
Triangle and Four Cycle Counting in the Data Stream Model
Andrew McGregor

mcgregor@cs.umass.edu

University of Massachusetts

Sofya Vorotnikova

svorotni@gmail.com

Dartmouth College

ABSTRACT
The problem of estimating the number of cycles in a graph is one

of the most widely studied graph problems in the data stream

model. Three relevant variants of the data stream model include:

the arbitrary order model in which the stream consists of the edges

of the graph in arbitrary order, the random order model in which the

edges are randomly permuted, and the adjacency list order model

in which all edges incident to the same vertex appear consecutively.

In this paper, we focus on the problem of triangle and four-cycle

counting in these models. We improve over the state-of-the-art

results as follows, wheren is the number of vertices,m is the number

of edges and T is the number of triangles/four-cycles in the graph

(i.e., the quantity being estimated):

• Random Order Model: We present a single-pass algorithm

that (1 + ϵ)-approximates the number of triangles using

Õ(ϵ−2m/
√
T) space and prove that this is optimal in the range

T ≤
√
m. The best previous result, a (3 + ϵ)-approximation

using Õ(ϵ−4.5m/
√
T) space, was presented by Cormode and

Jowhari (Theor. Comput. Sci. 2017).

• Adjacency List Model: We present an algorithm that returns

a (1 + ϵ)-approximation of the number of 4-cycles using

two passes and Õ(ϵ−4m/
√
T) space. The best previous re-

sult, a constant approximation using Õ(m/T 3/8) space, was

presented by Kallaugher et al. (PODS 2019). We also show

that (1 + ϵ)-approximation in a single pass is possible in a)

polylog(n) space if T = Ω(n2) and b) Õ(n) space if T = Ω(n).
• Arbitrary Order Model: We present a three-pass algorithm

that (1 + ϵ)-approximates the number of 4-cycles using

Õ(ϵ−2m/T 1/4) space and a one-pass algorithm that uses

Õ(ϵ−2n) space when T = Ω(n2). The best existing result,

a (1 + ϵ)-approximation using Õ(ϵ−2m2/T) space, was pre-
sented by Bera and Chakrabarti (STACS 2017). We also show

a multi-pass lower bound and another algorithm for distin-

guishing graphs with no four cycles and graphs with many

4-cycles.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7108-7/20/06. . . $15.00

https://doi.org/10.1145/3375395.3387652

KEYWORDS
Data streams, triangles, cycles.

ACM Reference Format:
Andrew McGregor and Sofya Vorotnikova. 2020. Triangle and Four Cycle

Counting in the Data Stream Model. In 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3375395.3387652

1 INTRODUCTION
The problem of estimating the number of cycles in a graph is one of

the most widely studied graph problems in the data stream model

[2, 5–9, 12, 17, 19, 28, 30]. The initial focus was on triangles, since

the number of triangles in a network and related quantities such as

the transitivity or global clustering coefficient (the fraction of length

two paths that are included in a triangle) play an important role in

the analysis of real-world networks. More recently attention has

focused on counting larger cycles and other subgraphs [6, 19, 27].

There is also related work on finding frequent subgraphs, e.g., [1, 4].

See Tsourakakis et al. [33] for an excellent overview of applica-

tions such as motif detection in protein interaction networks and

analyzing social networks.

Graph Stream Models. Even if we restrict our attention to data

stream models in which edges are only inserted and may not be

deleted, there are multiple variants of the model that have been stud-

ied in the literature on graph stream algorithms and cycle counting

in particular. The arbitrary order model is the most general model

and in this model, as the name suggests, the stream consists of the

edges of the graph in arbitrary order. In the random order model,
the stream consists of a random permutation of the edges and the

success probability of an algorithm is in terms of the randomness

of the permutation and any coins tossed by the algorithm. Graph

matchings [23, 25], approximate triangle counting [12], and con-

nectivity [10] have been considered in this model. Finally, in the

adjacency list model each edge appears twice and the edges in the

stream are grouped by their end point.
1
Cycle counting has previ-

ously been considered in this model [9, 19, 28] and matching has

been considered in the closely related vertex-arrival model [15, 22].

The adjacency list model is also closely related to the row-order

arrival model considered in the context of linear algebra problems

[11, 14].

1.1 Our Results
We improve the state-of-the-art results for triangle counting in

random order streams and four-cycle counting in both arbitrary

1
For example, for the graph consisting of a cycle on three vertices V = {v1, v2, v3 },

a possible ordering of the stream could be ⟨v3v1, v3v2, v1v2, v1v3, v2v3, v2v1 ⟩. In

this example, we say that the adjacency list for v3 came first, then the adjacency list

for v1 , and finally the adjacency list for v2 .

https://doi.org/10.1145/3375395.3387652
https://doi.org/10.1145/3375395.3387652
https://doi.org/10.1145/3375395.3387652

order streams and adjacency list streams. All of our approximation

algorithms yield a (1+ϵ)-approximation for arbitrary 0 < ϵ < 1/100.

In what follows, n andm are the number of vertices/edges in the

input graph andT is either the number of triangles or the number of

four-cycles, i.e., the quantity being estimated. We parameterize our

algorithms in terms of T and various quantities in the algorithms

will depend on it. Obviously, we do not knowT in advance, but this

convention is widely adopted in the literature. A natural way to

formalize this is to phrase the problem as distinguishing between

graphs with at most t triangles/four-cycles and those with at least

(1 + ϵ)t , where t is an input parameter. In practice, the quantities

in the algorithms would be initialized based on a lower or upper

bound (as appropriate) for T .

1.1.1 Random Order Model. We present a single pass algorithm

that (1 + ϵ)-approximates the number of triangles T using

Õ(ϵ−2m/
√
T)

space and prove that this is optimal in the range T ≤
√
m. The best

previous result, a (3+ϵ)-approximation using Õ(ϵ−4.5m/
√
T) space,

was presented by Cormode and Jowhari [13].

The main idea in the upper bound is a new method for identi-

fying edges that participate in many triangles; this turns out to be

crucial to break the factor 3 approximation barrier. The main idea in

the lower bound is a reduction from a communication complexity

problem in the “random partition setting" where the input is ran-

domly partitioned between the players, in contrast to the standard

setting where a worst case partition is assumed. We present the

random order model results in Section 2.

1.1.2 Adjacency List Model. We present a two-pass algorithm that

(1 + ϵ)-approximates the number of 4-cycles using Õ(ϵ−4m/T 1/2)

space. This best previous result, a constant approximation using

two passes and Õ(m/T 3/8) space, was presented by Kallaugher et

al. [19]; our result achieves a better approximation in less space. The

main idea is to group 4-cycles into what we call “diamonds" where

the (u,v)-diamond is a complete bipartite graph between {u,v} and

Γ(u) ∩ Γ(v); such a graph corresponds to

(|Γ(u)∩Γ(v) |
2

)
4-cycles. By

estimating the diamonds of different sizes rather than individual

four cycles, we are able to reduce the variance of the estimation

process and this results in a more space efficient algorithm.

We also show that (1 + ϵ)-approximation in a single pass is

possible in a) polylog(n) space if T = Ω(n2) and b) Õ(n) space if
T = Ω(n). The main idea for both of these algorithms is to observe

that (
|Γ(u) ∩ Γ(v)|

2

)
≈
|Γ(u) ∩ Γ(v)|2

2

and to exploit connections to frequency moment estimation and ℓ2
sampling.We present the adjacency order model results in Section 4.

1.1.3 Arbitrary Order Model. We present a three-pass algorithm

that (1+ϵ)-approximates the number of 4-cycles using Õ(ϵ−2m/T 1/4)

space. This is the first 4-cycle counting algorithm in the arbitrary

order model that achieves sublinear (inm) space for any T = ω(1).

We also describe a one-pass algorithm that uses Õ(ϵ−2n) space
whenT = Ω(n2). Estimating the number of 4-cycles in the arbitrary

order model is significantly more challenging than estimating the

number of triangles because of locality issues. Specifically, it is

relatively easy to determine whether an edge (u,v) exists in many

triangles: we sample a set of nodes and compute the fraction that

would form a triangle with (u,v). For 4-cycles, things get more

complicated since there are two other nodes in the 4-cycle. The best

existing result, a (1+ϵ)-approximation using Õ(ϵ−2m2/T) space and
four passes, was presented by Bera and Chakrabarti [6]; our first

algorithm uses fewer passes and uses less space when T ≤ m4/3
.

We also present a two-pass algorithm for distinguishing graphs

with no 4-cycles and graphwith at leastT 4-cycles using Õ(m3/2/T 3/4)

space. The algorithm leverages a result in extremal graph theory

and uses less space than our approximation algorithm whenT ≥ m.

Lastly, we present a Ω(m/
√
T) space lower bound for any constant

pass algorithm that solves this problem. We present the arbitrary

order results in Section 5.

Notation. Throughout this paper V is the vertex set of the input

graph, E is the set of edges, and n = |V | andm = |E |. A wedge is a
length two path.

2 TRIANGLES IN RANDOM ORDER MODEL
Our main algorithmic result for counting triangles in the random

order model is:

Theorem 2.1. There exists an algorithm which takes one pass over
a randomly ordered stream, uses Õ(ϵ−2m/

√
T) space, and returns a

(1 + ϵ)-approximation of the number of triangles in the graph with
probability at least 99/100.

We then show that the above result is optimal when 1 ≤ T ≤
√
m.

2.1 One Pass Algorithm using Õ(m/
√
T) space

2.1.1 Basic Idea. One of the main ideas implicit in previous work

[13, 28] is that, assuming no edge is involved in too many triangles,

the number of triangles can be approximated by sampling roughly

O(m/
√
T) edges of the graph and counting the number of triangles

that include two edges from the sampled set. The threshold for

“too many" is roughly

√
T and such edges are referred to as being

“heavy" in the literature; we will also use this term but defer an

exact definition until the next section. A natural approach is to a)

use the above idea to count triangles without heavy edges and b)

recognize heavy edges and account for triangles involving these

edges separately. It is possible to do this in two passes [13, 28] if

the stream is ordered arbitrarily. The main technical breakthrough

of our new algorithm is a novel way to identify potential heavy

edges as they arrive in the stream, assuming the stream is randomly

ordered.

2.1.2 Algorithm. It will be helpful to define the following notation:
For an edge e and a set of edges F , let tFe be the number of triangles

in {e} ∪ F that include e . Let te := tEe . During a single pass, the

algorithm a) stores a set of edges that will include most edges

involved in many triangles and b) collects all edges in triangles that

include two edges in a prefix of the stream.

• FindingPotentiallyHeavyEdges: For i = 0, 1, . . . , log
√
T ,

let Vi be a subset of vertices where each vertex is sam-

pled with probability pi := min{1, 10cϵ−2(logn)/2i } where
c > 0 is a constant that will determine the success prob-

ability. To implement the algorithm efficiently, we define

Vi as Vi = {v : fi (v) = 1} using a random hash function

fi : V → {0, 1} with the appropriate degree of independence
and where, for all v ∈ V , P [fi (v) = 1] = pi . Let Ei be de-
fined as the set of edges incident toVi amongst the first qim

elements of the stream, where qi := 2
i/
√
T . During a pass

over the stream, store the following set of edges:

P := {e ∈ E : position of e in stream is > qim and tEie ≥ 1}

We will later show that edges involved in many triangles are

very likely to be included in P .
• Rough Estimator: Let S be the first rm elements of the

stream where r = cϵ−1/
√
T . During a pass over the stream,

store the following set of edges:

C := {e ∈ E : tSe ≥ 1} .

We will later show that S andC are sufficient to estimate the

number of “light" triangles in the graph, i.e., triangles that

do not include any edges that occur in many triangles.

• Post-Processing: Let O = E
log(
√
T) and p = plog(

√
T).

oracle(e) =

{
L if tOe < p

√
T

H otherwise

The oracle will henceforth be used to define whether an

edge is heavy or light. That is, while we will later show that

e being defined as heavy/light will roughly correspond to

whether te is larger/smaller than

√
T , the actual definition is a

function of the edges sampled by the algorithm; this will help

significantly with the analysis. Note that the oracle is defined

independently of the ordering of the data stream because

E
log(
√
T) is constructed based on the entire stream rather than

a strict prefix. Let SL,CL, PH be the subsets of the respective
sets restricted to heavy or light edges as appropriate. Return

1

3r2

∑
e ∈CL

tS
L

e +
1

p

∑
e ∈P H

(
tOe ,0 + t

O
e ,1/2 + t

O
e ,2/3

)
where tOe ,i is the number of triangles including e where i of

the other two edges in O in heavy. The coefficients of tOe ,i
take into account that a triangle with multiple heavy edges

can be counted from the perspective of multiple edges and

hence we need to compensate for overcounting.

2.1.3 Accuracy Analysis. To prove that the algorithm returns a

1 + ϵ approximation we will argue that a) the oracle distinguishes

between edges e with large or small te values with sufficient accu-

racy, b) the algorithm stores almost all edges with large te values,

and c) the number of triangles made of edges with small te values,

can be accurately estimated given the “rough estimator." We then

prove a space bound for the algorithm.

Properties of the Oracle. Note that for any edge e , tOe ∼ Bin(te ,p)
where p was defined to be p

log(
√
T). The following lemma then

follows from the Chernoff bound.

Lemma 2.2 (Oracle Guarantees). With high probability, tOe =
(1 ± ϵ)tep for all heavy edges e and te ≤ 2

√
T for all light edges.

Note that the number edges that are designated as heavy is at

most 4

√
T since if e is heavy then te ≥ p

√
T /(p(1+ϵ)) =

√
T /(1+ϵ)

and summing te over all heavy edges in at most 3T .

Finding Potentially Heavy Edges. We now argue that P , the set
of potentially heavy edges we construct, will contain most of the

edges that ultimately will be defined to be heavy by the oracle.

In particular, let i = ⌈log
2
T /(cϵ−2te)⌉ and note that if e does not

appear within the first qim edges of the stream then the probability

e is not added to P is at most

(1 − q2i pi)
te ≤ e−te 10cϵ

−2(logn)2i /T ≤ 1/n10

because the events that different triangles are formed between e
and edges in Ei are negatively associated. Therefore, the probability
that we do not include heavy edge e in P is

P
[
e ∈ EH \ P

]
≤ 1/n10 + P [e appears in a prefix of length qim]

= 1/n10 + 2i/
√
T

≤ 2 ·
2

√
T

cϵ−2te
,

where we used the fact that 1/n10 was dominated by the second

term for sufficiently large n.
The following lemma establishes that P includes most of the

heavy edges in terms of their contribution to the sum of their te
values.

Lemma 2.3 (Missing heavy edges).

∑
e ∈EH\P te ≤ ϵT with prob-

ability at least 1 − 1/c .

Proof.

E


∑

e ∈EH\P

te

 ≤
∑
e ∈EH

4

√
T

cϵ−2te
· te ≤ |E

H | ·
4

√
|T |

cϵ−2
≤

16|T |

cϵ−2

using the fact |EH | ≤ 4

√
T (see discussion following Lemma 2.2).

The result then follows by an application of the Markov bound

assuming ϵ < 1/16. □

Accuracy. The total number of triangles can be written as:

T0 +T1 +T2 +T3 = T0 +
∑

e :heavy

(te ,0 + te ,1/2 + te ,2/3)

where Ti is the number of triangles with i heavy edges and te ,i is
the number of triangles including e where exactly i of the other
edges are heavy. The next two lemmas consider errors incurred

when estimating the terms T0 and T1 +T2 +T3.

Lemma 2.4. With probability at least 1 − 1/c2,
1

3r2

∑
e ∈CL

tS
L

e = T0 ± ϵT .

Proof. Let X be the number of light wedges (paths of length

2) in S that can be completed by another light edge. Note that

X =
∑
e ∈CL tS

L

e and E [X] = 3r2T0. Since each edge in SL can only

occur in at most 2

√
T triangles, the variance can be calculated as

V [X] ≤ 3r2T0 + 6T0r
3

√
T < 9r2T0 < 9c2ϵ−2

Hence, by an application of the Chebyshev bound,

P
[
|X − E [X] | ≥ 3ϵr2T

]
≤ 1/c2. □

Lemma 2.5. With high probability,
1

p

∑
e :heavy

(
tOe ,0 + t

O
e ,1/2 + t

O
e ,2/3

)
= (1 ± ϵ)(T1 +T2 +T3) .

Proof. By an application of the Chernoff bound, for each heavy

edge e , with high probability

tOe ,0 + t
O
e ,1/2 + t

O
e ,2/3 = (1 ± ϵ)p(te ,0 + te ,1/2 + te ,2/3) .

The result follows by summing over the heavy edges. □

Therefore, by combining Lemmas 2.3, 2.4, and 2.5 we establish

that the estimator gives a 1 + ϵ approximation with probability at

least 1 − 1/c − 1/c2 − 1/poly(n) ≥ 1 − 3/c .

2.1.4 Space Analysis. It remains to analyze the space used by the

algorithm. The expected space to store all Ei is at most

m

log

√
T∑

i=0
2
i/
√
T · 2cϵ−2/2i ≤ 2cϵ−2m/

√
T · log

√
T .

The expected size of CS is at most 3r2T . Hence, the expected space

used by the algorithm is Õ(ϵ−2m/
√
T) as claimed. Note that it ex-

ceeds this space by a factor 1/δ with probability at most δ using a

standard Markov Bound argument.

2.2 Lower Bound
We now prove the following space lower bound for distinguishing

between triangle-free graphs from graphs with many triangles.

Note that this implies no multiplicative approximation is possible

in less space.

Theorem 2.6. Assume 1 ≤ T ≤
√
m. Any single-pass algorithm

that distinguishes between 0 and T triangles in a graph presented in
random order with probability at least 1 − 1/m2 requires Ω(m/

√
T)

space.

The proof will be via a reduction from communication com-

plexity in the random partition setting [10]. The proof involves

constructing a graph based on a binary matrix and the index to an

entry of this matrix such that the graph hasT triangles if this entry

is 1 and is triangle-free otherwise. Note that it is relatively easy to

find a construction with this property and this sufficed to prove

previous bounds in the arbitrary order model. The main challenge

in proving the result here is to ensure that if the edges of the graph

arrive in random order, then the identity of the entry of interest is

not revealed too early in the stream.

We start by presenting the construction. Given x ∈ {0, 1}n×n , let
Sx = {(xi , j ,ui ,vj) : 1 ≤ i, j ≤ n} and let Ex = {(ui ,vj) : xi , j = 1} .

Let

PA1, ...,An ,B1, ...,Bn = {(ui ,w) : w ∈ Ai , i ∈ [n])}∪

{(vj ,w) : w ∈ Bj , j ∈ [n])}

Let Pi∗, j∗ be the collection of all such sets where Ai∗ = Bj∗ and all

the sets aside from the Bj∗ are disjoint sets of

W = {wk : 1 ≤ k ≤ 2nT }

of size T . Note that the graph consisting of edges Ex ∪ P for any

P ∈ Pi∗, j∗ hasT triangles if xi∗, j∗ = 1 and is triangle-free otherwise.

See Figure 1.

u1

u2

u3 v1

v2

v3

a) Edges of the graph present in the length ≈ m/
√
T prefix

of stream. At this point there is no information which two
nodes inU ∪V have the same set of neighbors inW .

u1

u2

u3 v1

v2

v3

b) Edges of the graph in entire of stream. u2 and v3 have T
neighbors in common in W . There are T triangles iff edge
(u2,v3) is present in the graph.

Figure 1: The Lower Bound Construction for n = 3,T = 2.
The graph is a tri-partite graph on nodes (U ,V ,W) where
U = {u1,u2, . . . ,un }, V = {v1,v2, . . . ,vn }, and the shaded
nodes correspond to the 2nT nodes inW . Each node inU ∪V
has T random neighbors amongstW . All of these neighbor-
hoods are disjoint except for the neighborhood of some ui∗
and vj∗ which have identical neighborhoods inW .

Theorem 2.7. Let p = c/
√
T for some small constant c and assume

np is an integer. Let x ∈R {0, 1}n×n and i∗, j∗ ∈R [n]. Suppose each
entry of Sx and a random set P in Pi∗, j∗ is revealed to Alice with
probability p and revealed to Bob otherwise. Then the randomized
one-way communication from Alice required for Bob to determine
whether Ex ∪ P contains 0 or T triangles with probability at least
1 − 1/n4 is Ω(n2/

√
T) .

Proof. Suppose A is protocol that succeeds with probability

P [success] ≥ 1−δ . LetC be the event that (xi∗, j∗ , i
∗, j∗) is received

by Alice along with exactly pn2 − 1 other elements from Sx . Then

P [C] = p × pn
2p−1(1 − p)n

2(1−p)+1
(
n2 − 1

pn2 − 1

)
≥ p/n2

and the success probability ofA conditioned onC isP [success | C] =
1 − P [fail | C] ≥ 1 − n2δ/p.

Consider a reduction from a random instance of the Index prob-

lem where Alice has a random binary string z ∈ {0, 1}n
2p

and Bob

has a random index k ∈ [n2p]. Recall, that the one-way communi-

cation complexity of solving Index with probability at least 4/5 is

Ω(n2p).

• Using public randomness, Alice and Bob determine a random

partition of elements of the form (·,ui ,vj)where exactly n
2p

elements of this form are received by Alice. Again using

public randomness, they determine an ordering of these

elements and let (·,uf1(ℓ),vf2(ℓ)) be the ℓth element according

to this ordering. Bob sets i∗ = f1(k) and j∗ = f2(k). Using
public randomness, the players define 2n random variables

br ∼ Bin(T ,p) for all r ∈ U ∪V .

• Alice uses the bits of z to populate the entries of the form

(·,ui ,vj) received by Alice, i.e., she sets the first argument

of (·,uf1(ℓ),vf2(ℓ)) is set to zℓ .
• Bob uses iid binary values to populate the entries of the form

(·,ui ,vj) received by Bob.

• Alice adds an edge between each r ∈ U ∪V and br random
neighbors random vertices inW and such that all vertices in

W have degree at most 1.

• For each r ∈ (U \ {ui∗ }) ∪
(
V \ {vj∗ }

)
, Bob adds T − br

random vertices inW such that all vertices inW still have

degree at most 1. Add edges from ui∗ to all neighbors of vj∗

inW and from vj∗ to all neighbors of ui∗ inW . Amongst the

isolated vertices inW , select T − bui∗ − bvj∗ at random and

add edges to ui∗ and vj∗ (if T − bui∗ − bvj∗ < 0 then output

fail).

Note that in the distribution defined above, there is at most one

incident edge to each vertex inW amongst the edges determined by

Alice. However, according to the required distribution, for each of

the T vertices inW of degree 2, there should be Bin(2,p) incident
edges amongst the edges defined by Alice. However, the variational

distance between this distribution and the required distribution is

Tp2 ≤ c2. Hence, the algorithm succeeds with probability at least

1 − n2δ/p − c2. Setting c = 1/
√
10 and δ = p/(10n2) ensures that

any one-way protocol for the triangle problem that succeeds with

probability at least 1 − δ uses at least Ω(n2p) communication since

it also solves the Index problem with probability at least 4/5. □

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let n =
√
m and note that the graph

Ex ∪ P has at mostm + 2
√
mT ≤ 3m edges. The players define a

random stream: each player randomly permutes the tokens they

receive. Tokens of the form (0,ui ,vj) are deleted and tokens of the

form (1,ui ,vj) are mapped to the edge (ui ,vj). □

3 4-CYCLE COUNTING PRELIMINARIES
In this section, we describe an algorithm which is going to be used

as a subroutine in two of our 4-cycle counting results. Initially,

the problem was motivated by the adjacency list algorithm in Sec-

tion 4.1. However, we present it with enough abstraction for it to

apply to the arbitrary order algorithm in Section 5.1 as well.

Let G = (V , E) be a weighted graph with edge weights between

1 and λ (for constant λ), and letW be the total weight of edges

in the graph. The goal is to estimateW in the following scenario.

Let R1 and R2 be subsets of vertices determined independently

by sampling vertices with probability p ≥
λc logn
ϵ 2
√
M

. We observe a

stream of vertices v ∈ V , where on the arrival of v , we see all edges
between v and u ∈ (R1 ∪ R2). Note, that when we observe a vertex

in R1 or R2, we do not see all edges on it. Again, we only see edges

between that vertex and other vertices in (R1 ∪ R2). We show that

using one pass over the stream, we can ±ϵM additively approximate

W ifW is smaller thanM , and can also distinguish between cases

whenW ≥ 2M andW ≤ M/2 with high probability.

Direct all edges towards the vertex that comes earlier in the

stream. Let win (v) and wout (v) be the total weight of edges go-
ing into and out of v respectively. Then

∑
v win (v) = W . Also

let win
i (v) and wout

i (v) be the weight of edges on vertices in Ri
pointing towards/away from v . We use edges on vertices in R1
to distinguish between vertices with large and small win (v). If

win
1
(v) ≥ p

√
M , we say that v is heavy and call the set of such

vertices VH . Otherwise, v is light and V \ VH = VL . Then, using
edges on R2, we approximate the sum of win (v) values of light
vertices and estimate each win (v) individually for heavy v . Two
separate sets R1 and R2 are used for independence reasons, which

allows for simpler analysis.

3.0.1 The “Useful" Algorithm:

Initialize: A← 0, AL ← 0, AH ← 0, V ′H ← ∅
For every vertex v in the stream:

• A← A +wout
2
(v)

• For each u ∈ V ′H , if there is an edge vu:
– a(u) ← a(u) +w(vu)
• Ifwin

1
(v) ≥ p

√
M :

– If v ∈ R2: V
′
H ← V ′H ∪ {v} and initialize a(v) ← 0

– AH ← AH +w
in
2
(v)

AL ← A −
∑
v ∈V ′H

a(v)

Return: Ŵ = (AL +AH)/p

Note that when we are processing vertexv , we need to know which

vertices in R1 and R2 came before it and which came after. In order

to achieve that, it is enough to mark vertices in (R1 ∪R2) which we

have already seen.

3.0.2 Error Analysis. The proof of the following lemma can be

found in the appendix.

Lemma 3.1. With high probability,

a. IfW ≤ M then Ŵ =W ± ϵM
b. If Ŵ < M thenW ≤ 2M

c. If Ŵ ≥ M thenW ≥ M/2

3.0.3 Space Analysis: The algorithm stores sets R1 and R2 and

keeps one extra bit per vertex in those sets to mark which of them

we have seen in the stream. In addition, we are keeping track of a few

global counters and a set of heavy vertices in R2 with one counter

per such vertex. We now analyze the expected size of this set. In the

proof of Lemma 3.1, we show thatwin (v) ≥
√
M/2 for all heavy v .

Thus, the number of heavy vertices is at most 2W /
√
M . Then the

expected number of heavy vertices in R2 is 2Wp/
√
M = Õ(W /M).

To sum it up, in expectation, the total space used by the algorithm

is Õ(|R1 | + |R2 | +W /M).

4 4-CYCLES IN ADJACENCY LIST MODEL
4.1 Two-pass Õ(m/

√
T) Space Algorithm

In this section, we present an algorithm which takes two passes

over an adjacency list stream, uses space Õ(m/
√
T), and returns a

(1 + ϵ)-approximation of the number of 4-cycles in the graph.

4.1.1 Basic Idea. The main idea of our algorithm is that instead of

counting 4-cycles individually, as it was done in previous work, we

count them “grouped together” into subgraphs we call diamonds.

A diamond is a structure consisting of two vertices u and v and

h paths of length 2 connecting them. Essentially, a diamond is a

complete bipartite graph K
2,h , and it includes

(h
2

)
4-cycles. We call

u and v the endpoints of the diamond and d(u,v) = h its size.

We show that a diamond can be identified in the stream by first

sampling one of its endpoints (say u) and then sampling at least

2 edges involved in the diamond which are incident to u. When v
arrives in the stream in the second pass, we observe at least one

4-cycle in the diamond. With appropriate edge sampling probability,

it is possible to also estimate the size of the diamonds we discover.

We then partition the diamonds in the graph into logn groups

by size (group j contains diamonds of size roughly between 2
j

and 2
j+1

) and show how to approximate the number of 4-cycles

within each group. Note, that each 4-cycle belongs to exactly two

diamonds. A small caveat is that we don’t want to count a diamond

towards two groups of similar size. Thus, we disregard diamonds

with size being too close to the group “boundary”. In order to avoid

potentially missing too many 4-cycles, we also try log
1+ϵ 2 different

shifts of group boundaries and show that at least one of those shifts

allows us to account for most 4-cycles.

4.1.2 Algorithm for Estimating Diamond Size. Consider the follow-
ing procedure for estimating diamonds of size roughly sk :

Pass 1:
• Sample vertices with probability

pv =
csk log3 n
√
Tϵ2

and call the set of sampled vertices Vsk . On each sampled

vertex sample edges with probability

pe =
c logn

ϵ2sk
and call the set of sampled edges Esk .

Pass 2: For each vertex v in the stream:

• For eachu ∈ Vsk , compute the number of 2-pathsu−w−v ,
such that uw ∈ Esk . Call this value a(u,v).

• Let d̂(u,v) = a(u,v)/pe , which is the estimate of the size

of the diamond between u and v .

4.1.3 Accuracy Analysis.

Lemma 4.1. If a diamond with endpoints u ∈ Vsk and v ∈ V has
size d(u,v) ≥ sk , then d̂(u,v) = (1 ± ϵ/10)d(u,v) whp.

Proof. E
[
d̂(u,v)

]
= d(u,v). By an application of the Chernoff

bound,

P

[
|d̂(u,v) − d(u,v)| ≥

ϵd(u,v)

10

]
≤ exp

(
−
ϵ2d(u,v)pe

300

)
≤

1

poly(n)

since d(u,v) ≥ sk and pe =
c logn
ϵ 2sk with sufficiently large constant

c . □

Let Dsk be the set of diamonds of size between sk and 2sk . Let
D ′sk ⊆ Dsk be the set of diamonds of size (1+ϵ/3)sk to (1−ϵ/3)2sk .
We want to avoid potentially counting the same diamond towards

two sets Dsk1 and Dsk2 with diamonds of close size, thus we only

consider ones with

(1 + ϵ/6)sk ≤ d̂(u,v) < 2(1 − ϵ/6)sk ,

call that set D ′′sk . Note that D
′
sk ⊆ D ′′sk ⊆ Dsk .

Define the following weighted graph Hsk . The vertex set is V .
The edges correspond to pairs (u,v) such that

(1 + ϵ/6)sk ≤ d̂(u,v) < 2(1 − ϵ/6)sk ,

and the weight of the edge is

(d̂ (u ,v)
2

)
/
(sk
2

)
. The weight is then the

approximate number of 4-cycles in the diamond between u and

v scaled down by

(sk
2

)
so that it is between 1 and a constant. We

now refer to the Useful Algorithm in Section 3 to approximate

the total weight of edges in Hsk . Note that the algorithm calls for

two random sets of vertices, thus we run two copies in parallel,

collecting sets V 1

sk , V
2

sk , E
1

sk , and E2sk and pass them to the Useful

Algorithm. Call the estimate returned by the Useful Algorithm Ŵsk
and let T̂sk = Ŵsk

(sk
2

)
.

Let T (D) be the number of 4-cycles involved in the diamonds in

the set D. According to Lemma 3.1, with high probability

Ŵsk =
(1 ± ϵ/10)T (D ′′sk)(sk

2

) ±
ϵT

3

(sk
2

)
logn

where the (1 ± ϵ/10) factor comes from the fact that we are using

d̂(u,v) instead of d(u,v). Then

T̂sk = (1 ± ϵ/10)T (D
′′
sk) ± ϵT /(3 logn)

By summing over logn levels, we obtain

(1−ϵ/10)
∑
k

T (D ′sk)−ϵT /3 ≤
∑
k

T̂sk ≤ (1+ϵ/10)
∑
k

T (Dsk)+ϵT /3

We now show that we can find a shift s such that

∑
k T (D

′
sk) ≥

2(1−2ϵ)T . Consider log
1+ϵ 2 shifts of the form (1+ϵ)

i
. Note that for

shift si = (1+ϵ)
i
we might miss diamonds with (1−ϵ/3)(1+ϵ)ik <

d(u,v) < (1 + ϵ/3)(1 + ϵ)i+1k for every k . Call the set of diamonds

we might miss with this shiftMi . Also note that (1+ ϵ/3)(1+ ϵ)
i <

(1−ϵ/3)(1+ϵ)i+1 and thus setsMi are disjoint. Since
∑
i T (Mi) ≤ 2T ,

there exists a setMℓ such that T (Mℓ) ≤ 2T /log
1+ϵ 2 ≤ 4ϵT .

To sum it up, there exists a shift sℓ , such that

2(1 − 3ϵ)T ≤
∑
k

T̂sℓk ≤ 2(1 + ϵ)T

Therefore, we can run log
1+ϵ 2 copies of the algorithm in parallel

(one for each shift value) and then pick the run which outputs the

largest estimate. We then scale it down by 2 to account for each

4-cycle belonging to two diamonds.

4.1.4 Space Complexity. For each level sk the expected space use

is

mpvpe = O(mϵ−4(log4 n)/
√
T) .

The value s takes log
1+ϵ 2 = O(1/ϵ) values and k takes logn values.

Thus, the total expected space of the algorithm isO(mϵ−5(log5 n)/
√
T).

We now state the final result.

Theorem 4.2. There exists an adjacency order streaming algorithm
that returns a (1 + ϵ)-approximation of the number of 4-cycles in the
graph with high probability using two passes and Õ(ϵ−5m/

√
T) space.

4.2 One-pass algorithms when T is large
We now present single-pass algorithms for four-cycle counting

whenT is large. The main approach is to reduce the problem to the

problem of estimating frequency moments and the related approx-

imate ℓ2 sampling problem. Given a vector z, the k-th frequency
moment is defined as Fk (z) =

∑
i z

k
i . The ℓ2 sampling problem is to

randomly generate a pair (i, zi) where i is chosen with probability

z2i /F2(z).

Theorem 4.3. There exists a single pass algorithms for (1 + ϵ)-
approximating the number of four-cycles in the adjacency list model
using:
• Õ(ϵ−4n4/T 2) space.
• Õ(∆ + ϵ−2n2/T) space where ∆ is the maximum degree2.

Note that if T = Ω(n2/ϵ2), polylog(n) space is sufficient and if T =
Ω(n), Õ(n) space is sufficient.

4.2.1 Basic Idea. We reduce the problem of 4-cycle counting to

analyzing the vector x ∈ N(
n
2
)
where xuv is the number of wedges,

i.e., length two paths, with endpoints u,v . Note that xuv ≤ n − 2
and ∑

u ,v

(
xuv
2

)
= 2T

whereT is the number of 4 cycles. The factor two is present because

a 4-cycle on verticesv1,v2,v3,v4 is counted once via xv1v3
and once

via xv2v4
. Let zu ,v = min(xu ,v , 1/ϵ) and consider the quantity

F1(z) + 2
∑
u ,v

(
xu ,v
2

)
= F1(z) + 4T .

Lemma 4.4. F2(x) − 4ϵT ≤ F1(z) + 4T ≤ F2(x).

Proof. The lemma follows by considering each term in the sum-

mations. Let a ∈ N. If a ≤ 1/ϵ then, min(a, 1/ϵ) + 2

(a
2

)
= a2. If

a > 1/ϵ , then

a2 ≥ min(a, 1/ϵ)+2

(
a

2

)
= a2 −a+1/ϵ > a2 −a+1 > a2 −ϵa(a−1)

using the assumption that ϵ < 1. □

It follows that if we can approximate each of F1(z) and F2(x) up
to an additive ±O(ϵT) term then we can get a 1+O(ϵ)multiplicative

approximation of T . In the next two sections we show that it is

possible to approximate both terms with this additive error using

Õ(ϵ−4n4T−2) space; this establishes the first part of Theorem 4.3.

The main challenge in using existing frequency moment algorithms

is that an adjacency list of length ℓ corresponds to
(ℓ
2

)
updates to

x and it appears that an algorithm would have to store the entire

adjacency list in order to perform these updates. This would not

allow us to claim a polylog(n) space algorithm when T = Ω(n2).

4.2.2 F2(x) Algorithm and Analysis. First note that F1(z) ≤ n2/ϵ
and hence by Lemma 4.4,

F2(x) ≤ 4ϵT + n2/ϵ + 4T .

Therefore, a 1+γ approximation of F2(x)whereγ = ϵ min(1, ϵT /n2)
yields an additive

γF2(x) ≤ γ (4ϵT + n
2/ϵ + 4T) ≤ 4ϵ2T + ϵT + 4ϵT < 9ϵT

2
Note that the algorithm will not need to know ∆ ahead of time

approximation of F2(x). Our algorithm for 1 + γ approximating

F2(x) will be based on the following basic estimator that a) can be

computed in small space and b) has the correct expectation and low

variance.

(1) For each t ∈ V , compute

At =
∑

u ∈Γ(t)

αu Bt =
∑

u ∈Γ(t)

βu Ct =
∑

u ∈Γ(t)

αuβu

where α, β ∈ {−1, 1}n and the entries of α and β are deter-

mined by 4-wise independent hash function.

(2) Return X = (
∑
t ∈V (AtBt /2 −Ct /2))

2

This basic estimator can be computed in O(logn) space in the

adjacency list model since it suffices to maintain 4 counters at any

one time. Specifically, while processing the adjacency list for v , we
compute Av ,Bv ,Cv and once the adjacency list is completed, we

computeAvBv −Cv/2 and add the value to a fourth counter. These

first three counters can be reused to process the next adjacency list,

and at the end of the stream, squaring the fourth counter returns

the value of X .

We can calculate the expectation of X as follows:

E [X] = E

©­«
∑
t

∑
u ,v ∈Γ(t):u,v

αuβv
ª®¬
2

= E


(∑
u ,v

xu ,vαuβv

)
2

=
∑
u ,v

x2u ,v

Hence, E [X] = F2(x) and the V [X] = O(F2(x)) where the variance
follows from [16]. Repeating the process O(1/γ 2 log 1/δ) times in

parallel yields a 1 + γ approximation via the median of means

analysis.

4.2.3 F1(z) Algorithm and Analysis.

(1) Initialization: Let S be a random sample of vertex pairs

where each pair is sampled independently with probability

p = 6ϵ−4n2T−2 logn.
(2) During a single pass: For each {u,v} ∈ S , compute zu ,v .
(3) Postprocessing: Return Z = 1/p

∑
{u ,v }∈S zu ,v

Note thatE [Z] = F1(z) and sincemax zu ,v ≤ 1/ϵ , by an application
of the Chernoff bound,

P [|Z − E [Z] | ≥ ϵT] ≤ 2 exp(−ϵ(ϵT /F1(z))
2pF1(z)/3)

= 2 exp(−ϵ3T 2p/(3F1(z))) ≤ 2/n2

The space used is O(pn4 logn) = O(ϵ−4n4T−2 log2 n) bits.

4.2.4 Alternative Approach via ℓ2 Sampling. To prove the second
part of Theorem 4.3, we analyze x via ℓ2 sampling rather than

norm estimation. The basic approach is as follows: define a random

variable X by sampling uv with probability x2uv/F2(x) and letting

X = 1 with probability (xuv − 1)/(4xuv) and 0 otherwise. Then

E [X] = T /F2(x). Averaging r = O(ϵ
−2 · F2(x)/T · logn) times gives

a (1 + ϵ) approximation ofT /F2(x) with high probability. Note that

F2(x) ≤
∑
uv

min(xuv , 1) + 6T

and hence F2(x) ≤ n2 + 6T . Therefore, r = O(ϵ−2(n2 +T)/T logn).
It remains to argue that we can estimate F2(x) (so we can rescale

X to give T) and perform the necessary sampling. Given O(∆)
space, it is possible to store each adjacency list and transform this

adjacency list into a sequence of updates to the vector x . Then we

can 1+ϵ approximate F2(x) in polylogarithmic space using existing

frequency moment algorithms [3, 21]. Similarly, we can sample

edges with probability proportional to x2uv/F2(x) using existing ℓ2
sampling algorithms [18, 24, 29].

5 4-CYCLES IN ARBITRARY ORDER MODEL
In this section, we describe two algorithms and a lower bound

related to counting 4-cycles in the graph. The first algorithm takes

three passes over the stream, uses space Õ(m/T 1/4), and returns a

(1+ ϵ) approximation. The second one takes two passes, uses space

Õ(m3/2/T 3/4), and distinguishes between graphs with 0 and T 4-

cycles. For the lower bound, we show that distinguishing between

graphs with 0 andT 4-cycles in a constant number of passes requires

Ω(m/T 1/2) space.

Our two algorithms rely on the following structural result that

is proved in the appendix:

Lemma 5.1. We call an edge e ∈ E(G) “bad” if it is contained in at
leastη

√
T 4-cycles, and “good” otherwise. There are at leastT (1−82/η)

cycles containing no more than one bad edge.

5.1 Three-pass Õ(m/T 1/4)-space Algorithm
5.1.1 Basic Idea. This result relies on two simple ideas:

• Sampling edges uniformly at a certain rate allows us to obtain

some 3-paths which are involved in 4-cycles.

• Sampling vertices uniformly and storing all incident edges

allows us to build an oracle classifying edges as heavy or

light (involved in a large or small number of 4-cycles).

We then approximate the number of 4-cycles with 3 or 4 light edges

and use that as our estimate.

5.1.2 Algorithm. The outline of the algorithm is as follows (the

oracle is defined later):

Pass 1:

• Let p =
c logn
ϵ 2T 1/4

• Sample edges with probability p, call set S0
• Sample vertices with probability p, call set of sampled

vertices Q1; collect incident edges, call set S1
• Sample vertices with probability p, call set of sampled

vertices Q2; collect incident edges, call set S2
Pass 2: For every edge e in the stream:

• Check if e completes any 3 edges from S0 to a 4-cycle. For

each such cycle τ , store (e, τ)
Pass 3:
• Use the oracle based on Q1, Q2, S1, and S2 to classify all

edges involved in cycles stored in pass 2

• Let A0 be the number of (e, τ) pairs s.t. τ has no heavy

edges

• Let A1 be the number of (e, τ) pairs s.t. e is heavy and the

other 3 edges in τ are light

Return: A0/(4p
3) +A1/p

3

We now describe the oracle. Assume that we are trying to clas-

sify edge e . We define a graph He = (Ve , Ee) and run the Useful

Algorithm from Section 3 on it. The graph is defined as follows. Let

Ve be the set of edges sharing an endpoint with e and let Ee be pairs
(ei , ej), such that there exists an edge ek , such that (e, ei , ek , ej)
form a 4-cycle. In other words, “edges” inHe correspond to 4-cycles

in G which involve edge e . Since He is an unweighted graph, the

Useful Algorithm returns an estimate of |Ee |, which corresponds

to the heaviness of e .
Recall, that the Useful Algorithm requires a uniform independent

sample of vertices in the graph. There is a small caveat in obtaining

such a sample from He , since we are not sampling edges of G
independently, but rather sample vertices and collect all incident

edges. Note, that a vertex in G can have zero, one, or two edges

incident to it which share an endpoint with e (if we sample a vertex

involved in e itself, simply ignore it), and thus can correspond to

zero, one, or two “vertices” in He . We address this problem by

further subsampling. Consider two hash functions f : V × E →
{0, 1, 2, 3} and д : V × E → {0, 1} defined as follows

f (v, e) =


0 with probability 0.4

1 with probability 0.4

2 with probability q

3 with probability 0.2 − q

д(v, e) =

{
0 with probability 0.4 + q

1 with probability 0.6 − q

The value for q is picked such that it satisfies the following two

equations: (p(0.4 + q))2 = pq and q ≤ 0.2. Note, that it is always

possible for p < 0.1. Ifv has two incident edges sharing an endpoint

with e , compute f (v, e), pick the first edge if the output is 0, second
if it is 1, both if it is 2, and neither if it is 3. If v has one incident

edge sharing an endpoint with e , compute д(v, e), pick the edge if

the output is 0 and don’t pick the edge if it is 1. It is easy to see,

that this way we restore the independence of the sample for each

classifier. Note, that we are still keeping the entirety of sets S1 and
S2 and perform this additional subsampling on the fly.

Let t̂(e) be the estimate of |Ee | returned by the Useful Algorithm

when it is run on He . Define

oracle(e) =

{
L if t̂(e) < η

√
T (edge is called light)

H if t̂(e) ≥ η
√
T (edge is called heavy)

It follows from Lemma 3.1, that oracle(e) = L implies t(e) ≤ 2η
√
T

and oracle(e) = H implies t(e) ≥ η
√
T /2 with high probability.

5.1.3 Correctness. Let T̂ be the estimate returned by the algorithm.

Below we show that

(1 − 164/η − ϵ)T ≤ T̂ ≤ (1 + ϵ)T

with constant probability. Let Ti be the number of 4-cycles with i
heavy edges. From Lemma 5.1, (1 − 164/η)T ≤ T0 +T1 ≤ T , since
edges with t(e) ≤ ηT /2 are classified as light w.h.p.

Let T̂0 = A0/(4p
3) and T̂1 = A1/p

3
. Note that E

[
T̂0

]
= T0 and

E
[
T̂1

]
= T1.

Lemma 5.2. With constant probability, T̂0 = T0 ± ϵT /2 and T̂1 =
T1 ± ϵT /2.

Proof. By an application of the Chebyshev bound,

P
[
|T̂0 −T0 | ≤ ϵT /2

]
≤ 1/16

as long as V
[
T̂0

]
≤ ϵ2T 2/64. We now give a bound on the variance

of T̂0. LetH0 be the set of 3-paths which are involved in 4-cycles

in T0. Let Xq be 1 if all 3 edges of path q ∈ H0 were sampled and 0

otherwise. Then

V
[
T̂0

]
= V


1

4p3

∑
q∈H0

Xq


=

1

16p6

©­­­­­­«
∑
q∈H0

V
[
Xq

]
+

∑
q,t ∈H0 :

q,t ,
q∩t,∅

COV
[
Xq ,Xt

]ª®®®®®®¬
≤

1

16p6

©­­­­­­«
∑
q∈H0

E
[
X 2

q

]
+

∑
q,t ∈H0 :

q,t ,
q∩t,∅

E
[
XqXt

]ª®®®®®®¬
≤

1

16p6

©­­­­­­«
∑
q∈H0

p3 +
∑
q∈H0

∑
t ∈H0 :

q,t ,
q∩t,∅

p4

ª®®®®®®¬
≤

1

16p6
©­«|H0 |p

3 +
∑
q∈H0

6η
√
Tp4

ª®¬ (1)

≤
1

16p6

(
|H0 |p

3 + 6η |H0 |
√
Tp4

)
≤ T /4p3 + 6ηT 3/2/4p2

≤ ϵ2T 2/64 (2)

where equation 1 follows from the fact that any light path q ∈ H0

intersects at most 6η
√
T other paths inH0 and equation 2 follows

since p ≥ c
√
η/(ϵT 1/4) for sufficiently large constant c .

Proving P
[
|T̂1 −T1 | ≤ ϵT /2

]
≤ 1/16 follows along the same

lines. □

5.1.4 Space Complexity. The expected size of sets S0, S1, and S2 col-

lected in pass 1 ismp = O(
m logn
ϵ 2T 1/4). The expected number of cycles

stored in pass 2 is 4T /p3 = Θ̃(T 1/4). Note that T 1/4 = O(m/T 1/4)

since a pair of disjoint edges can be involved in at most 2 distinct

cycles and thus T ≤ 2m2
. We run four instances of the oracle (one

per edge) for each 4-cycle stored. Note, that all oracles use S1 ∪ S2
without creating individual copies of this data. However, each in-

stance also keeps track of O(W /M) counters (whereW andM are

defined in Section 3). Note, thatW = |Ee | < m, since the number

of 4-cycles on e is at mostm, andM ≤ (1/p)2 = Θ̃(
√
T). Thus, the

extra space per classifier is Õ(m/
√
T) and the total space used by

the algorithm is Õ(m/T 1/4).

We now state our final result.

Theorem 5.3. There exists an Õ(m/T 1/4) space algorithm that
takes three passes over an arbitrary order stream and returns a (1+ϵ)
multiplicative approximation to the number of 4-cycles in the graph
with probability at least 3/4 − 1/polyn.

By running Θ(log 1/δ) copies of the algorithm in parallel and

taking the median of their outputs, we can increase the success

probability to 1 − δ , where δ ∈ (0, 1).

5.2 Two-pass Õ(m3/2/T 3/4)-space Algorithm
In this section, we describe an algorithm which distinguishes be-

tween graphs with 0 and T 4-cycles using Õ(m3/2/T 3/4) space and

two passes over the stream. Our algorithm relies on the following

result from extremal graph theory [26, 32]:

Lemma 5.4. Let G = (V , E) be graph. If |E | ≥ 2|V |3/2, then G
contains a 4-cycle.

5.2.1 Algorithm. In the first pass, we sample edges with proba-

bility p = c/T 1/2
, where c is a sufficiently large constant. Call the

set of sampled edges S . We show that if the input graph has T
4-cycles, then with constant probability S will contain a pair of

vertex-disjoint edges e and e ′ which belong to the same 4-cycle.

Let VS be the set of vertices involved in the edges we sampled and

GS = (VS , ES) be the subgraph induced by VS . Then GS contains a

4-cycle involving e and e ′. However, we do not know which two

edges in S form this special pair. Therefore, in the second pass we

keep collecting edges in GS until we find a 4-cycle.

Thus, our algorithm is as follows:

Pass 1: Sample edges with probability p = c/T 1/2
, call set of

sampled edges S .
Pass 2: Collect edges with both endpoints inVS , until you find

a 4-cycle or reach the end of the stream.

5.2.2 Space Complexity. By Chernoff bound, |S | = Θ̃(m/
√
T) with

high probability and thus |VS | = Θ̃(m/
√
T). If there are no 4-cycles

inGS , it follows from Lemma 5.4 that the number of edges collected

in two passes is |ES | < 2|VS |
3/2 = Õ(m3/2/T 3/4). Otherwise, after

collecting at most 2|VS |
3/2 = Θ̃(m3/2/T 3/4) edges in GS we find a

4-cycle.

5.2.3 Correctness. Below, we prove that if the input graph contains
T 4-cycles, then GS contains a 4-cycle with constant probability.

Let an edge be heavy if the number of 4-cycles containing that

edge is at least 110

√
T . We call a pair of disjoint edges heavy if it

contains a heavy edge and light otherwise. LetDL be the set of light

pairs involved in 4-cycles and DL = |DL |. Lemma 5.1 states that

at least T /4 cycles contain no more than one heavy edge. Hence,

DL ≥ T /4.

Lemma 5.5. If G contains T 4-cycles, in pass 1 we sample at least
one pair in DL with constant probability.

Proof. Let Xq be 1 if both edges of pair q ∈ DL were sampled

and 0 otherwise. Then X =
∑
q∈DL Xq is the number of light pairs

that are sampled. Note that E [X] = p2DL = Ω(1) when constant c
in the sampling probability is sufficiently large.

P [X ≤ 0] = P [E [X] − X ≥ E [X]] ≤
1

10

where the last inequality follows from Chebyshev’s inequality if

V [X] ≤ E [X]2 /10. We now prove this bound on the variance.

V [X] =
∑

q∈DL

V
[
Xq

]
+

∑
q,t ∈DL :

q,t
q∩t,∅

COV
[
Xq ,Xt

]

≤
∑

q∈DL

E
[
X 2

q

]
+

∑
q,t ∈DL :

q,t
q∩t,∅

E
[
XqXt

]
≤

∑
q∈DL

p2 +
∑

q∈DL

∑
t ∈DL :
q,t

q∩t,∅

p3

≤ DLp
2 +

∑
q∈DL

220

√
Tp3 (3)

= DLp
2 + 220DL

√
Tp3

= (p2DL)
2/10 (4)

where equation 3 follows from the fact that any light pair q ∈ DL
intersects at most 2 · 110

√
T other pairs in DL and equation 4

from the fact that DL ≥ T /4 and from constant c in the sampling

probability being sufficiently large. The theorem then follows from

Chebyshev’s inequality. □

We now state our final result.

Theorem 5.6. There exists an Õ(m3/2/T 3/4) space algorithm that
takes two passes over an arbitrary order stream and distinguishes
between graphs with 0 and T 4-cycles with probability at least 2/3.

By running Θ(log 1/δ) copies of the algorithm in parallel and

taking the majority answer, we can increase the success probability

to 1 − δ , where δ ∈ (0, 1).

5.3 One-pass algorithm when T is large
We now revisit the approach presented in Section 4.2. There we

proved it yields a polylogarithmic space algorithm in the adjacency

list model if T is sufficiently large. Here we show that it can be

implemented in the arbitrary order model if we use more space.

Theorem 5.7. IfT = Ω(n2/ϵ2), there exists a single pass algorithm
for 1 + ϵ approximatingT using Õ(ϵ−2n) space in the arbitrary order
model.

The only deviation in the analysis of Section 4.2 is that in the

arbitrary order model, we need to maintain 3n counters when com-

puting the basic estimator, one for each ofAt ,Bt ,Ct for each vertex

t . When edge (u,v) arrives we incrementAu ,Bu ,Cu ,Av ,Bv ,Cv by

adding the appropriate combination of entries of α and β . Note that
this algorithm would also work in the dynamic graph setting where

edges are both inserted and deleted.

5.4 Lower Bound
Theorem 5.8. For any m and T ≤ m2, there exists m′ = Θ(m)

and T ′ = Θ(T) such that any arbitrary order streaming algorithm
that distinguishes between m′-edge graphs with 0 and T ′ 4-cycles
with at least 2/3 probability in a constant number of passes requires
Ω(m/T 1/2) space.

Proof. For the proof we use a reduction from Disjointness com-

munication complexity problem: Alice holds a binary string s1 of
length r and Bob holds a string s2 of the same length. Using multi-

way communication, they must determine whether there exists

an index x such that s1x = s2x = 1, answering 1 if there is and

0 otherwise. The communication complexity of this problem is

Ω(r) [20, 31].
We embed an instance of the disjointess problem in a graph

which has no 4-cycles if the output is 0, andT cycles if it is 1. There-

fore, any algorithm that can distinguish between 0 and T 4-cycles

(in particular, any algorithm for counting 4-cycles) would provide

a protocol for the communication problem, with communication

complexity equal to the space cost of the algorithm.

Let the vertices of the graph be

• Two special vertices u andw .

• n/k groups of k vertices V1,V2, . . .Vn/k .

Alice and Bob hold strings of length n/k . For every s1i = 1 in Alice’s

string, she inserts k edges between u and Vi . For every s2j = 1

in Bob’s string, he inserts k edges between Vj and w . This graph

has Θ(n) edges. If the strings are disjoint, the graph consists of

two disjoint stars and thus has no 4-cycles. If there is an index x ,
such that s1x = s2x = 1, then we have set Vx with edges to both u

and w . Thus, it contains

(k
2

)
= Θ(k2) 4-cycles. The bound is then

Ω(n/k) = Ω(m/T 1/2). □

ACKNOWLEDGMENTS
This work was partially supported by NSF grants CCF-1934846,

CCF-1908849, CCF-1907738 and CCF-1637536.

REFERENCES
[1] Charu C. Aggarwal, Yao Li, Philip S. Yu, and Ruoming Jin. On dense pattern

mining in graph streams. PVLDB, 3(1):975–984, 2010.
[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: spar-

sification, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages
5–14, 2012.

[3] N. Alon, Y. Matias, and M. M. Szegedy. The space complexity of approximating

the frequency moments. Journal of Computer and System Sciences, 58:137–147,
1999.

[4] Çigdem Aslay, Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales,

and Aristides Gionis. Mining frequent patterns in evolving graphs. In Proceed-
ings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-26, 2018, pages 923–932, 2018.

[5] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algo-

rithms, with an application to counting triangles in graphs. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
623–632, 2002.

[6] Suman K. Bera and Amit Chakrabarti. Towards Tighter Space Bounds for Count-

ing Triangles and Other Substructures in Graph Streams. In Heribert Vollmer and

Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science
(STACS 2017), volume 66 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 11:1–11:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[7] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting

triangles in the streaming model? In Automata, Languages, and Programming -

40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceed-
ings, Part I, pages 244–254, 2013.

[8] Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Triangle

counting in dynamic graph streams. Algorithmica, 76(1):259–278, Sep 2016.

[9] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. Counting triangles in data streams. In Pro-
ceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pages 253–262, 2006.

[10] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower

bounds for communication and stream computation. Theory of Computing,
12(1):1–35, 2016.

[11] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the

streaming model. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 205–214,
2009.

[12] Graham Cormode and Hossein Jowhari. A second look at counting triangles in

graph streams. Theor. Comput. Sci., 552:44–51, 2014.
[13] Graham Cormode and Hossein Jowhari. A second look at counting triangles in

graph streams (revised). Theoretical Computer Science, 683:22–30, 2017.
[14] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent

directions: Simple and deterministic matrix sketching. CoRR, abs/1501.01711,
2015.

[15] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication

and streaming complexity of maximum bipartite matching. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
Kyoto, Japan, January 17-19, 2012, pages 468–485, 2012.

[16] Piotr Indyk and Andrew McGregor. Declaring independence via the sketching

of sketches. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22,
2008, pages 737–745, 2008.

[17] Hossein Jowhari andMohammad Ghodsi. New streaming algorithms for counting

triangles in graphs. In Proceedings of the 11th International Computing and
Combinatorics Conference (COCOON), pages 710–716, 2005.

[18] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers,

finding duplicates in streams, and related problems. In Proceedings of the 29th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pages 49–58, 2011.

[19] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The com-

plexity of counting cycles in the adjacency list streaming model. In Proceedings
of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019., pages
119–133, 2019.

[20] B. Kalyanasundaram and G. Schintger. The probabilistic communication com-

plexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557,
1992.

[21] D.M. Kane, J. Nelson, and D. P. Woodruff. On the exact space complexity of

sketching and streaming small norms. In SODA, pages 1161–1178, 2010.
[22] Michael Kapralov. Better bounds for matchings in the streaming model. In

Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1679–1697, 2013.

[23] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching

size from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pages 734–751, 2014.

[24] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P.

Woodruff, and Mobin Yahyazadeh. Optimal lower bounds for universal rela-

tion, and for samplers and finding duplicates in streams. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 475–486, 2017.

[25] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in

semi-streaming with few passes. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques - 15th International Workshop,
APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA,
USA, August 15-17, 2012. Proceedings, pages 231–242, 2012.

[26] T. Kovari, V. Sos, and P. Turan. On a problem of k. zarankiewicz. Colloquium
Mathematicae, 3(1):50–57, 1954.

[27] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun.

Approximate counting of cycles in streams. InAlgorithms - ESA 2011 - 19th Annual
European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings,
pages 677–688, 2011.

[28] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for

counting triangles in data streams. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 401–411, 2016.

[29] M. Monemizadeh and D. Woodruff. 1-Pass Relative-Error Lp -Sampling with

Applications. In SODA, pages 1143–1160, 2010.

[30] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-LungWu. Counting

and sampling triangles from a graph stream. PVLDB, 6(14):1870–1881, 2013.
[31] A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput.

Sci., 106(2):385–390, December 1992.

[32] I. Reiman. Über ein problem von k. zarankiewicz. Acta Mathematica Academiae
Scientiarum Hungarica, 9(3):269–273, Sep 1958.

[33] Charalampos E. Tsourakakis, Mihail N. Kolountzakis, and Gary L. Miller. Triangle

sparsifiers. J. Graph Algorithms Appl., 15(6):703–726, 2011.

A OMITTED PROOFS
Proof of Lemma 3.1. First, note that at the end of the algorithm,

• A =
∑
v ∈R2

win (v)

• AH =
∑
v ∈VH win

2
(v)

• V ′H is the set of heavy vertices in R2
• a(v) = win (v) for each v ∈ V ′H
• AL =

∑
v ∈VL∩R2

win (v)

By an application of the Chernoff bound, it is easy to show that

for all v ∈ VH ,win (v) ≥
√
M/2 and for all v ∈ VL ,w

in (v) ≤ 2

√
M

with high probability. Thus, we condition on this event.

Consider v ∈ VH and observe that E
[
win
2
(v)

]
= win (v)p. Fur-

thermore, by the Chernoff bound,

P
[
|win

2
(v) −win (v)p | ≥ (ϵ/2)win (v)p

]
≤ 2 exp(−ϵ2win (v)p/(12λ))

≤ 1/poly(n)

where the last inequality follows from the assumption win (v) ≥
√
M/2. Hence, with high probability,

AH /p =
1

p

∑
v ∈VH

win
2
(v) = (1 ± ϵ/2)

∑
v ∈VH

win (v) (5)

Now consider VL and observe that E [AL] = p
∑
v ∈VL w

in (v). If
W ≤ M then E [AL] ≤ M and by the Chernoff bound,

P [|AL − E [AL] | ≥ ϵpM/2] ≤ 2 exp(−ϵ2Mp/(24
√
M)) = 1/poly(n)

(6)

where the inequality follows from the assumption that win (v) ≤

2

√
M . Similarly, it follows that ifW > 2M ,

P [|AL − E [AL] | ≥ ϵpW /2] ≤ 1/poly(n) (7)

and ifW < M/2,

P [|AL − E [AL] | ≥ ϵpM/2] ≤ 1/poly(n) (8)

We now prove the three statements of the lemma.

a. From eq. 5 and 6 it follows that ifW ≤ M , then with high

probability Ŵ =W ± ϵM/2 ± ϵM/2 =W ± ϵM .

b. From eq. 5 and 7 it follows that ifW > 2M , then with high

probabilityŴ ≥W −ϵM/2−ϵW /2 > 2M(1−ϵ/2)−ϵM/2 ≥

M assuming ϵ ≤ 2/3. Thus, by contrapositive, Ŵ < M
impliesW ≤ 2M .

c. From eq. 5 and 8 it follows that ifW < M/2, then with high

probability Ŵ ≤W + ϵM/2 + ϵM/2 < M assuming ϵ ≤ 1/2.

Thus, by contrapositive, Ŵ ≥ M impliesW ≥ M/2.

□

Proof of Lemma 5.1. LetTi be the number of cycleswith i heavy
edges. Let T2,a be the number of cycles with 2 heavy edges that

are vertex disjoint and let T
2,b = T2 − T2,a . We note that there

are at most 4

√
T /η heavy edges, as each cycle contains 4 edges.

Therefore, there are at most 16T /η2 different pairs of heavy edges.

In particular, there are at most 32T /η2 cycles containing a pair of
vertex disjoint heavy edges, as each such pair may participate in at

most two distinct cycles. Therefore,

T2,a +T3 +T4 ≤ 32T /η2 . (9)

For each pair of verticesuv , letдuv be the number of wedges with

end points u and v with no heavy edges, and buv be the number of

wedges of that form with two heavy edges. Note that∑
uv ∈V (G)2

buv ≤ 16T /η2 .

Then we have:

T
2,b =

∑
uv ∈V (G)2

дuvbuv

≤
∑

uv ∈V (G)2
buv +

∑
uv ∈V (G)2:
дuv ≥2

дuvbuv

≤ 16T /η2 +

©­­­­«
∑

uv ∈V (G)2:
дuv ≥2

д2uv

ª®®®®¬
1/2 ©­«

∑
uv ∈V (G)2

b2uv
ª®¬
1/2

where the last line follows from Hölder’s inequality. Then,∑
uv ∈V (G)2:
дuv ≥2

д2uv ≤ 4

∑
uv ∈V (G)2

(
дuv
2

)
≤ 8T

and ∑
uv ∈V (G)2

b2uv =
∑

uv ∈V (G)2
2

(
buv
2

)
+

∑
uv ∈V (G)2

buv

≤ 4T4 + 16T /η
2

≤ 128T /η2 + 16T /η2 ,

where the last line follows from Eq. 9. Hence,

T2,a +T2,b +T3 +T4

≤ 32T /η2 + 16/η2 +
√
8T ·

√
128T /η2 + 16T /η2

= T (48/η2 + 24
√
2/η)

< 82T /η . □

	Abstract
	1 Introduction
	1.1 Our Results

	2 Triangles in Random Order Model
	2.1 One Pass Algorithm using "0365O(m/T) space
	2.2 Lower Bound

	3 4-cycle Counting Preliminaries
	4 4-cycles in Adjacency List Model
	4.1 Two-pass "0365O(m/T) Space Algorithm
	4.2 One-pass algorithms when T is large

	5 4-cycles in Arbitrary Order Model
	5.1 Three-pass "0365O(m/T1/4)-space Algorithm
	5.2 Two-pass "0365O(m3/2/T3/4)-space Algorithm
	5.3 One-pass algorithm when T is large
	5.4 Lower Bound

	Acknowledgments
	References
	A Omitted Proofs

