values under the
latter class); hence their polynomial-time complexity result
does not imply our Theorem 4.1.

One motivation for our paper is recent work by Benabbou et
al. (2019) on promoting diversity in assignment problems
through efficient, EF1 allocations of bundles to attribute-
based groups in the population. Other work in this vein in-
cludes fairness/diversity through quotas (Aziz et al. 2019;
Suzuki, Tamura, and Yokoo 2018; Benabbou et al. 2018,
and references therein), or by the optimization of carefully
constructed functions (Dickerson et al. 2019; Ahmed, Dick-
erson, and Fuge 2017; Lang and Skowron 2016, and refer-
ences therein) in allocation/subset selection.

2 Model and definitions

Throughout the paper, given a positive integer r, let [r] de-
note the set {1,2,...,7}. We are given a set N = [n] of
agents, and a set O = {o01,...,0p,} Of items or goods.
Subsets of O are referred to as bundles, and each agent
i € N has a valuation function v; : 2° — R, over bun-
dles where v;(#) = 0. We further assume polynomial-time
oracle access to the valuation v; of all agents. Given a val-

uation function v; : 2¢ — R, we define the marginal gain
of an item 0 € O w.rt. a bundle S C O, as A;(S;0) =
v;(SU{o}) — v;(S). A valuation function v; is monotone if
v;(S) C v;(T) whenever S C T.

An allocation A of items to agents is a collection of n dis-
joint bundles Ay, ..., A,, such that UieN A; C O; the bun-
dle A; is allocated to agent i. Given an allocation A, we
denote by Ay the set of unallocated items, also referred to
as withheld items. We may refer to agent ¢’s valuation of
its bundle v;(A4;) under the allocation A as its realized val-
uation under A. An allocation is complete if every item is
allocated to some agent, i.e. Ag = (). We admit incomplete,
but clean allocations: a bundle S C O is clean fori € N if it
contains no item o € S for which agent ¢ has zero marginal
gain (i.e., A;(S \ {0};0) = 0) and an allocation is clean
if each agent i € N receives a clean bundle. It is easy to
‘clean’ any allocation without changing any realized valua-
tion by iteratively revoking items of zero marginal gain from
respective agents and placing them in Ag.

2.1 Fairness and efficiency criteria

Our fairness criteria are based on the concept of envy. Agent
i envies agent j under an allocation A if v;(A;) < v;(4;).
An allocation A is envy-free (EF) if no agent envies another.
We will use the following relaxation of the EF property due
to Budish (2011): we say that A is envy-free up to one good
(EF1) if, for every ¢, 5 € N, ¢ does not envy j or there exists
oin A;j such that v;(A;) > v;(4; \ {o}).
The efficiency concept that we are primarily interested in is
Pareto-optimality. An allocation A’ is said to Pareto domi-
nate the allocation A if v;(A}) > v;(A;) forall agentsi € N
and v;(A’;) > v;(A;) for some agent j € N. An allocation
is Pareto-optimal (or PO for short) if it is not Pareto domi-
nated by any other allocation.
There are several ways of measuring the welfare of an allo-
cation (Sen 1970). Specifically, given an allocation A,
e its utilitarian social welfare is USW(A) £ S0 v;(A;);
e its egalitarian social welfare is ESW(A) =
min;e y vi(A;);

o its Nash welfare is NW(A) = T,y vi(4s).

An allocation A is said to be utilitarian optimal (respec-
tively, egalitarian optimal) if it maximizes USW(A) (respec-
tively, ESW(A)) among all allocations. Since it is possible
that the maximum attainable Nash welfare is 0, we define
the maximum Nash social welfare (MNW) allocation as fol-
lows: given a problem instance, we find a largest subset of
agents, say Npax € N, to which we can allocate bundles
of positive values, and compute an allocation to agents in
Npax that maximizes the product of their realized valua-
tions. If V.« 1S not unique, we choose the one that results
in the highest product of realized valuations.

The leximin welfare is a lexicographic refinement of the
maximin welfare concept. Formally, for real n-dimensional
vectors x and y, x is lexicographically greater than or equal
to y (denoted by x > y)ifand only if x = y, or x # y
and for the minimum index j such that x; # y; we have
x; > y,. For each allocation A, we denote by 6(A) the



MNW Leximin max-USW+EF1
(0,1)-OXS || poly-time (Theorem 4.1) | poly-time (Theorem 4.1) | poly-time (Theorem 3.4)
(0,1)-SUB ? ? poly-time (Theorem 3.4)

Table 1: Summary of our computational complexity results.

vector of the components v;(A;) (¢ € N) arranged in non-
decreasing order. A leximin allocation A is an allocation that
maximizes the egalitarian welfare in a lexicographic sense,
ie., 0(A) >, 8(A’) for any other allocation A’.

2.2 Submodular valuations

The main focus of this paper is on fair allocation when agent
valuations are not necessarily additive but submodular. A
valuation function v; is submodular if each single item con-
tributes more to a smaller set than to a larger one, namely,
forall S CT COandallo € O\T, A;(S;0) > Ai(T;0).
Submodularity is known to arise in many real-life applica-
tions. One important class of submodular valuations is the
class of assignment valuations. This class of valuations was
introduced by Shapley (1958) and is identical to the OXS
valuation class (Lehmann, Lehmann, and Nisan 2006). Fair
allocation in this setting was explored by Benabbou et al.
(2019). Here, each agent h € N represents a group of indi-
viduals N, (such as ethnic groups and genders), each indi-
vidual 7 € Ny, (also called a member) having a fixed non-
negative weight u; , for each item o. An agent h values a
bundle S via a matching of the items to its individuals (i.e.
each item is assigned to at most one member and vice versa)
that maximizes the sum of weights (Munkres 1957); namely,

vp(S) = max{ Z Ui x| ™€ (N, S) },

€N,

where II(Vp,, S) is the set of matchings w : N, — S in the
complete bipartite graph with bipartition (NN, S).

Our particular focus is on submodular functions with binary
marginal gains. We say that v; has binary marginal gains
if A;(S;0) € {0,1} forall S C O and o € O\ S. The
class of submodular valuations with binary marginal gains
includes the classes of binary additive valuations (Barman,
Krishnamurthy, and Vaish 2018b) and of assignment valua-
tions where the weight is binary (Benabbou et al. 2019). We
call a valuation function v; (0,1)-SUB if it is a submodular
function with binary marginal gains, and (0, 1)-OXS if it is
an assignment valuation with binary marginal gains.

3 Submodularity and binary marginal gains

The main theme of all results in this section is that, when all
agents have (0,1)-SUB valuations, fairness and efficiency
properties are compatible with each other and also with the
optimal values of all three welfare functions we consider.
Lemma 3.1 below shows that Pareto-optimality of optimal
welfare is unsurprising; but, it is non-trivial to prove the EF1
property in each case.

Lemma 3.1. For monotone valuations, every utilitarian op-
timal, MNW, and leximin allocation is Pareto-optimal.

Before proceeding further, we state some useful properties
of the (0, 1)-SUB valuation class.

Proposition 3.2. A valuation function v; with binary
marginal gains is always monotone and takes values in [|S|]
Sfor any input bundle S (hence v(S) < |5]).

This property leads us to the following equivalence between
the size and realized valuation of every clean, allocated bun-
dle for the valuation subclass under consideration — a cru-
cial component in all our proofs. Note that cleaning any
optimal-welfare allocation leaves the welfare unaltered and
ensures that each resulting withheld item is of zero marginal
gain to each agent; hence it preserves the PO condition.

Proposition 3.3. For submodular valuations with binary
marginal gains, A is a clean allocation if and only if
vi(A;) = |A4;| for each i € N.

A simple example of one good and two agents shows that
an envy-free and Pareto-optimal allocation may not exist
even under (0,1)-SUB valuations. This justifies our quest
for EF1 and Pareto-optimal allocations.

3.1 Utilitarian optimal and EF1 allocation

For non-negative additive valuations, Caragiannis et al.
(2016) prove that every MNW allocation is Pareto-optimal
and EF1. However, the existence question of an allocation
satisfying PO and EF1 remains open for submodular valu-
ations." We show that the “unreasonable fairness” of max-
imum Nash welfare (Caragiannis et al. 2016) extends to a
class of submodular valuations with binary marginal gains.
In fact, we provide a surprising relation between efficiency
and fairness: both utilitarian optimality and EF1 turn out to
be compatible under (0, 1)-SUB valuations.

Theorem 3.4. For submodular valuations with binary
marginal gains, a utilitarian optimal allocation that is also
EF1 exists and can be computed in polynomial time.

Our result is constructive: we provide a way of computing
the above allocation in Algorithm 1. The proof of Theo-
rem 3.4 and those of the latter theorems utilize Lemmas 3.5,
and 3.6, which shed light on the interesting interaction be-
tween envy and (0, 1)-SUB valuations.

Lemma 3.5 (Transferability property). For monotone sub-
modular valuation functions, if agent i envies agent j under
an allocation A, then there is an item o € A; for which i has
a positive marginal gain.

Proof. Assume that agent ¢ envies agent j under an al-
location A, ie. v;(A4;) < wv;(A;), but no item o € A;
has a positive marginal gain, i.e., A;(A;;0) = 0 for each

'Indeed, Caragiannis et al. (2016) Example C.3 is an instance
with submodular valuations where MNW does not imply EF1.



o € Aj. Let Aj = {01,02,...,0,}. Define Sy = () and
Sy = {01,09,...,0,} for each ¢ € [r]. This gives us the
following telescoping series:

i A U A)) = 0i(A) = Y A(A;U S 15 00).
=1

However, submodularity implies that for each ¢t € [r],
A;(A; U Si—1500) < Ai(A;;00) = 0, meaning that

vi(A; U Aj) —vi(Ag) = ZAz‘(Ai U Si—150:) = 0.
t=1

Together with monotonicity, this yields v;(A4;) < v;(A4; U
A;) = vi(4;) < v;(A;), a contradiction. O

Note that Lemma 3.5 holds for submodular functions with
arbitrary real-valued marginal gains, and is trivially true for
non-negative additive valuations. However, there exist non-
submodular valuation functions that violate the transferabil-
ity property, even when they have binary marginal gains, as

Example A.1 in the supplementary material illustrates.
Below, we show that if ¢’s envy towards j cannot be elimi-

nated by removing one item, then the sizes of their “clean”
bundles differ at least by two. Formally, we say that agent
i envies j up to more than 1 item if A; # () and v;(4;) <
v;(A; \ {o}) forevery o € A;.

Lemma 3.6. For submodular functions with binary
marginal gains, if agent i envies agent j up to more than
1 item under a clean allocation A, then |A;| > |A;| + 2.

Proof. From the definition: A; # () and v;(A4;) < v;(A; \
{o}) for every o € A;. Consider one such o. From Proposi-
tion 3.2, v;(A4; \ {0}) < |A4; \ {o}| = |4,| — 1. Since A is
clean, v;(A;) = |A;|. Combining these, we get

[Ail = vi(Ai) <wvi(A;\{o}) < [4;] -1,
which proves the theorem statement. O

We will now show that under (0, 1)-SUB valuations, utili-
tarian social welfare maximization is polynomial-time solv-
able (3.7). To this end, we will exploit the fact that the set of
clean bundles forms the set of independent sets of a matroid.
We start by introducing some notions from matroid theory.
Formally, a matroid is an ordered pair (E,Z), where E is
some finite set and Z is a family of its subsets (referred to
as the independent sets of the matroid), which satisfies the
following three axioms:

Imoez,

(2)if X CY €7, then X € 7, and

(13)if X,Y € Z and | X| > |Y|, then there exists z € X \ YV
such that Y U {z} € T.

The rank function » : 2¥ — Z of a matroid returns the
rank of each set X, i.e. the maximum size of an independent
subset of X. Another equivalent way to define a matroid is
to use the axiom systems for a rank function. We require
that (R1) (X) < |X|, (R2) r is monotone, and (R3) r is
submodular. Then, the pair (E,7) whereZ = { X C E |
r(X) = |X] } is a matroid.

Theorem 3.7. For submodular functions with binary
marginal gains, one can compute a clean utilitarian optimal
allocation in polynomial time.

Proof. We prove the claim by a reduction to the matroid in-
tersection problem. Let E be the set of pairs of items and
agents, i.e., E = {{o0,i} | 0 € O Ai € N }. For each
i € N and for each X C FE, we define 7;(X) to be the valu-
ation of ¢, under function v;(-), for the items 0 € O such that
{0,i} € X. Clearly, r; is also a submodular function with
binary marginal gains; combining this with Proposition 3.2
and the fact that r; () = 0, it is easy to see that each r; is a
rank function of a matroid. Thus, the set of clean bundles for
i,ieZ; ={X C E | ri(X) =|X|}, is the set of indepen-
dent sets of a matroid. Taking the unionZ =7; U --- UZ,,
the pair (F, Z) is known to form a matroid (Korte and Vygen
20006), often referred to as a union matroid. By definition,
any independent set in Z corresponds to a union of clean
bundles for each ¢ € N and vice versa. To ensure that each
item is assigned at most once (i.e. bundles are disjoint), we
will define another matroid (E, O) where the set of indepen-
dent sets is given by

O={XCE||XNE,|<1VYoeO.

Here, E, = {e = {o,i} | i € N} for o € O. The pair
(E,O) is known as a partition matroid (Korte and Vygen
2006).

Now, observe that a common independent set of the two
matroids X € O N Z corresponds to a clean allocation
A of our original instance where each agent i receives the
items o with {o0,i} € X; indeed, each item o is allocated
at most once because |E, N X| < 1, and each A; is clean
because the realized valuation of agent ¢ under A is exactly
the size of the allocated bundle. Conversely, any clean allo-
cation A of our instance corresponds to an independent set
X =Uien Xi € INO, where X; = {{o,i} | 0 € A; }: for
eachi € N, r;(X;) = |X;| by Proposition 3.3, and hence
X; € Z;, which implies that X € Z; also, |[ X N E,| < 1 as
A is an allocation, and hence X € O.

Thus, the maximum utilitarian social welfare is the same as
the size of a maximum common independent set in Z N O.
It is well known that one can find a largest common inde-
pendent set in two matroids in time O(|E|30) where 6 is the
maximum complexity of the two independence oracles (Ed-
monds 1979). Since the maximum complexity of checking
independence in two matroids (E, O) and (E, Z) is bounded
by O(mnF') where F' is the maximum complexity of the
value query oracle, we can find a set X € Z N O with maxi-
mum | X| in time O(|E|>*mnF). O

We are now ready to prove Theorem 3.4.

Proof. Algorithm 1 maintains optimal USW as an invariant
and terminates on an EF1 allocation. Specifically, we first
compute a clean allocation that maximizes the utilitarian so-
cial welfare. The EIT subroutine in the algorithm iteratively
eliminates envy by transferring an item from the envied bun-
dle to the envious agent; Lemma 3.5 ensures that there is
always an item in the envied bundle for which the envious
agent has a positive marginal gain.



Algorithm 1: Algorithm for finding utilitarian opti-

mal EF1 allocation

1 Compute a clean, utilitarian optimal allocation A.

2 /[*Envy-Induced Transfers (EIT)*/

3 while there are two agents i, j such that i envies j
more than 1 item. do

4 Find item 0 € A; with A;(4;50) = 1.

5 Aj — Aj \ {O}; Ai — AL U {O}

6 end

Correctness: Each EIT step maintains the optimal utilitarian
social welfare as well as cleanliness: an envied agent’s valu-
ation diminishes exactly by 1 while that of the envious agent
increases by exactly 1. Thus, if it terminates, the EIT sub-
routine retains the initial (optimal) USW and, by the stopping
criterion, induces the EF1 property. To show that the algo-
rithm terminates in polynomial time, we define the potential
function ¢(A) := Y, o v vi(A)?.

At each step of the algorithm, ¢(A) strictly decreases by
2 or a larger integer. To see this, let A’ denote the resulting
allocation after reallocation of item o from agent j to ¢. Since
A'is clean, we have v;(A}) = v;(4;) + 1 and v;(A}) =
v;(A;) — 1. Also, since i envies j up to more than one item
under allocation A, v;(4;) +2 < v;(A;) by Lemma 3.6.
Combining these, we get

(vi(Ai) + 1) + (0(4;) = 1)* — v(4)* — v(4;)?
= 2(1 + vi(Ai) - ’Uj(Aj)) < —2.

Complexity: It remains to analyze the running time of the al-
gorithm. By Theorem 3.7, computing a clean utilitarian op-
timal allocation can be done in polynomial time. The value
of the non-negative potential function has a polynomial up-
per bound: Y, v vi(A4;)? < (3, cn vi(A4i))? < m?. Thus,
Algorithm 1 runs in polynomial time. O

An interesting implication Algorithm 1, specifically the
above potential function argument, is that a utilitarian opti-
mal allocation that minimizes )", - \ v;(4;)? is always EF1.

Corollary 3.8. For submodular valuations with binary
marginal gains, any utilitarian optimal allocation A that
minimizes $(A) := 3", 5 vi(A;)? among all utilitarian op-
timal allocations is EF1.

Despite its simplicity, Algorithm 1 significantly generalizes
that of Benabbou et al. (2019)’s Theorem 4 (which ensures
the existence of a non-wasteful EF1 allocation for (0, 1)-
OXS valuations) to (0,1)-SUB valuations. We note, how-
ever, that the resulting allocation may be neither MNW
nor leximin even when agents have (0, 1)-OXS valuations:
see Example A.2 in the supplementary material, which also
shows that the converse of Corollary 3.8 does not hold.

3.2 MNW and Leximin allocation

We saw that under (0,1)-SUB valuations, a simple itera-
tive procedure allows us to reach an EF1 allocation while
preserving utilitarian optimality. However, as we previously
note, such allocations are not necessarily leximin or MNW.

In this subsection, we characterize the set of leximin and
MNW allocations under (0, 1)-SUB valuations. We start by
showing that Pareto-optimal outcomes coincide with utili-
tarian optimal outcomes when agents have (0,1)-SUB val-
uations. Intuitively, if an allocation is not utilitarian optimal,
one can always find an ‘augmenting’ path that makes at least
one agent happier but does not make any other agent worse
off.

In the subsequent proof, we will use the following notions
and results in matroid theory: Given a matroid (E,Z), the
sets in 27\ T are called dependent, and a minimal dependent
set of a matroid is called a circuit. The following is a crucial
property of circuits.

Lemma 3.9 ((Korte and Vygen 2006)). Let (E,T) be a ma-
troid, X € Z, and y € E \ X such that X U{y} ¢ Z. Then
the set X U {y} contains a unique circuit.

Given a matroid (E,Z), we denote by CZ (X, y) the unique
circuit contained in X U{y} for X € Z,and y € E'\ X such
that X U {y} ¢ Z.

Theorem 3.10. For submodular valuations with binary
marginal gains, any Pareto-optimal allocation is utilitarian
optimal.

Proof. Define E, X;,Z; fori € N,Z, and O as in the proof
of Theorem 3.7. We first observe that for each X € 7 and
eachy € F\ X, if X U {y} ¢ Z, then there is agenti € N
whose corresponding items in X; and y is not clean, i.e.,

Xi U {y} ¢ Iia
which by Lemma 3.9 implies that the circuit CZ(X,y) is
contained in E;, i.e., CT(X,y) = CTi (X, y).
Now to prove the claim, let A be a Pareto-optimal alloca-
tion. Without loss of generality, we assume that A is clean.
Then, as we have seen before, A corresponds to a common
independent set X* in Z N O given by

X =|J{e={oi}eEloc A}
i€EN

Suppose towards a contradiction that A does not maximize
the utilitarian social welfare, which means that X * is not a
largest common independent set of Z and O. It is known that
given two matroids and their common independent set, if it
is not a maximum-size common independent set, then there
is an ‘augmenting’ path (Edmonds 1979).

To formally define an augmenting path, we define an auxil-
iary graph G x+« = (F, ng) U Bg?)) where the set of arcs is
given by

BY = {(z,y) |y e E\X* Az e COX* )\ {y} ).

B ={(y.2) |y € E\X* nxe CF(X* )\ {y} }.

Since X * is not a maximum common independent set of O
and Z, the set X* admits an augmenting path, which is an
alternating path P = (yo,1,%1,-..,%s,Ys) in Gx» with
Yo, Y1, ---,Ys € X* and x1,x2,..., x5 € X*, where X*
can be augmented by one element along the path, i.e.,

X'= (X*\{xlax%"'?xs})U{y07y17~"7ys} €eIno.

Now let’s write the pairs of agents and items that correspond
to y; and x; as follows:



o y, = {i(y),0(y)} where i(y;) € N and o(y;) € O for
t=20,1,...,s;and

o x; = {i(xs),0(xs)} where i(xy) € N and o(z;) € O for
t=1,2,...,s.

Since each z; (t € [s]) belongs to the unique circuit
CT(X*,ys—1), which is contained in the edges incident to
i(y4—1) by the observation made before, we have i(z;) =
i(yt—1) for each t € [s]. This means that along the augment-
ing path P, each agent i(x;) receives a new item o(y;_1)
and discards the old item o(x¢).

Now consider the reallocation corresponding to X’ where
agent i(x;) receives a new item o(y;—1) but loses the item
o(x;) foreach ¢t = 1,2,...,s, and agent i(ys) receives the
item o(ys). Such a reallocation increases the valuation of
agent i(ys) by 1, while it does not decrease the valuations of
all the intermediate agents, i(x1),4(x2),...,i(zs), as well
as the other agents whose agents do not appear on P. We
thus conclude that A is Pareto dominated by the new alloca-
tion, a contradiction. O

Theorem 3.10 above, along with Lemma 3.1, implies that
both leximin and MNW allocations are utilitarian optimal.
Next, we show that for the class of (0,1)-SUB valuations,
leximin and MNW allocations are identical to each other;
further, they can be characterized as the minimizers of any
symmetric strictly convex function among all utilitarian op-
timal allocations.

A function ® : Z™ — R is symmetric if for any permutation
7 : [n] = [n],

q)(zla 25 ey Zn) = q)(zw(l)v Zr(2)r - ZTA’(TL))?

and is strictly convex if for any @,y € Z" with & # y and
A € (0,1) where Az + (1 — \)y is an integral vector,

AD(z) + (1 — N)D(y) > DAz + (1 — A)y).

Theorem 3.11. Let & : Z" — R be a symmetric strictly
convex function; let A be some allocation. For submodular
valuations with binary marginal gains, the following state-
ments are equivalent:

1. A is a minimizer of ® over all the utilitarian optimal al-
locations; and

2. A s a leximin allocation; and
3. A maximizes Nash welfare.

Proof. The proof is similar to that of Proposition 6.1 in
Frank and Murota (2019), which shows the analogous equiv-
alence over the integral base-polyhedron.

To prove 1 < 2, let A be a leximin allocation, and let A’ be
a minimizer of ® over all the utilitarian optimal allocations.
We will show that §( A’) is the same as §( A), which, by the
uniqueness of the leximin valuation vector and symmetry of
®, proves the theorem statement.

Assume towards a contradiction that §(A) # 6(A’) and
hence 6(A) >p 6(A’). By Theorem 3.10, we have
USW(A) = USW(A’). Consider the set X of vectors x € Z"
with 21 <o < ... <x, where Y . , x; = a and

Order the distinct elements ), (... 2(*) in X in lex-
icographically increasing order such that

e® <, 2@ <, <p 2O,

So there is no y € X such that ) < y < (+1) for
each t € [s]. Clearly, z(') = §(A’) and (*) = 0(A).

We will prove that &(x®)) > &(x(**+1) foreacht € [s—1],
which implies that ®(0(A’)) > ®(A(A)) and gives us the
desired contradiction. Now fix any ¢ € [s — 1]. Consider the
vectors (*) and (1) It is not difficult to see that a(*+1)
can be obtained from (*) by decreasing the value of the j-th
element by 1 and increasing the value of the i-th element by

1, where x;t) > J:Z(-t) + 2. Namely,
m(tJrl) — :B(t) +Xi — Xj-

Let B = :c§t> - xl(t) >2andy = z® + Bxi — x5);
the vector y only exchanges the i-th and j-th elements of
x®, and thus ®(x®) = d(y) by symmetry of ®. Define

A=1-— % We have 0 < A\ < 1 since 3 > 2. Observe that

A+ (1= Ay = (1= ) + (@ + 50— 1))

=z 4 x; —x; =2,
which gives us the following inequality (from the strict con-
vexity of ®):

cp(w(t)) - A@(m(t)) +(1=Nd(y) > @(m(tﬂ))

To prove 2 < 3, let A be a leximin allocation, and let A’
be an MNW allocation. Again, we will show that 6(A’)
is the same as 6(A), which by the uniqueness of the lex-
imin valuation vector and symmetry of NW, proves the theo-
rem statement. Let N~o(A) (respectively, N~(A’)) be the
agent subset to which we allocate bundles of positive values
under leximin allocation A (respectively, MNW allocation
A’). By definition, the number n’ of agents who get posi-
tive values under leximin allocation A is the same as that
of MNW allocation A’. Now we denote by ¢(A) (respec-
tively, §( A")) the vector of the non-zero components v; (A;)
(respectively, v;(A})) arranged in non-decreasing order. As-
sume towards a contradiction that 0(A) >, §(A’). Since A’
maximizes the product NW(A’) when focusing on N~ (A’)
only, the value } ;¢ v 4y 10g v;(A]) is maximized. How-

ever, p(x) = — >, log z; is a symmetric convex function
for x € Z" with each x; > 0. Thus, by a similar argument
as before, one can show that ¢(6(A")) < ¢(6(A)), a contra-
diction. This completes the proof. O

The above statement does not generalize to the non-binary
case: there is an instance where neither leximin nor MNW
allocation is utilitarian optimal; see Example A.3 in the sup-
plementary material.

Corollary 3.12. For submodular valuations with binary
marginal gains, any leximin or MNW allocation is EF 1.

Proof. Since both leximin and MNW allocations are Pareto-
optimal, they maximize the utilitarian social welfare by The-
orem 3.10. By Theorem 3.11 and the fact that the function



P(A) = 3,y vi(A;)? is a symmetric strictly convex func-
tion, any leximin or MNW allocation is a utilitarian optimal
allocation that minimizes ¢(A) among all utilitarian optimal
allocations, and hence is EF1 by Corollary 3.8. O

4 Assignment valuations with binary gains

We now consider the special but practically important case
when valuations come from maximum matchings. For this
class of valuations, we show that invoking Theorem 3.10,
one can find a leximin or MNW allocation in polynomial
time, by a reduction to the network flow problem. We note
that the complexity of the problem remains open for general
submodular valuations with binary marginal gains.

Theorem 4.1. For assignment valuations with binary
marginal gains, one can find a leximin or MNW allocation
in polynomial time.

Proof. The problem of finding a leximin allocation can
be reduced to the problem of finding an integral balanced
flow in a network, which has been recently shown to be
polynomial-time solvable (Frank and Murota 2019). Specif-
ically, for a network D = (V, A) with source s, sink ¢, and
a capacity function ¢ : A — 7Z, a balanced flow is a maxi-
mum integral feasible flow where the out-flow vector from
the source s to the adjacent vertices h is lexicographically
maximized among all maximum integral feasible flows; that
is, the smallest flow-value on the edges (s, h) is as large as
possible, the second smallest flow-value on the edges (s, h)
is as large as possible, and so on. Frank and Murota (2019)
show that one can find a balanced flow in strongly polyno-
mial time (see Section 7 in Frank and Murota (2019)).

Now, given an instance of assignment valuations with binary
marginal gains, we build the following instance (V, A) of a
network flow problem. We let N}, denote the set of mem-
bers in each group h. We first create a source s and a sink
t. We create a vertex h for each group h, a vertex ¢ for each
member ¢ of some group, and a vertex o for each item o. We
construct the edges of the network as follows:

e for each group h, create an edge (s, h) with capacity m;
and

e for each group h and member ¢ in group h, create an edge
(h, 1) with unit capacity; and

e for each member ¢ of some group and item o for which ¢
has positive weight u;, (i.e. u;, = 1), create an edge (7, 0)
with unit capacity; and

o for each item o, create an edge (o, t) with unit capacity.

See Figure 2 in the supplementary material for an illustra-
tion of the network. We will show that an integral balanced
flow f : A — Z of the constructed network corresponds to
a leximin allocation. Consider an allocation A where each
group receives the items o for which some member ¢ of the
group has positive flow f(i,0) > 0. It is easy to see that the
allocation A7 maximizes the utilitarian social welfare since
the flow f is a maximum integral feasible flow. Thus, by
Theorem 3.10, A/ has the same utilitarian social welfare as
any leximin allocation. To see balancedness, observe that the

amount of flow from the source s to each group h is the val-
uation of A for bundle Ai, ie, f(s,h) =D ien, f(hi) =
vh(Ai). Indeed if vh(AfL) > f(s,h), then it would contra-
dict the optimality of the flow f; and if vy, (Ag) < f(s,h),
it would contradict the fact that vh(A',’i) is the value of a
maximum-size matching between A{L and Nj,. Thus, among
all utilitarian optimal allocations, A/ lexicographically max-
imizes the valuation of each group, and hence Ay is a lex-

imin allocation. By Theorem 3.11, the leximin allocation Ay
is also MNW. O

In contrast with assignment valuations with binary marginal
gains, we show that the problem of computing a leximin or
MNW allocation becomes NP-hard for weighted assignment
valuations even when there are only two agents.

Theorem 4.2. For two agents with general assignment val-
uations, it is NP-hard to compute a leximin or MNW alloca-
tion.

5 Discussion

‘We have studied allocations of indivisible goods under sub-
modular valuations with binary marginal gains in terms of
envy, efficiency, and various welfare concepts. Our work
presents an interesting relation between fairness and effi-
ciency: three seemingly disjoint outcomes — minimizers of
arbitrary symmetric strictly convex functions among util-
itarian optimal allocations, the leximin allocation, and the
MNW allocation — coincide in this class of valuations.
Future work includes investigating which of our findings ex-
tend to more general submodular valuations. Indeed, while
we have not obtained any theoretical guarantees for the non-
binary case, our experiments on real-world data (see Ap-
pendix B) reveal that approximate envy-freeness can often
be achieved simultaneously with good efficiency guarantees.
It is important to note that the class of rank functions of a
matroid (equivalently, (0,1)-SUB functions) is a subclass
of the gross substitutes (GS) valuations (Gul and Stacchetti
1999; Kelso and Crawford 1982). A promising research di-
rection is to investigate the co-existence of Pareto-optimality
and approximate fairness for GS valuations.

Finally, the analysis of submodular valuations ties in with
existing works on diversity in allocation (see our related
work section). (0,1)-OXS valuations with budgets (a ca-
pacity on each agent’s bundle size) correspond nicely to the
public housing allocation problem studied by Benabbou et
al. (2018). Adding these caps results in (0,1)-SUB valua-
tions. That several fairness/justice criteria still hold under
item quotas bodes well for ensuring fair allocation of goods
under hard diversity constraints (e.g. Singapore’s ethnic in-
tegration policy in public housing). Moreover, Theorem 3.11
shows that, for (0, 1)-SUB valuations, the MNW or leximin
principle maximizes commonly used diversity indices such
as the Shannon entropy and the Gini-Simpson index (see e.g.
Jost (2006)) applied to shares of the agents in the optimal
utilitarian social welfare — it will be interesting to explore
connections of this concept to recent work on soft diversity
framed as convex function optimization (Ahmed, Dickerson,
and Fuge 2017).
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A Supplementary Material

A.1 Example of non-submodular valuation
functions violate the transferability property

Example A.1. Agent 1 wants to have a pair of matching
shoes; her current allocated bundle is a single red shoe,
whereas agent 2 has a matching pair of blue shoes. Agent
1 clearly envies agent 2, but cannot increase the value of
her bundle by taking any one of agent 2’s items. More for-
mally, suppose N = [2] and O = {rp,by,br}; agent 1’s
valuation function is: v1(S) = 1 only if {br,br} C S,
v1(S) = 0 otherwise. Under the allocation A; = {r;} and
As = {br,br}, v1(A1) < v1(Az) but A;(A;;0) = 0 for
all o € As.

A.2 Example where the output of Algorithm 1
may not be either MNW or leximin

Example A.2. We introduce the same instance as Example
2 in Benabbou et al. (2019). There are two groups and six
items o1, 02, 03, 04, 05, 0. The first group N; contains four
agents a, as, as, ay and the second group N» contains four
agents by, b, b3, bs; each individual has utility 1 for an item
o if and only if she is adjacent to o in the following graph:

The valuation functions of the groups for each bundle X are
defined as the value of a maximum-size matching of X to
its members. The algorithm may initially compute an utili-
tarian optimal allocation A that assigns items o1, 0o to the
first group, and the remaining items to the second group; the
allocation A also satisfies EF1, so the output of Algorithm 1
is A. However, the (unique) leximin and MNW allocation
assigns items o1, 02, 03 to the first group, and the remaining
items to the second group — this is also the (unique) utilitar-
ian optimal allocation with the minimum sum of squares of
the agents’ valuations.

A.3 Example where neither leximin nor MNW
allocation is utilitarian optimal

Example A.3. Consider an instance with assignment valua-
tions given as follows. Suppose there are three groups, each
of which contains a single agent, Alice, Bob, and Charlie,
respectively, and three items with weights given in Table 2.
The unique leximin and MNW allocation is the allocation
that assigns Alice to the first item, Bob to the second item,
and Charlie to the third item; each agent has positive utility
at the allocation and the total utilitarian social welfare is 3.1.
However, the utilitarian optimal allocation assigns Alice to

nothing, Bob to the first item, and Charlie to the second item,
which yields the total utilitarian social welfare 4.9.

ORON©,

Alice: 2 1 0
Bob: 2 1 0
Charlie: 0 29 0.1

Table 2: An instance where neither leximin nor MNW allo-
cation is utilitarian optimal.

A.4 The network flow instance constructed in the
proof of Theorem 4.1.

Groups Members Items

Figure 2: An illustrative network flow instance constructed
in the proof of Theorem 4.1: each edge is either labeled with
its capacity or has unit capacity.

A.5 Proof of Theorem 4.2

Proof. The reduction is similar to the hardness reduction for
two agents with identical additive valuations (Nguyen, Roos,
and Rothe 2013; Ramezani and Endriss 2010). We give a
Turing reduction from PARTITION. Recall that an instance
of PARTITION is given by a set of positive integers W =
{w1,wa, ..., wy};itis a ‘yes’-instance if and only if it can
be partitioned into two subsets S7 and So of W such that the
sum of the numbers in 57 equals the sum of the numbers in
Sa.

Consider an instance of PARTITION W =
{wy,wa, ..., wy}t. We create m items 1,2 ... ,m,
two groups 1 and 2, and m individuals for each group where
every individual has a weight w; for item j. Observe that
fore each group, the value of each bundle X is the sum
wae x wj: the number of members in the group exceeds

the number of items in X, and thus one can fully assign
each item to each member of the group.

Suppose we had an algorithm which finds a leximin allo-
cation. Run the algorithm on the allocation problem con-
structed above to obtain a leximin allocation A. It can be
easily verified that the instance of PARTITION has a solution
if and only if v1 (A1) = v2(A2). Similarly, suppose we had
an algorithm which finds an MNW allocation, and run the al-
gorithm to find an MNW allocation A’. Since the valuations



are identical, the utilitarian social welfare of the MNW allo-
cation is the sum ij cw Wy, which means that the product
of the valuations is maximized when both groups have the
same realized valuation. Thus, the instance of PARTITION
has a solution if and only if v1 (A]) = va(AS). O

B General assignment valuations

In this section, we introduce an extension of the envy-
induced transfers (Algorithm 1) to general valuations, as de-
scribed in Algorithm 2. Recall that the general principle is
to iteratively eliminate envy by transfering an item from the
envied bundle to the envied bundle until no agent is envied
up to more than one item. Here at each iteration step, we
transfer the item that induces the maximal increase in over-
all utility (see lines 3-6). Note that, since agent j loses one
of her items, she may develop a positive marginal utility for
a currently withheld item; in that case, the item in Aq for she
has maximal marginal utility is given to her (see lines 6-8).
Note also that, for arbitrary utilities, if an agent ¢ acquires
a new item o due to an envy-induced transfer, at most one
of her previous items, say o*, may become unused, e.g. if
1’s positive marginal utility for o with her previous bundle
A; was due to the fact that the individual who was assigned
item o* has a higher utility for o than 0* and no other indi-
vual prefers o* to its assigned item. In that case, item o* is re-
voked from agent ¢ and allocated to the agent with maximal
and strictly positive marginal utility for it (see lines 10-13).
If this creates another unused item, we repeat the process
until there are no unused items or the unused item has zero
marginal utility for all agents — in the latter case, the unused
item is added to the withheld set (see lines 14-18).

We now provide numerical results to compare the loss in-
curred by Algorithm 2 and that of Pj, the extension of (Lip-
ton et al. 2004) algorithm to groups of agents, as presented
in (Benabbou et al. 2019). The performances of these pro-
cedure are estimated both in terms of percentage of items
wasted (Waste) and price of fairness (PoF) which is formally
defined as follows:

max{USW(A) | A is an allocation}
UsW(A(P))

where A(P) is the allocation returned by a given pro-
cedure P. In our experiments, we use the dataset
called “MovieLens-ml-1m” which contains approximately
1,000,000 ratings (from O to 5) of 4,000 movies made by
6,000 users (Harper and Konstan. 2015). To generate an in-
stance of our allocation problem, we select 200 movies at
random (|JO| = 200) and then we only consider the users
that rated at least one of these movies. We use the user rat-
ings as individual utilities. We consider the following user
partitions:

PoF(P) =

e Gender: 2 agents (male or female),
e Age: 7 agents representing the 7 age-groups,
and the following agents’ valuations:
e Ratings:
vi(S) = max{ Y Ty | 7€ T(N;,S5)}

uweEN;

where 1, is the rating of movie o made by user u,
e Norm: v}(S) = v;(S)/v;(0O),
for all agents ¢+ € NN representing a group of users and for all
bundles of movies S C O. The results given in Table 3 are
averaged over 50 runs.
In Table 3, we observe that P, the extension of (Lipton et
al. 2004) algorithm to groups may be wasteful but in prac-
tice it has almost zero-waste and also good PoF (the lower
the better). In comparison, Algorithm 2 the extension of the
envy-induced transfers to general valuations is guaranteed to
be non-wasteful but in practice it has larger PoF than Pr,.

Algorithm 2: Envy-Induced Transfers for general valua-
tions

1 Compute a clean, socially optimal allocation.

2 /**Envy-Induced Transfers and Reallocations**/

3 while 3¢, j € N such that i envies j up to more than 1 item
do

4 Pick 4, j, o maximizing A;(A;;0) + A(A;; 0) over all
i,7 € N and all o € O such that ¢ envies j more than
1item and A;(A;;0) > 0.
5 Aj — Aj\{o}; A; +— A; U {O}
6 if Jo € Ag such that A;(Aj; 0) > 0 then
7 Pick o0 € A that maximizes A;(4;;0).
8 AJ‘ — A]‘ @] {O}
9 end
10 if o™ € A; that is unused then
1 A; < A;\{0"}; revoked = true.
12 while revoked = true and 3k s.t. A(Ay;0")>0do
13 Allocate o™ to agent k maximizing A(Ayg; 0").
14 if Jo € Ay that is unused then
15 Ar + Ap\{o}; 0" +o.
16 else revoked = false.
17 end
18 if revoked = true then Ay + Ao U {0"}.
19 end
20 end

Py Algorithm 2

Types | Ratings Norm | Ratings Norm
PoF Age 1.01 1.15 1.05 1.19
Waste | Age 1.25 0.20 0.00 0.00
PoF | Gender 1.00 1.02 1.00 1.03
Waste | Gender 0.00 0.00 0.00 0.00

Table 3: Performances of allocation procedures.

C Submodularity with subjective binary
gains

An obvious generalization of the (0, 1)-SUB valuation func-
tion class is the class of submodular valuation functions
v(+) with subjective binary marginal gains: agent ¢’s bundle-
valuation function v;(-) is said to have subjective binary
marginal gains if A;(S; 0) € {0, A; } for some agent-specific
constant \; > 0, for every ¢ € N. We define clean bundles
and clean allocations for this function class exactly as we
did for (0, 1)-SUB valuations in Section 2.



Understandably, most of the properties of allocations un-
der (0,1)-SUB valuations do not extend to this more gen-
eral setting. It is obvious that Pareto-optimality does not im-
ply utilitarian optimality (e.g. consider an instance with two
agents and one item which the agents value at 1 and 2 respec-
tively: assigning the item to agent 1 is PO but not utilitarian
optimal). Moreover, the leximin allocation may not be EF1,
as shown by the following example where both agents have
additive valuations.

Example C.1. Suppose N = [2]; O = {01, 02,03,04}; the
valuations are additive with v;({o1}) = 0, v1({0}) =1
VYo € O\ {01}, and v2({0}) = 3 Vo € O. It is straight-
forward to check that the unique leximin allocation is A; =
{01,02,03}, Ao = {04}. Under this allocation, v; (43) =
0 <3=uv1(A1), but va(A4; \ {0}) =6 > 3 = va(As) for
every o € A; — in fact, at least two (any two) items must
be removed from A; for agent 2 to stop envying agent 1.

Note another difference of this valuation class from (0, 1)-
SUB that is also evidenced by Example C.1: the leximin
and MNW allocations may not coincide. In this example,
any allocation A that gives two of the items {02, 03,04} to
agent 1 and the rest to agent 2 is MNW, with v (A;) = 2 and
va(Az) = 6, so that NW(A) = 12; such an allocation is also
EF1 (in fact, envy-free) since v1(A4s) = 1 < 2 = v1(4y)
and v2(A1) = 6 = va(Asz). This is not an accident, as the
following theorem shows.

Theorem C.2. For agents having submodular valuation
Sunctions v(-) with subjective binary marginal gains, any
clean, MNW allocation is EF1.

Since our valuation functions are still submodular, the trans-
ferability property (Lemma 3.5) still holds. Two other com-
ponents of the proof of Theorem C.2 are natural extensions
of Propositions 3.3 and Lemma 3.6 — Proposition C.3 and
Lemma C.4 below, respectively:

Proposition C.3. For submodular valuations with subjec-
tive binary marginal gains defined by agent-specific positive
constants \; Vi € N, A is a clean allocation if and only if
vi(4;) = A\i| Ay for each i € N.

Proof. Consider an arbitrary bundle S C O such that S =
{01,02,...,0.} for some r € [m] wlo.g. Let Sp = 0 and
Sy = Si—1 U{o:} forevery t € [r]. Then, an arbitrary agent
i’s valuation of bundle S under marginal gains in {0, \; } is

vi(S) = D A(Sici00) < DN = Nir = AlS[. (D)
t=1 t=1

Now, if agent i’s allocated bundle under an allocation A has
a valuation v;(4;) = A;|4;|, then her marginal gain for any
item in 0 € A; is given by
vi(Ai) = vi(Ai \ {0}) = A As| — vi(A; \ {o})

= N Ail = Ai(JAsl — 1)

=X >0,
where the first inequality follows from Inequality (1) and the
fact that |A; \ {o}| = |A;| — 1. This means that the bundle

A; is clean and, since this holds for every 4, the allocation is
clean. This completes the proof of the “if” part.

If allocation A is clean, then we must have A;(A;\{o}; 0) >
0 forevery o € A; forevery i € N. Let us define an arbitrary
agent ¢’s bundle A; as S above, so that |A;| = r. Then, since
Si—1 C A; \ {o.} for every ¢ € [r], submodularity dictates
that

Ai(St—l;Ot) > Ai(Ai \ {Ot};Ot) >0 Vte [T]

Since A;(Si—1;0¢) € {0,\;} with A; > 0, the above in-
equality implies that A;(S;_1;0;) = \; Vt € [r]. Hence,

’Ui(Ai) = ZAi(St—l;ot) = Z}\, = /\z’T = )\1‘Az|
t=1 t=1

This completes the proof of the “only if”” part. O

Lemma C.4. For submodular functions with subjective bi-
nary marginal gains, if agent i envies agent j up to more
than 1 item under clean allocation A, then |A;| > |A;| + 2.

Proof. Since i envies j under A up to more than 1 item, we
must have A; # () and v;(A;) < v;(4; \ {o}) forevery o €
A;. Consider one such o. From Inequality (1) in the proof of
Proposition C.3, v;(A4;\{o}) < Xi|4;\{o}| = Ni(J4,]—-1).
Since A is clean, v;(A4;) = \;|A;|. Combining these, we get

AilAil = vi(A;) <wvi(45\ {o}) < Ni(|4;] = 1).

Since \; > 0, we have |A;| < |A;| — 1, 1e. |A;i| <|A;]—2
because |A;| and | A;| are integers. O

We are now ready to prove Theorem C.2.

Proof of Theorem C.2. Our proof non-trivially extends that
of Theorem 3.2 of Caragiannis et al. (2016). We will first
address the case when it is possible to allocate items in such
a way that each agent has a positive realized valuation for
its bundle, i.e. Nyax = N in the definition of an MNW
allocation, and then tackle the scenario Nyax € V.
Consider a pair of agents 1,2 € N w.l.o.g. such that 1 envies
2 up to two or more items, if possible, under an MNW allo-
cation A. Since every agent has a positive realized valuation
under A, we have v;(4;) = \;|4;| > 0, ie. |[A;] > 0 for
each i € {1,2}. From Lemma 3.5, we know that there is an
item in A, for which agent 1 has positive marginal utility —
consider any one such item o € A,. Thus, A;(A;;0) > 0,
ie. A1(A1;0) = Aq; also, since Ay is a clean bundle,
Aq (A2 \ {0}; 0) > 0,i.e. Al(AQ \ {0}; O) = Ao.

Let us convert A to a new allocation A’ by only transfer-
ring this item o from agent 2 to agent 1. Hence, v;(A}) =
’Ul(Al) + Al(Al;O) = 'Ul(Al) + )\1, UQ(A/Q) = ’UQ(AQ) —
Al (A2 \ {O}; 0) = ’UQ(AQ) — /\2, ’Ul(A;) = ’UZ'(AZ') for each
i € N\ {1,2}. NW(A) is positive since A is MNW and



Nmax = N. Hence,

NW(A)  [or(A) + M ] {92(A2)_>‘2}
nW(A) | vi(A4)) v2(As)

i) 1wt
— |1+ 1-

| vi(4r) va(Az))

[ A ] Ao ]
— 1+ 1—

AlAl] ] | Ao|As|

A
B | Ay | As|

|Aa| —|Aq] -1
= ]_ + —_—,
|A1||Az]
S14 (|A1] +2) — |A4] —17
|A1]| Az
1
>14+ —
|A1]] Az
> 1.

Here, the third equality comes from Proposition C.3 since A
is clean, and the first inequality from Lemma C.4 due to our
assumption. But NW(A’) > NW(A) contradicts the optimality
of A, implying that any agent can envy another up to at most
1 item under A.

This completes the proof for the Ny ,x = N case. The rest
of the proof mirrors the corresponding part of the proof of
Caragiannis et al. (2016)’s Theorem 3.2. If Ny, © IV, it s
easy to see that there can be no envy towards any i & Ny ay:
this is because we must have v;(4;) = 0 for any such ¢ from
the definition of Ny,.,, which in turn implies that A; = 0
since A is clean; hence, v;(A;) = 0 for every j € N. Also,
for any 4,j € Npax, We can show exactly as in the proof
for the Nyax = N case above that there cannot be envy
up to more than one item between them, since A maximizes
the Nash welfare over this subset of agents Ny,.x. Suppose
for contradiction that an agent ¢ € N\ Ny, envies some
j € Npax up to more than one item under A. Then, from
Lemma 3.5, there is one item 0, € A; w.lo.g. such that
vi({o1}) = Ay(0;01) = A;(As;01) > 0. Moreover, since
A is clean,

v; (A5 \ {o1}) = v;(4;) — A;(A; \{o1};01)

= NjlAj1 = A
= Ai(1451 = 1)
> Aji(14] + 1)
= )\j > 0,

where the first inequality comes from Lemma C.4. Thus, if
we transfer o1 from j to ¢ and leave all other bundles un-
changed, then every agent in Np,.x U {i} will have a pos-
itive valuation under the new allocation. This contradicts
the maximality of Ny,.. Hence, any ¢ € N\Npayx must
be envy-free up to one item towards any j € Ny ax.

D Implications for approximate equitability

An allocation A is said to be equitable or EQ if the realized
valuations of all agents are equal under it, i.e. for every pair

of agents 4,5 € N, v;(4;) = vj(A;); an allocation A is
equitable up to one item or EQI if, for every pair of agents
i,j € N such that A; # (), there exists some item o0 € A;
such that v;(A;) > v;(A; \ {o}) (Freeman et al. 2019).> We
can further relax the equitability criterion up to an arbitrary
number of items: an allocation A is said to be equitable up to
c items or EQc if, for every pair of agents ¢, j € N such that
|A;| > c, there exists some subset S € A; of size |S| = ¢
such that Ul(Al) > Vj (Aj \ 5)3

Freeman et al. (2019) show* that, even for binary additive
valuations (which is a subclass of the (0, 1)-OXS valuation
class), an allocation that is both EQ1 and PO may not exist;
however, in Theorem 4, they establish that it can be verified
in polynomial time whether an EQ1, EF1 and PO alloca-
tion exists and, whenever it does exist, it can also be com-
puted in polynomial time under binary additive valuations.
We will show that the above positive result about computa-
tional tractability extends to the (0, 1)-OXS valuation class.
We will begin by proving that an EQ1 and PO allocation,
if it exists, is also EF1 under (0,1)-SUB valuations — we
achieve this by combining Theorem D.1 below with Corol-
lary 3.8. This simplifies the problem of finding an EQ1, EF1
and PO allocation to that of finding an EQ1 and PO alloca-
tion.

Theorem D.1. For submodular valuations with binary
marginal gains, any EQI and PO allocation, if it exists, co-
incides with an allocation satisfying the properties in Theo-
rem 3.11, i.e. is leximin, MNW, and a minimizer of any sym-
metric strictly convex function of agents’ realized valuations
among all utilitarian optimal allocations.

Proof. Let the optimal USW for a problem instance under this

valuation class be U; also, suppose this instance admits an
EQI and PO allocation A. The EQI property implies that

for every pair of agents 7,7 € N,
v;(4;) > v;(A;\ {o}) forsomeo € A;
=v;(4;) —4;(4;\{o};0)
> vj(45) — 1,
since A;(A4; \ {o};0) € {0,1}. Let ¢ (resp., j) be an
agent with the minimum (resp., maximum) realized valua-
tion v, (resp., v, ) under A, i.e. i € arg mingen v;(4;)

*Note that if A; = @, vi(A;) > v;(A;) trivially hence the
ordered pair (4, j) for any ¢ € N could never prevent the allocation
from being EQI.

3 Again, if | A;| < ¢, no ordered pair (i, 5) for any 4 € N could
get in the way of the allocation being EQ1.

“Freeman et al. (2019) use an example with 3 agents having
binary additive valuations (Example 1). But it is easy to construct
a (ono-degenerate) fair allocation instance with only two agents
having binary additive valuations that does not admit an EQ1 and
PO allocation: N = [2]; O = {o1,02,03,04}; vi(0o) = 1 for
every o € O; v2(01) = 1 and v2(0) = o forevery o € O \ {o1}.
Obviously, any PO allocation must give {02, 03,04} to agent 1 so
that this agent’s realized valuation is at least 2 even after dropping
one its items; even if agent 2 receives o1, her realized valuation of
1 will always be less than the above.



and j € argmaxyen v;(A;). Then, the above unequality
implies that
A A A
Umin < Umax < Umin + 1

Since each v; (A;) must be a non-negative integer for our val-
uation function class, there are only two possibilities consis-
tent with the above: either (I) v;(A;) = «a foreveryi € N
(which corresponds to an EQ allocation), or (II) there is a
subset of agents Ny C N, with |[Ng| = ng < n, such that
v;(4;) = a forevery i € Ny and v;(A;) = a + 1 for every
i €N \ Ng.

For Case (I), notice that for any utilitarian optimal alloca-
ton A, £ Y20 0i(A)? > (X i(4))” = G e

’n n

S ui(A)?2 > T2 due to the well-known generalized
mean inequalities. Since allocation A is PO under (0, 1)-
SUB valuations, Theorem 3.10 implies that it is also util-
itarian optimal so that na = U. Hence, Y ;- v;(4;)? =

N2 .
n %) = %2 i.e. A minimizes the sum of squares of
agents’ realized valuations — a symmetric strictly convex
function — among all utilitarian optimal allocations.
For Case (II), it is sufficient to prove that A must be lex-
imin and we will show this by contradiction. Note that
U = noa + (n — no)(a + 1) due to utilitarian optimal-
ity of A. Hence, we cannot have an allocation in which the
worst-off agent realizes a valuation strictly higher than o —
if that were possible, each agent would have a valuation of at
least av 4+ 1 (each valuation being an integer), hence the USW
would be at least n(« + 1) > U, which is absurd. This im-
plies that the minimum possible agent valuation in a leximin
allocation is a.
Let A* be a leximin allocation; let N§ C N be the subset
of agents that have a valuation of « each under A*, with
|N§| = n§ < n. Note that we cannot that Nj = N — if
all agents in N \ N have valuations « each, A would dom-
inate A* lexicographically as well as in terms of the USW.
Thus, each agent in the non-empty set N \ Nj must have a
valuation at least o + 1. Moreover, if A is not a leximin allo-
cation, then there must exist at least one agent in N\ IV, o that
has a valuation strictly greater than o + 1 under A*. In other
words, we must have ZieN\Ng vi(AF) > (n—nf)(a+1).
But, as we will now show, this implies that the sum of the
squares of the agents’ realized valuations under A* is strictly
higher than that under A.
From Theorem 3.11, we know that A* is also utilitarian op-
timal, hence

nHa + Z vi(Az‘):ﬁ:noaJr(n—nO)(aJrl).

This gives us two useful results. First, plugging the above
strict inequality involving  °. N\N; v;(A¥) into this equal-
ity, we get using simple algebra that nj > ng.

Secondly, we obtain

> wilA)) = (n—ng)a+ (n—no).

IEN\Ng

Since it is well-known that, for non-negative numbers, the
quadratic mean is at least as much as the arithmetic mean,

2

1 1

s D w4 > oD uil4))
n—ng . . n—ng .
IEN\N; iEN\N;

2
1
*\2 *

= 4 Z vi(A7)" > P Z v (A])
IEN\Ng iEN\N;

_ ((n—ng)a+ (n—n))?
n—ng

where the strict inequality follows from the inequalities n >
ng > ng > 0 that we have already established. Hence,

YowuilA])P =nga’ £ Y vi(4))?
iEN IEN\NG
> (ng +n — ng)a’
+2(n—ng)a+ (n—ng)
=na’®+ (n —ng)(2a + 1)
=na’® 4+ (n —no)((a +1)* — o2
= (n—n+ng)a®+ (n—ng)(a+1)?
=noa’® + (n —ng)(a +1)2
= Z (] (A1)2
iEN
But this absurd because we know from Theorem 3.11 and
Corollary 3.12 that the leximin allocation A* must have the
minimum sum of squares of realized valuations among all
utilitarian optimal allocations. Hence, we cannot have an

agent with a valuation strictly higher than o + 1 in a lex-
imin allocation, so A must be leximin. O

Theorem D. 1, together with Corollary 3.12, implies that if an
EQ1 and PO allocation exists under (0, 1)-SUB valuations,
it must be EF1.



