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Call graph, web graph, IP graph, social networks, citation 
networks, protein interaction and metabolic networks....

Challenge: Can’t use conventional algorithms on graphs this 
large. Often can’t even store graph in memory. Graphs may 
be changing over time and data may be distributed. 

• Use Abstraction of Structure
Gives a natural way to encode structural information when 
there’s data about both basic entities and their relationships.

• Want streaming, parallel, distributed algorithms…



• Tutorial Goals and Caveats  

Present some new algorithmic primitives for large graphs.

Techniques are widely applicable; we’ll be platform agnostic.

Won’t be comprehensive; will cherry pick illustrative results.

Focus on arbitrary graphs rather than specific applications. 

Won’t focus on proofs but will give basic outline when it 
helps convey why certain approaches are effective.
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ABSTRACT

Over the last decade, there has been considerable in-

terest in designing algorithms for processing massive

graphs in the data stream model. The original moti-

vation was two-fold: a) in many applications, the dy-

namic graphs that arise are too large to be stored in the

main memory of a single machine and b) considering

graph problems yields new insights into the complexity

of stream computation. However, the techniques devel-

oped in this area are now finding applications in other

areas including data structures for dynamic graphs, ap-

proximation algorithms, and distributed and parallel com-

putation. We survey the state-of-the-art results; iden-

tify general techniques; and highlight some simple al-

gorithms that illustrate basic ideas.

1. INTRODUCTION

Massive graphs arise in any application where there

is data about both basic entities and the relationships

between these entities, e.g., web-pages and hyperlinks;

neurons and synapses; papers and citations; IP addresses

and network flows; people and their friendships. Graphs

have also become the de facto standard for representing

many types of highly-structured data. However, analyz-

ing these graphs via classical algorithms can be chal-

lenging given the sheer size of the graphs. For exam-

ple, both the web graph and models of the human brain

would use around 10
10 nodes and IPv6 supports 212

8

possible addresses.

One approach to handling such graphs is to process

them in the data stream model where the input is de-

fined by a stream of data. For example, the stream could

consist of the edges of the graph. Algorithms in this

model must process the input stream in the order it ar-

rives while using only a limited amount memory. These

constraints capture various challenges that arise when

processing massive data sets, e.g., monitoring network

traffic in real time or ensuring I/O efficiency when pro-

cessing data that does not fit in main memory. Related

⇤Supported in part by NSF awards CCF-0953754 and CCF-

1320719 and a Google Research Award.

questions that arise include how to trade-off size and ac-

curacy when constructing data summaries and how to

quickly update these summaries. Techniques that have

been developed to the reduce the space use have also

been useful in reducing communication in distributed

systems. The model also has deep connections with a

variety of areas in theoretical computer science includ-

ing communication complexity, metric embeddings, com-

pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-

ular over the last twenty years although the focus of

much of the early work was on processing numerical

data such as estimating quantiles, heavy hitters, or the

number of distinct elements in the stream. The earli-

est work to explicitly consider graph problems was the

influential by paper by Henzinger et al. [36] which con-

sidered problems related to following paths in directed

graphs and connectivity. Most of the work on graph

streams has occurred in the last decade and focuses on

the semi-streaming model [27, 52]. In this model the

data stream algorithm is permittedO(n polylog
n) space

where n is the number of nodes in the graph. This is

because most problems are provably intractable if the

available space is sub-linear in n, whereas many prob-

lems become feasible once there is memory roughly pro-

portional to the number of nodes in the graph.

In this document we will survey the results known

for processing graph streams. In doing so there are nu-

merous goals including identifying the state-of-the-art

results for a variety of popular problems and identify-

ing general algorithmic techniques. It will also be nat-

ural to discuss some important summary data structures

for graphs, such as spanners and sparsifiers. Through-

out, we will present various simple algorithms, some of

which may not be optimal, that illustrate basic ideas and

would be suitable for teaching in an undergraduate or

graduate classroom setting.

Notation. Throughout this document we will use n and

m to denote the number of nodes and edges in the graph

under consideration. For any natural number k, we use

[k] to denote the set {1, 2, . . .
, k}. We write a = b ± c

http://people.cs.umass.edu/~mcgregor/graphs
https://people.cs.umass.edu/~mcgregor/courses/CS711S18/
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• Part 1: Sampling  Sampling for finding densest subgraphs, 
small matchings, triangles, spectral properties. 

“Different sampling techniques for different problems”

• Part II: Sketching Dimensionality reduction for graph data. 
Examples include connectivity and sparsification.

“Homomorphic compression: sketch first and then run 
algorithms on the sketched data”

• Part III: Streaming What can you compute in limited memory 
with only a few passes over the edges.

“A little inspiration yields a lot less iteration”

• Part IV: Small-Space Optimization Combining sparsification 
and multiplicative weights for fast, small-space optimization. 
Examples include large matching and correlation clustering.

Overview
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• If compression is easy, we get faster and more-space efficient 
algorithms by using existing algorithms on compressed graphs.

Recurring Theme
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• Given a graph G, the density of a set of nodes S⊂V is:

• Problem Estimating D*=maxS DS is a basic graph problem with 
numerous applications. Studied in a variety of models.

• See tutorial Gionis, Tsourakakis [KDD 15]

• Thm Sample of Õ(ε-2 n) edges uniformly and find the densest 
subgraph in sampled graph. Gives a (1+ε)-approx whp.

• McGregor et al. [MFCS 15], Esfandiari et al. [SPAA 16]

• Mitzenmacher et al. [KDD 15]

DS =
# of edges with both endpoints in S

# of nodes in S
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We’re essentially sampling each edge w/p p≈ε-2n/m. 

Let D’S be density of S in sampled graph. 

Chernoff: For each S, DS = D’S/p±εD* w/p 1-n-3|S|

Union Bound: Bound applies for all S w/p 1-n-1

There are ≤ nk subsets of k nodes. So bound fails  
for some subset of size k w/p ≤ nk n-3k = n-2k

Bound fails for some subset w/p ≤ n-2+n-4+…+n-2n ≤ n-1 

So max density of sampled graph gives 1+ε approx.

Why Uniform Sampling Works…

DS = 1.0
D’S = 0.5
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• Sampling uniformly can be very inefficient…
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• SNAPE “Sample Nodes And Pick Edge” Sampling:

• Sample each node with probability 1/k and delete rest

• Pick a random edge amongst those that remain.

• Theorem If G has max matching size k, then O(k2 log k) 
SNAPE samples will include a max matching from G. 

Chitnis et al. [SODA 16], Bury, Schwiegelshohn [ESA 15]
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Consider a maximum matching M of size k and focus 
on arbitrary edge {u,v} in this matching.

W/p Ω(k-2) u and v only endpoints of M sampled.
Hence, when we pick one of the remaining edges it’s 
either {u,v} or another edge that’s equally useful.
Take O(k2 log k) samples; apply analysis to all edges.

Why SNAPE Sampling Works…

u

v
w
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• Given a graph G, the global clustering coefficient is

A measure of how much nodes tend to cluster together.

• Monochromatic Sampling Randomly color each node from a set 
of colors. Store all edges with monochromatic endpoints. If 
length-2 path {u,v}, {v,w} is stored, {u,w} also stored if it exists. 

• Thm Can additively estimate κ from Õ(√n) samples.

• Pagh, Tsourakakis [IPL 12], Jha, Seshadhri, Pinar [KDD 15]

• Proof Idea Compute expectation and variance of number of 
triangles amongst sampled edges and apply Chebyshev bound.

 =
3⇥ number of triangles

number of length 2 paths
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• Defn A sparsifier of graph G is a weighted subgraph H with:

∀ cuts:    “size of cut in G” = (1±ε) “size of cut in H” 

• Basic Approach Sample each edge uv with probability puv and 
reweight by 1/puv. Probabilities depend on edge properties… 

• Thm If puv≈ε-2/λuv or puv≈ε-2ruv then result is sparsifier with 
Õ(ε-2 n) edges.  Fung et al. [STOC 11], Spielman, Srivastava [STOC 08]

• Simpler Thm If min-cut is ≫ ε-2 log n then pe=1/2 works.

1

2

3

5

4

ruv is potential difference 
when unit of flow injected 

at u and extracted at v  

λuv is the min number of 
edges whose removal 
disconnects u and v
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Lemma (Chernoff) Let k’ be the number of edges 
that were sampled across some cut of size k. Then

Pr[k’=(1±ℇ)k/2] < exp(-ℇ2 k/6)
Lemma (Karger) The number of cuts with k edges 
is < exp(2k log n /𝝺) where 𝝺 is size of min-cut. 

Result then follows by substituting bound for 𝝺 
and applying union bound over all cuts.

Proof Idea of Simpler Theorem … 
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• Random linear projection M: ℝN→ℝD where D≪N that preserves 
properties of any v∈ℝN with high probability.   

• Many results for numerical statistics and geometric properties... 
extensive theory with connections to hashing, compressed 
sensing, dimensionality reduction, metric embeddings...  widely 
applicable since parallelizable and suitable for stream processing. 

• Example “l0 Sampling” Sketch Can be used to sample uniformly 
from non-zero entries of the vector where D=polylog(N).

 Jowhari, Saglam, Tardos [PODS 11], Kapralov et al. [FOCS 17]

? Question What about analyzing massive graphs via sketches? 
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• Communication Problem n players each have a list  their 
friends. Simultaneously, they each send a message to a 
central player who deduces if underlying graph is connected.

• Thm O(polylog n) bit message from each player suffices. 
 Ahn, Guha, McGregor [SODA 12]
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• Can’t be possible! What if there’s a bridge (u,v) in the graph, i.e., 
a friendship that is critical to ensuring the graph is connected.

• It appears like at least one player needs to send Ω(n) bits.

- Central player needs to know about the special friendship.

- Participant doesn’t know which friendships are special.

- Participants may have Ω(n) friends. 
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Algorithm (Spanning Forest): 
For each node: pick incident edge
For each connected comp: pick incident edge
Repeat until no edges between connected comp.

Lemma After O(log n) rounds selected edges include 
spanning forest.
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For node i, let ai be vector indexed by node pairs.  
Non-zero entries: ai[i,j]=1 if j>i and ai[i,j]=-1 if j<i.

Lemma For any subset of nodes S⊂V, non-zero 
entries of           are edges across cut (S,V\S)
Player j sends M(aj) where M is “l0 sampling” sketch. 
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Player with Address Books: Player j sends Maj

Central Player: “Runs Algorithm in Sketch Space”
Use Maj to get incident edge on each node j
For i=2 to log n:

To get incident edge on component S⊂V use:

Recipe: Sketch & Compute on Sketches

X

j2S

Maj = M(
X

j2S

aj)

Detail: Actually each player sends log n independent sketches M1aj, M2aj, ... 
and central player uses Miaj when emulating ith iteration of the algorithm.  

�! non-zero elt. of
X

j2S

aj = edge across cut
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...

• Thm O(polylog n) bit message from each player suffices. 

• Various extensions For example, with Õ(k) bit messages, can 
find all edges that participate in cuts of size less than k.



Part II

Sketching
What is sketching?

Surprising connectivity example
Revisiting graph cuts and sparsification
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Guha, McGregor, Tench [PODS 15], Kapralov et al. [STOC 14] 

• Main Ideas 

1. For a graph G, can find all edges in small cuts.

2. For large cuts, suffices to sample edges with prob. 1/2.

3. So, sparsifying G reduces to sparsifying sampled graph G’.

4. To sparsify G’ recurse… Can do recursion in parallel.
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• Two Main Graph Stream Models 

• Insert-Only Model: Input is a stream of edges.

• Insert-Delete Model: Edge insertions and edge deletions.

• Goal Using small memory, compute properties of the graph.

• All the earlier algorithms apply in insert-delete model:

• Maintain sketch Mx where x is characteristic vector of edges.

• When e inserted, update sketch Mx←Mx+(eth column of M)

Lawyers are now friends with everyone.

        Like · Add Friend 
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• Unweighted Matching Greedy algorithm returns 2-approx using 
Õ(n) space. Embarrassingly, this is best known one-pass result!

• Weighted Matching 2+ε approx in Õ(n/ε) space.
Paz, Schwartzman [SODA 17]

? Improve result for sparse graphs? Graph has arboricity ɑ if all 
subgraphs have average degree < ɑ. Planar graph has ɑ=3.

Approximation Ratios for Weighted Matching

Feigenbaum et al. McGregor Zelke Epstein et al. Crouch-Stubbs Paz-Schwartzman

6 5.83 5.59
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• Thm ɑ+2+ε approx of matching size in O(polylog n) space.
 Cormode et al. [ESA 17],  McGregor, Vorotnikova [SOSA 18]

• Define Edge {u,v} is special if ≤ ɑ edges incident to u and ≤ ɑ 
edges incident to v later than {u,v}.  Let s be # special edges.

• Lemma match(G)≤s≤(2+ɑ)match(G).

• Proof Ingredients Graph of special edges has degrees ≤ ɑ+1. 
Low arboricity bounds number of almost special edges.  

• Algorithm Estimate s up to a factor 1+ε

a) Suppose we have guess g that is 2-approximates s

b) Sample each edge w/p ≈ε-2 (log n)/g. If you subsequently 
see >ɑ edges incident to either endpoint, drop the edge.

• Can show a) the current sample size is always small and b) 
size of final sample and g yields good approx for s.
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• Consider a complete graph where edges are labelled 
attractive or repulsive. Given a node partition, an attractive 
edge is sad if it is cut and a repulsive edge is sad if it is not cut.  

• Correlation Clustering Find partition minimizing # sad edges. 
 See tutorial Bonchi, Garcia-Soriano, Liberty [KDD 14]

• 3-Approx Algorithm a) Pick random node. b) Form cluster with 
it and its attracted neighbors. c) Remove cluster from graph 
and repeat until nodes remain.  Ailon, Charikar, Newman [J. ACM 08]
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• Emulating algorithm in two passes:

• Preprocess Randomly order nodes, v1, v2, . . . , vn. 

• First Pass Store all attractive edges incident to {v1 , . . . , v√n }. 
Now can emulate first √n iterations of the algorithm. 

• Second Pass Store all remaining attractive edges. Now can 
emulate remaining steps of the algorithm. 

• Thm Algorithm uses Õ(n1.5) space.  Ahn et al. [ICML 16]

• Proof Idea At most n1.5 edges stored in first pass. In second, 
pass, can show remaining node have at most n0.5 neighbors.

• With more work, can get Õ(n) space with O(log log n) passes. 
Can also find maximal independent sets.
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• Coloring With min number of colors, assign a color to every 
node such that no edge has monochromatic endpoints.

• Thm Can color a graph in Δ+1 colors where Δ is max degree.

? How can we do this in a few passes with Õ(n) space? 

• O(Δ log log n) passes via independent sets. Let’s do better!
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• (1+ε)Δ Coloring a) Randomly color with Δ/r colors. b) Store 
edges E’ with monochromatic endpoints. c) Shade colors such 
that E’ edges no longer monochromatic. Bera, Ghosh [ArXiv 18]

• Space Analysis |E’|=O(nr) since probability edge in E’ is r/Δ.

• Colors Analysis If r≈ε-2 log n, max degree in E’ is ΔE’<(1+ε)r and 
final number of colors is (1+ΔE’)Δ/r= (1+ε)Δ.

• Δ+1 Coloring Idea For node v, pick Sv⊂{1,…,Δ+1} of O(log n) 
random colors. May assume v’s color in Sv. Assadi et al. [ArXiv 18]



Part III

Streaming
Revisiting Matching

Correlation Clustering
Coloring Graphs

Coverage and Submodular Maximization
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• Max-k-Coverage Given a stream of subsets S1, …, Sm of [n], find 
C that maximizes f(C)=|⋃i∈C Si| subject to |C|≤k. 

• Submodular Functions f is sub-modular if for A⊂B and x∉B, 

• Thm (1-ε)/2 approx. of max-coverage in Õ(ε-3k) space.
McGregor, Vu [ICDT 17]

f (A [ {x})� f (A) � f (B [ {x})� f (B)
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• Algorithm Guess g such that OPT≤g≤(1+ε)OPT.  Add first ≤k 
sets that each cover at least g/(2k) new elements.

• Approx Ratio If k sets added, we cover g/2≥OPT/2. If less sets 
added, each set not added covers <g/(2k) new elements and 
hence we covered OPT-g/2≥OPT(1-ε)/2.

• Reducing Space Above algorithm requires Õ(ε-1 OPT) space. 
Can use subsampling to such that OPT = Õ(ε-2 k). 

• Generalizations Constant passes for ≈1-1/e approx. Extends to 
other monotone submodular function. Other work on non-
monotone functions, beyond cardinality constraints, etc. 

McGregor, Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]



Thanks! Over to Sudipto…


