
Graph Sketching, Sampling, Streaming, and
Space Efficient Optimization

(Part II)

Sudipto Guha and Andrew McGregor



Space Efficient Optimization for Graphs

Impact of Dimensionality Reduction, Embeddings, Lp → Lq, etc.

Thesis: Graph optimization problems are natural next candidates.

(Part I): Building blocks: sketching, sampling in graphs.
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Optimization?

Many frameworks to choose from.

Linear/Convex programming.

1. A lot of general purpose techniques.

2. A rich history in graphs.

3. The connection to streaming is less well studied.

Correlation Clustering and Max Matchings (part I) as examples.
Rephrasing papers in SODA 2014, ICML 2015, SPAA 2015.
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(a) Recap of Multiplicative Weights Method

Basic version.

A proof sketch.

Alternate views.
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Number of rounds depends on ρ, ε and other specifics of updating u.
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How does the proof work?

Scale RHS to get Ay ≤ 1.

Let solution for iteration t be y(t), assume −ρ ≤ −` ≤ Aiy(t) ≤ ρ.

“Violation” of constraint i as Vi (y(t)) = Aiy(t)− 1; recall
ui (t + 1) ≈ ui (t)eεVi (y(t))/ρ.

“Average Violation” as av(t) =
∑

i
ui∑
j uj

Vi (y(t)).

On the same side: ≤ 0 (easier case). For approximation ≤ δ.

“Potential” at iteration t =
∑

i ui (t).

Now
∑

i ui (t + 1) ≤ (
∑

i ui (t)) eε av(t)/ρ. Telescopes.

ln ui (t) ≤ ln Upper Bound
Final Fractional wt of i + ε

ρ

∑
t av(t)

ε
∑

t Vi (t)/ρ− 2ε2`T/ρ ≤ ln Upper Bound
Final Fractional wt of i + ε

ρ

∑
t aV (t)∑

t Vi (t) ≤ · · · ≤ δ
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Multiplicative Weights: Optimization and Duals

Instead of tracking violations and averaging solutions at the end,
Consider the process from the perspective of u

Dual of a hyperplane/constraint?

Point in dual space.

Dual of a point?

Hyperplane/constraint in dual space.

Suppose we prove [*]: ∃u s.t. ATu ≥ c and ρbTu < β.
Providing a y corresponds to: we have not yet proved [*].
Think trajectories.

Decompositions on dual.
What does y mean then?

Ay ≤ b
cTy ≥ β
y ≥ 0

Ay ≤ ρb
cTy ≥ β
y ≥ 0

•

•

•
••

•
•••
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So the Dual or the Primal?

How do we choose which to start from?



Which set of constraints would you rather solve?

The one with more variables!
Lot more degrees of freedom.
Easier to approximate. Maybe sparse solutions exist.

Rewrite relaxations to introduce freedom!
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(b) Application to Min. Correlation Clustering

Exponentially many constraints.

How to design an Oracle.

Drag and Drop application of Graph Sparsification/Sketching!



Correlation Clustering: Motivation

Tutorial in KDD 2014. Bonchi, Garcia-Soriano, Liberty.
Clustering of objects known only through relationships.
(Can have wide ranges of edge weights, +ve/-ve.)

Consider an Entity Resolution example.

News arcticle 1: Mr Smith is devoted to mountain climbing. . . . Mrs
Smith is a diver and said that she finds diving to be a sublime
experience. . . . The goal is to reach new heights, said Smith.

Now consider a stream of such articles, with new as well as old entities.

Likely Mr Smith 6= Mrs Smith. Large -ve weight.
The other references can be either. Small weights depending on context.
Weights are not a metric. Have a large range.
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Correlation Clustering: A Formulation
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C2C1

Find a grouping that disagrees least with the graph.

I Count +ve edges out of clusters. Count -ve edges in clusters.

I Use as many clusters as you like.

Alternatively we can find a grouping that agrees least.

NP Hard. Bansal Blum, Chawla, 04.

Many approximation algorithms are known. For many variants.
Approximations factors were known defore, will not focus on the factor.
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Global Sparsification: There and back again

Think of a problem on graph cuts.
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s t

Min s-t Cut?

Max s-t Cut? Max Cut? NP Hard. ≥ 0.5 apx uses SDPs.

Sparsification preserves all cuts within (1± ε).

(a) Does not imply anything about finding specific cuts. Yet.

(b) Does not obviously save space either!

We will see examples both (a)–(b) and how to overcome them.
Lets return to correlation clustering.
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Min Correlation Clustering

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.

• •

•

Triangle constraints

min
∑

(i,j)∈E(+)

wij(1− xij) +
∑

(i,j)∈E(−)

|wij |xij

xij ≤ 1 ∀i , j
xij ≥ 0 ∀i , j
(1− xij) + (1− xjk) ≥ (1− xik) ∀i , j , k

A linear program.

Θ(n3) Constraints, Θ(n2) variables.
1 pass lower bound of |E (−)| for any apx via Communication Complexity.

Sparsify E (+), store E (−)? Will have Õ(n) + |E (−)| variables.

Does not work. The triangle constraints need all
(
n
2

)
variables.
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Min Correlation Clustering

Equivalent to Max-Agreement at optimality. Not in approximation.

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Set yij = 1− xij for +ve edges. zij = xij for -ve edges.

min
∑

(i,j)∈E(+)

wijyij +
∑

(i,j)∈E(−)

|wij |zij

yij , zij ≥ 0 ∀(i , j) ∈ E

yij , zij?

∑
(u,v)∈P(ij)

yuv + zij ≥ 1 ∀i , j , and i-j path P(ij)

Sparsify E (+). Store E (−). Θ(n2)→ Õ(n) + |E (−)| variables?

.

Θ(n3) Constraints

→ Exponentially many constraints!
Solve LP (ellipsoid) & Ball Growing: Garg, Vazirani, Yannakakis 93.

i

j

|wij |

MWM on the dual. Õ(n + |E (−)|) space and Õ(n2) time.

Round infeasible primal (the running average). Success → done.
Failure → violated constraint(s) → point needed for MWM on Dual.
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Algorithm in a Picture?

Reformulation

Duality

Graph Sparsification

Duality



(c) SDPs and Max Correlation Clustering

Much more powerful than linear relaxations.

Recurring theme: Known relaxations will not fit.

New problem: What do we do to round?



Max-Agreement and SDPs

xij = 1 if in same group, and 0 otherwise. E (+/−) = +/−ve edge sets.
Think of vector programming over unit length vectors. xij = vi · vj ≤ 1.

max
∑

(i,j)∈E(+)

wijxij +
∑

(i,j)∈E(−)

|wij |(1− xij)

xii = 1 ∀i
xij ≥ 0 ∀i , j
x � 0

MWM (in this context): Collection of constraints. Feasible set: X .
Given x provide a real symmetric A (satisfying some width bounds)

(a) A ◦ x ≤ b − ε, note A ◦ x =
∑

i,j Aijxij .

(b) A ◦ x′ ≥ b for all feasible x′ ∈ X .

Why??
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(d) Multiple Passes I: Max Bipartite Matching

Optimization over fixed constraint matrices.
Columns revealed one at a time.

Use of Approximation Algorithms for speedup of convergence.

“Primal-Dual meets Primal-Dual”.



MWM on Streams: Bipartite Matching

Integer and fractional optimums coincide. (yij = yji , (i , j) implies ∈ E .)

max
∑
(i,j)

yijwij

≥ β

ui →

∑
j

yij ≤ 1 ∀i

yij ≥ 0 ∀(i , j)

Streams: arbitrary list of m edges, . . . , 〈i , j ,wij〉, . . . for an n node graph.
Different from online learning. Input itself is in small pieces.

m

n

Applying MWM: Point = candidate set of edges, in m-dim space.
Hyperplanes?

∑
i ui
∑

j yij ≤
∑

i ui ⇔
∑

(i,j) yij(ui + uj) ≤
∑

i ui .

Store & update u. O(n) storage.

Want:



∑
(i,j)

yij(ui + uj)
∑
i

ui ≤
∑
i

ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

.
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MWM on Streams: Bipartite Matching

Want:



∑
(i,j)

yij(ui + uj) ≤
∑

i ui∑
(i,j)

yijwij ≥ β∑
j

yij ≤ ρ ∀i

yij ≥ 0 ∀(i , j)

Now ∃yHave y

,

∀λ ≥ 0



∑
(i,j)

(wij − λ(ui + uj))yijyij
∑
(i,j)

(ui + uj)yij ≤
∑
i

ui/c ≥ (β − λ
∑

i ui )/cand
∑
(i,j)

wijyij ≥ β/c

∑
j

yijyij

≤ 1 ∀i

yijyij

≥ 0 ∀(i , j)Oracle(λ):

I Seeing (i , j) compute (wij − λ(ui + uj)). If -ve, discard.

I Find a streaming O(n) space c approximation on this filtered set.

If Oracle(λ) for λ = 0 satisfies
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c then we also

have:
∑

(i,j) wijyij ≥ β/c . (easier case)

For λ = 0 we have
∑

(i,j) yij(ui + uj) ≥
∑

i ui/c .

For λ =
∑

i ui/β we have
∑

(i,j) yij(ui + uj) ≤
∑

i ui/c . (Set y = 0)

Binary search (or try values of λ in parallel).
Multiply y by c . Set ρ = c and we have a solution!
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MWM based Bipartite Matching for Map-Reduce?

More general than streaming.

Map-Reduce based 8 approximations in O(log n) rounds exist, e.g.,
Lattanzi, Mosely, Suri, Vassilivitskii 11.

We can compose them. O(log n) rounds to get a c-approximation.
Repeat O(cε−2 log n) times to get a (1 + ε)- fractional solution.

Can also round to an integral solution in small space.
A story for some other time.



(e) Multiple Passes II: Max Non-Bipartite Matching

Exponentially many constraints.

Adaptive constraint sparsification. Perturbations.

How to find your way at night in the dark?
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Perturbations

Focus on the violations which are close to max violation.

Modify the polytope to find such violations faster.



Cuts and Constraints

(Again dropping (i , j) ∈ E in the subscripts, yij = yji .)

β∗ = max
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 ≤ 2 b|U|/2c
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Find small cuts (with odd vertex sizes).
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Find small cuts (with odd vertex sizes).
Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of this Algorithm:
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal
Bipartite: O(ε−2 log n) rounds
Non-Bipartite: O(ε−4 log n) rounds
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How?

β̃ = max
∑
(i,j)

wijyij∑
j

yij ≤ (1− 4δ) ∀i∑
i,j∈U

yij ≤ b|U|/2c − δ2|U|2
4

∀U

yij ≥ 0

Consider two odd sets with “density” similar to the densest set.
Have to be disjoint or within each other (laminar)!
Reduces to a bipartite problem with different “effective weights”.
Near linear time algorithm.

Extends to capacities on vertices and edges.
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(f) Multiple Passes III: Non-Bipartite Matching

For a few passes less ...

Sparsify non-adaptively in parallel; use sequentially.

Dual-primal versus primal-dual.

New relaxations for Matching.



Sparsify in Parallel, Use Sequentially

We saw a version of sketch in parallel, use sequentially in connectivity.
Question: Where will we be after 5 steps of MWM?
Recall: If Aiy > bi : raise ui , i.e., ui ← ui (1 + ε)(Aiy−bi )/biρ.

ui (5) ∈ (1± ε)5ui . Construct 5 independent sparsifications of u.

•

Lets exaggerate changes
(for illustration).
If u were not changing ...
But they are. Need (small) corrections.
Presparsifiers.
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Non-Bipartite Matching in Small Passes

A natural algorithm for non-bipartite matching.

1. Find an initial solution of the dual Problem. (A trend.)

2. Assign uij = 1 for all edges.

3. For O(10/ε) steps:
3.1 Compute t sparsifiers with n1.1 edges using uij .
3.2 Find the best weighted matching in the edges in the t

sparsifications. (wij unchanged).
3.3 Keep the largest weight matching found (say β) so far.
3.4 Recompute uij

Recompute:


1. t = O( 1

ε log n)

2. Simulate t steps of a primal-dual algorithm trying
to prove Feasible Dual ≤ β(1 + O(ε)).

3. Adjust the sparsification in between.



Cuts, Duals and Graph Sparsification

β∗ = max
∑
(i,j)

wijyij∑
j

yij ≤ 1 ∀i∑
i,j∈U

yij ≤ b|U|/2c ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

xi , zU ≥ 0

∑
i,j∈U

yij ≤ b|U|/2c ⇐⇒
∑
i∈U

(∑
j

yij

)
−

 ∑
i∈U,j 6∈U

yij

 ≤ 2 b|U|/2c

∑
i∈U,j 6∈U yij = Cut(U,V − U).

Find small cuts (with odd vertex sizes).

• •

•
•

•

Standard Algorithm: Augment, contract blossoms, ... (many rounds).
Signature: feasible,. . . ,feasible (larger), . . . , feasible, (near) optimal

Signature of previous algorithm:
infeasible,. . . ,infeasible (smaller), . . . , feasible, (near) optimal

New algorithm?
infeasible dual, . . . , (estimate of β∗ is increasing), . . . , (near) optimal
(O(1/ε) rounds, sparsification)
. . . . . . keep best matching seen so far, . . . . . . . . . (near) optimal
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New Relaxations for Maximum Matching, . . . 3, 2, 1

Lets consider wij = 1.

β∗ = max
∑
(i,j)

yij − 3
∑
i

µi∑
j

yij − 2µi ≤ 1 ∀i∑
i,j∈U

yij −
∑
i∈U

µi ≤ b|U|/2c+ ∀U

yij ≥ 0

β∗ = min
∑
i

xi +
∑
U

⌊
|U|
2

⌋
zU

uij : xi + xj +
∑
i,j∈U

zU ≥ wij ∀(i , j) ∈ E

2xi +
∑
i∈U

zU ≤ 3 ∀i ∈ V

xi , zU ≥ 0
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Wrap up

(1) Primitives: Sampling, Sketching and Sparsification.

(2) LPs/SDPs (MWM) on Streams.

(3) Remember a small number of weight values.

(4) Compute in sketch (sparsified) space entirely. Correlation clustering.

(5) May need to change the natural relaxations (convergence speed).

(6) May need new relaxations for rounding.

(7) Think differently. The real voyage of discovery ...
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Thank You


