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In many data mining and machine learning problems, the data items that need to be clustered or
classified are not arbitrary points in a high-dimensional space, but are distributions, i.e., points

on a high-dimensional simplex. For distributions, natural measures are not `p distances, but
information-theoretic measures such as the Kullback-Leibler and Hellinger divergences. Similarly,

quantities such as the entropy of a distribution are more natural than frequency moments. Efficient

estimation of these quantities is a key component in algorithms for manipulating distributions.
Since the data sets involved are typically massive, these algorithms need to have only sub-linear

complexity in order to be feasible in practice.

We present a range of sub-linear time algorithms in various oracle models in which the algorithm
accesses the data via an oracle that supports various queries. In particular, we answer a question

posed by Batu et al. on testing whether two distributions are close in an information-theoretic

sense given independent samples. We then present optimal algorithms for estimating various
information-divergences and entropy with a more powerful oracle called the combined oracle that

was also considered by Batu et al. Finally, we consider sub-linear space algorithms for these

quantities in the data-stream model. In the course of doing so, we explore the relationship between
the aforementioned oracle models and the data-stream model. This continues work initiated by

Feigenbaum et al. An important additional component to the study is considering data streams
which are ordered randomly rather than just those which are ordered adversarially.
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1. INTRODUCTION

There are many settings where the natural unit of data, rather than being a point in
a high dimensional vector space, is a distribution defined on a high dimensional sim-
plex. When dealing with distributions, distances arising from information-theoretic
considerations are often more natural than distances based on `p norms. Examples
include soft clustering [Tishby et al. 1999], where the membership of a point in a
cluster is described by a distribution, and anomaly detection [Krishnamurthy et al.
2005], where the distance between two empirical distributions is used to detect
anomalies. Typically, these settings involve large data sets, and so a natural re-
quirement is that we must process these data sets with relatively small space and/or
time complexity. In this paper, we examine sub-linear algorithms for estimating
properties of distributions.

1.0.0.1 Entropy and f-Divergences. We focus on estimating entropy and the
Ali-Silvey distances1, or f -divergences. Entropy was originally introduced by Shan-
non [Shannon 1948]. It captures the “information content” of a random event. For
example, it can be used to lower-bound the compressibility of data and plays a
fundamental role in coding and information theory. Recently it has been used in
networking applications [Gu et al. 2005; Wagner and Plattner 2005; Xu et al. 2005]
where it can be useful when trying to detect anomalous behavior. The f -divergences
were discovered independently by Csiszár [Csiszár 1991], and Ali and Silvey [Ali
and Silvey 1966]. We start with the necessary definitions.

Definition 1.1 Entropy and f-Divergences. Let p and q be two discrete proba-
bility distributions defined on base [n]. Any convex function f defined on (0,∞)
such that f(1) = 0 gives rise to an f-divergence,

Df (p, q) =
∑

pif(qi/pi) ,

where f(0) = limt→0 f(t), 0f(0/0) = 0, and 0f(a/0) = a limu→∞ f(u)/u. The
entropy of a distribution is defined2 as

H(p) =
∑

i

−pi lg pi .

The class of f -divergences includes many commonly used information-theoretic
distances, e.g., the (asymmetric) Kullback-Liebler (KL) divergence and its sym-
metrization, the Jensen-Shannon (JS) divergence; Matsusita’s divergence or the
squared Hellinger divergence; the (asymmetric) χ2 divergence and its symmetriza-
tion, the Triangle divergence. See Table I. The entropy of a distribution is closely
related to the f -divergences. For example,

JS(p, q) = ln 2
(

2H

(
p + q

2

)
−H(p)−H(q)

)
KL(p, u) = ln 2 (lg n−H(p))

1Many of the measures we consider in this paper are not metrics. Traditionally, the term divergence
is used to refer to “distances” that are not metric.
2Here and throughout we use lg x to denote log2 x.
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`1 distance: f(u) = |1− u|
Kullback-Liebler (KL) divergence: f(u) = u lnu

Jensen-Shannon (JS) divergence: f(u) = ln(2/(1 + u)) + u ln(2u/(1 + u))
Hellinger divergence: f(u) = (

√
u− 1)2

χ2 divergence: f(u) = (u− 1)2

Triangle divergence: f(u) = (u− 1)2/(u + 1).

Table I. Commonly used f -divergences where Df (p, q) =
∑

pif(qi/pi)

where u is the uniform distribution and (p + q)/2 is the distribution whose i-th
component is (pi + qi)/2.

Results of Csiszár [Csiszár 1991], Liese and Vajda [Liese and Vajda 1987], and
Amari [Amari 1985] show that f -divergences are the unique class of distances on
distributions that arise from a fairly simple set of axioms, e.g., symmetry, non-
decreasing projections, certain direct sum theorems etc., in much the same way
that `2 is a natural measure for points in Rn. Moreover, all of these distances
are related to each other (via the Fisher information matrix) [Čencov 1981] in a
way that other plausible measures (most notably `2) are not. In addition, the
log-likelihood ratio ln(q(x)/p(x)) is a crucial parameter in Neyman-Pearson style
hypothesis testing [Cover and Thomas 1991], and distances based on this, e.g., the
KL-divergence and JS-divergence, appear as exponents of error probabilities for
optimal classifiers.

Recently, these distance measures have been used in more algorithmic contexts,
such as natural distances for clustering distributional data [Tishby et al. 1999;
Dhillon et al. 2003; Banerjee et al. 2005]. Batu et al. [Batu et al. 2000] gave
algorithms for testing closeness of distributions for the `1 and `2 distances, and
raised the question of testing closeness of distributions under the JS-divergence.
They state that they suspect that this is “the most powerful” notion of closeness.

1.0.0.2 Oracle Models and the Data-Stream Model. When processing massive
amounts of data, it is desirable to use algorithms whose space and/or time com-
plexity is sub-linear in the size of the data set. Two models that have gained
significant currency in this context are the oracle model [Kearns et al. 1994; Batu
et al. 2005] and the data-stream model [Henzinger et al. 1999; Alon et al. 1999;
Feigenbaum et al. 2002a]. In the former, the algorithm accesses the data via an
oracle that supports various queries. The query types most commonly considered
include returning a sample from the underlying distribution of the data or “prob-
ing” a portion of the data. In general, the oracle models are suited for designing
sub-linear time algorithms that do not look at the entire data but rather inspect
only a few regions of the data in an attempt to test various properties of the data.
In contrast, in the data-stream model, all the data is inspected sequentially but the
algorithm is only permitted limited space to remember the data that has been seen.
In addition, the order in which data is inspected is fixed. We consider estimating
entropy and f -divergences in the oracle model and the data-stream model.

A natural question that arises is the relationship of these two models. Feigenbaum
ACM Journal Name, Vol. V, No. N, Month 20YY.
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et al. [Feigenbaum et al. 2002b] initiated the study of this problem. They considered
testing properties of a length m list of values. They consider processing the list
in the data-stream model and in an oracle model in which queries can be made
to the value contained in each position of the list. They showed that there exist
functions that are easy in their oracle model but hard to test in the data-stream
model and vice versa. In particular, they show that testing Sorted-Superset,
the property that the first half of the stream (presented in sorted order) contains
all the elements of the second half or does not contain at least an ε fraction of
the elements in the second half; there is an algorithm that uses O(log m) queries
in the oracle model but any single pass streaming algorithm requires Ω(m) space.
Conversely, testing Groupedness, the property that all identical values in the list
appear consecutively, requires Ω(

√
m) queries in the oracle while it only requires

O(log m) space in the data-stream model.
Given such a result it may appear that the problem of relating oracle models

to data-stream models is resolved. However, most of the properties considered
by [Feigenbaum et al. 2002b] are dependent on the ordering of the data stream.
Properties of the empirical distribution defined by a stream, are invariant under
re-ordering of the stream. Furthermore, many of these properties are also invariant
under re-labeling the values in the stream. Such properties include the entropy
of the data stream or the f -divergence between two empirical distributions. For
these properties and others, is it possible to relate various oracle models to the
data-stream model?

1.0.0.3 Our Results and Organization. In Section 2, we formally define the rel-
evant computational models. In Section 3, we present an algorithm in the gener-
ative oracle model for testing if two distributions are close in terms of a range of
f -divergences. This answers a question posed by Batu et al. [Batu et al. 2000]. In
Section 4, we present an algorithm in the combined oracle model for approximating
the f -divergence between two distributions for all bounded f -divergences. We also
prove a matching lower bound. In Section 5, we present an algorithm in the com-
bined oracle model for approximating the entropy of a distribution. This improves
upon the algorithm in Batu et al. [Batu et al. 2005] and matches a lower bound
proved in the same paper.

We then prove the main model-theoretic result of this paper. This relates the
computational power of the oracles models to the data-stream models and addresses
a question posed by Feigenbaum et al. [Feigenbaum et al. 2002b]. When combined
with the algorithmic results in Section 4 and Section 5, this result gives rise to
algorithms for approximating f -divergences and entropy in the data-stream model.

Note that this paper is based on work that originally appeared in [Guha et al.
2006] and in that paper there were further results for approximating entropy in the
data-stream model including at asymptotic (e/(e−1)+ε)-approximation algorithm
when the stream is adversarially ordered and a (1 + ε)-approximation when the
stream is randomly ordered. Both algorithms used poly(ε−1, log n, log m) space
(where m is the length of the stream). However, these results have been subsumed
by a sequence of results [Chakrabarti et al. 2006; Lall et al. 2006; Bhuvanagiri and
Ganguly 2006] culminating in an (1 + ε)-approximation for adversarially ordered
streams that uses O(ε−2 log m) space [Chakrabarti et al. 2007].
ACM Journal Name, Vol. V, No. N, Month 20YY.
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1.0.0.4 Notation. We denote [n] := {1, 2, . . . , n} and write x ∈R S to mean that
x is a value chosen uniformly from the set (or multi-set) S. A randomized algorithm
is said to,

(1) (ε, δ)-approximate a real number Q if it outputs a value Q̂ such that |Q̂−Q| ≤
εQ with probability at least (1− δ) over its internal coin tosses.

(2) (ε, δ)-additively-approximate a real number Q if it outputs a value Q̂ such that
|Q̂−Q| ≤ ε with probability at least (1− δ) over its internal coin tosses.

(3) (ε1, ε2, δ)-test a real number Q if it outputs FAIL if Q ≥ ε1 and outputs PASS
if Q ≤ ε2 with probability at least (1− δ) over its internal coin tosses.

2. MODELS

2.0.0.5 The Oracle Models. Two main oracle models have been used in the
property testing literature for testing properties of distributions. These are the
generative and evaluative oracle models introduced by Kearns et al. [Kearns et al.
1994]. In the generative oracle model, the oracle only supports the request to
sample from the distribution. Specifically, for a distribution p = {p1, . . . pn} that
is known to the oracle, sample(p) returns i with probability pi. In the evaluative
oracle model, a probe operation is supported. probe(p, i) returns pi. A natural
third model, the combined oracle model was introduced by Batu et al. [Batu et al.
2005]. In this model both the sample and probe operations are supported. In
all three models, the complexity of an algorithm is measured by the number of
operations made by the algorithm.

2.0.0.6 The Data-Stream Model. In the data-stream model, a stream of data
items may be accessed sequentially. Any algorithm processing this stream has a
limited amount of working memory. This is always sub-linear in the length of
the stream but typically we require that the amount of working memory is only
poly-logarithmic in the length of the data stream. We are primarily in designing
algorithms that only make a single pass over the stream but sometimes, when this
is not sufficient, we allow an algorithm to take multiple passes over the stream.

We will consider both streams in which the data items are adversarially ordered
and streams in which the data items arrive in a random order. The former is
the more usual assumption in the data-stream literature but the later actually
dates back to one of the seminal streaming papers by Munro and Paterson [Munro
and Paterson 1980]. It was also considered in more recent work by Demaine et
al. [Demaine et al. 2002] and Guha and McGregor [Guha and McGregor 2006;
2007a; 2007b].

We consider streams that give rise to a distribution, or distributions, in the
following way.

Definition 2.1 Empirical Distributions. For a data stream S = 〈a1, . . . , am〉 with
each data item ai ∈ {p, q} × [n] we define two empirical distributions p and q as
follows. Let m(p)i = |{j : aj = 〈p, i〉}|, m(p) = |{j : aj = 〈p, ·〉}| and pi =
m(p)i/m(p). Similarly for q. We assume that m(p) = Θ(m(q)).

Note that this model essentially captures the model in which a single data item
can encode multiple (p, i) or (q, i) pairs (for some i). This model has been referred

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm Hellinger-Test(m, α, ε)

1. mp
i , mq

i ← 0 for all i ∈ [n]

2. for t = 1 to m:
3. do i← sample(p) and mp

i ← mp
i + 1

4. i← sample(q) and mq
i ← mq

i + 1

5. return FAIL if X
i∈S

„q
mp

i /m−
q

mq
i /m

«2

> ε/10

where S = {i : max{mp
i , mq

i } ≥ mn−α}
6. return `2-Tester(p′, q′, εn−1/2/(2

√
2)) where p′ (and q′ analogously) is the distri-

bution formed by the following sampling procedure:

i← sample(p)

sample(p′)← (i if i 6∈ S and j ∈R [2n] \ [n] otherwise)

Fig. 1. Hellinger-Testing in the Generative Oracle Model

to as the cash-register model [Gilbert et al. 2001]. It is a generalization of the
aggregate model, in which all updates to a given i are grouped together in the
ordering of the stream.

3. f -DIVERGENCE TESTING (GENERATIVE ORACLE)

In this section we consider property testing in the generative model for various in-
formation theoretic distances. We will present the results for the Hellinger distance.
However, the Jensen-Shannon and triangle divergences are constant factor related
to the Hellinger distance as follows:

Hellinger(p, q)
2

≤ ∆(p, q)
2

≤ JS(p, q) ≤ ln(2)·∆(p, q) ≤ 2 ln(2)·Hellinger(p, q) . (1)

The second and third inequalities in Eqn. 1 are proved in [Topsøe 2000] and the
other two inequalities can be proved using the AM-GM inequality on each term in
the sum. Therefore the results presented here naturally imply analogous results for
them as well. Our algorithm is presented in Figure 1. In common with the `1 tester
presented in [Batu et al. 2000], our algorithm relies on an `2 tester as an important
sub-routine. Central to the analysis are the following inequalities.

`22(p, q)
2(`∞(p) + `∞(q))

≤ Hellinger(p, q) ≤
√

n`2(p, q) . (2)

Lemma 3.1 `2 Testing [Batu et al. 2000]. There exists an (ε, ε/2, δ)-tester
for `2(p, q) using

O(ε−4(b2 + ε2
√

b) log(δ−1))

samples where b = max(`∞(p), `∞(q)).

We first prove two preliminary lemmas. Throughout we assume that ε is suffi-
ciently small and that n is sufficiently large.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Lemma 3.2. Define p̃i = mp
i /m and q̃i = mq

i /m. With m = O(ε−4nα log(nδ−1))
samples, with probability 1− δ/2, the following two conditions hold:

∀i 6∈ S, pi, qi ≤ 2n−α

∀i ∈ S, |(√pi −
√

qi)2 − (
√

p̃i −
√

q̃i)2| ≤ ε max{pi, qi}/100 .

Proof. By applying Chernoff-Hoeffding bounds it is straight-forward to show
that with probability at least 1− δ/2,

∀i ∈ [n], |p̃i− pi| ≤ ε max{pi, ε
2n−α}/1000 and |q̃i− qi| ≤ ε max{qi, ε

2n−α}/1000 .

Therefore i 6∈ S implies that pi, qi ≤ 2n−α as required. Also, if i ∈ S and pi > qi

then pi ≥ n−α/2 and hence |p̃i − pi| ≤ (ε/1000)pi. Let i ∈ S. Without loss of
generality assume that pi ≥ qi. Therefore,

|(
√

p̃i −
√

q̃i)2 − (
√

pi −
√

qi)2| ≤ |p̃i − pi|+ |q̃i − qi|+ 2|
√

p̃iq̃i −
√

piqi|
≤ εpi/500 + 2|

√
p̃iq̃i −

√
piqi| .

First assume that qi ≥ ε2n−α. Therefore,

2|
√

p̃iq̃i −
√

piqi| ≤ 2
√

piqi|
√

p̃iq̃i/(piqi)− 1| ≤ 2εpi/500 .

Alternatively, if qi ≤ ε2n−α then,

2|
√

p̃iq̃i −
√

piqi| ≤ 2
√

pi|
√

(1− ε/1000)(qi − ε3n−α/1000)−√qi|
≤ 2

√
pi

√
ε3n−α/500)

≤ 2εpi/
√

250ε−1 ,

where the second inequality follows because x1/2 is a concave function. In either
case, for sufficiently small ε, |(

√
p̃i−

√
q̃i)2−(

√
pi−

√
qi)2| ≤ εpi/100 as required.

Lemma 3.3. Let p and q be two distributions on [n] and let S ⊂ [n]. Define a
distribution p′,

p′i =


pi if i ∈ [n] \ S
0 if i ∈ S
(
∑

j∈S pj)/n if i ∈ [2n] \ [n]
.

Let q′ be defined analogously. Then,∑
i 6∈S

(
√

pi −
√

qi)2 ≤ Hellinger(p′, q′) ≤ Hellinger(p, q) .

Proof. The first inequality is immediate because of term-by-term dominance.
To bound the second term we need to show that,

∑
i∈S

(
√

pi −
√

qi)2 ≥ n

(√∑
i∈S pi

n
−
√∑

i∈S qi

n

)2

=

√∑
i∈S

pi −
√∑

i∈S

qi

2

.

We will first show that (
√

pi −
√

qi)2 + (√pj −
√

qj)2 ≥ (
√

pi + pj −
√

qi + qj)2.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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This is because,

(√pjqi −
√

piqj)2 ≥ 0
⇒ pjqi + piqj ≥ 2

√
pipjqiqj

⇒ (pi + pj)(qi + qj) ≥ piqi + pjqj + 2
√

pipjqiqj

⇒ 2
√

(pi + pj)(qi + qj) ≥ 2
√

piqi + 2
√

pjqj

⇒ (
√

pi −
√

qi)2 + (√pj −
√

qj)2 ≥ (
√

pi + pj −
√

qi + qj)2 .

Therefore, by “merging” the probability mass on all indices in S we decrease the
Hellinger distance as required.

We are now ready to prove the main theorem of this section.

Theorem 3.4 Hellinger Testing. There exists an (ε, ε2/(256n1−α), δ)-tester
for Hellinger(p, q) with sample complexity

O(log
(
δ−1
)
max{ε−2nα log n, ε−4(n−2α+2 + ε2n1−α/2)}) .

Observe that setting α = 2/3 yields an algorithm with sample complexity

O(ε−4n2/3 log n log δ−1) .

Proof. Let A =
∑

i∈S(
√

pi −
√

qi)2 and B =
∑

i 6∈S(
√

pi −
√

qi)2. By Lemma
3.2, we estimate A with an additive error of at most (ε/100)

∑
i(pi + qi) = ε/50.

(1) If Hellinger(p, q) > ε then either A is bigger than ε/2 or B is bigger than ε/2.
If A is bigger than ε/2 then our estimate of A is bigger than ε(1/2− 1/50) and
thus

∑
i∈S(

√
p̃i −

√
q̃i)2 > ε/10 and we fail. Otherwise if B is bigger than ε/2.

Therefore, appealing to Eq. 2 and Lemma 3.3 (note that p′ and q′ are on base
[2n]) we deduce that,

ε/2 ≤ Hellinger(p′, q′) ≤
√

2n`2(p′, q′) .

Hence `2(p′, q′) ≥ εn−1/2/(2
√

2). Consequently the `2 test fails.

(2) If Hellinger(p, q) < ε2/(256n1−α) then A < ε2/(256n1−α) and we pass the first
test because our estimate of A is at most ε2/(256n1−α) + ε/50 < ε/10 (for
sufficiently large n.) By Lemma 3.2, max(`∞(p′), `∞(q′)) ≤ 2n−α. Therefore,
appealing to Eq. 2 and Lemma 3.3,

nα`22(p
′, q′)/8 ≤ Hellinger(p′, q′) ≤ A + B < ε2/(256n1−α)

implies that the second test passes since nα`22(p
′, q′) ≤ ε2/(32n1−α) and thus

`2(p′, q′) ≤ ε
4
√

2n
.

The sample complexity follows from Lemma 3.1 and Lemma 3.2.

Batu et al. [Batu et al. 2000] discuss lower bounds for `1 property testing. Their
arguments consider distributions such that either pi = qi or one of pi, qi is 0. For
these distributions ∆(p, q) = `1(p, q) = Hellinger(p, q) = JS(p, q). There arguments
suggest that O(n2/3) samples are necessary to test if such distributions are close.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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4. f -DIVERGENCE TESTING (COMBINED ORACLE)

In this section we consider property testing in the combined oracle model for all
bounded f -divergences. Define a conjugate f∗(u) = uf( 1

u ). We can write any
f -Divergence as,

Df (p, q) =
∑

i:pi>qi

pif(qi/pi) +
∑

i:qi>pi

qif
∗(pi/qi) .

We start with the following preliminary lemma that demonstrates that we may
assume that f(u) ∈ [0, f(0)] and f∗(u) ∈ [0, f∗(0)] for u ∈ [0, 1] where both f(0) =
limu→0 f(u) and f∗(0) = limu→0 f∗(u) exist and are positive if f is bounded.

Lemma 4.1. For any bounded Df , there exists another f-divergence Dg such
that,

(1 ) Df (p, q) = Dg(p, q) for all distributions p and q.
(2 ) g(0) = limu→0 g(u) exists and 0 ≤ g(u) ≤ g(0) for all u ∈ (0, 1].
(3 ) g∗(0) = limu→0 g∗(u) exists and 0 ≤ g∗(u) ≤ g∗(0) for all u ∈ (0, 1].

Proof. Note that Df bounded implies that f(0) = limu→0 f(u) exists. Other-
wise

Df ((1/2, 1/2), (0, 1)) = 1/2(f(0) + f(2))

would not be finite. Similarly f∗(0) = limu→0 f∗(u) = limu→0 uf(1/u) exists be-
cause otherwise

Df ((0, 1), (1/2, 1/2)) = 0.5 lim
u→0

uf(1/u) + f(1/2)

would not be finite. Let c = − limu→1− f(u)/(1−u). This limit exists because f is
convex and defined on (0,∞). Note that c = f ′(1) if the derivative exists at 1. Then
g(u) = f(u) − c(u − 1) satisfies the necessary conditions because g(1) = f(1) = 0,
g is convex, and

lim
u→1−

g(1)− g(u)
1− u

= lim
u→1−

(
c− f(u)

1− u

)
= 0 .

Although the above may appear simple, it actually allows us to break the diver-
gence into small, positive components. This allows us to use sharp concentration
bounds.

Theorem 4.2. There exists an (ε, δ)-approximation algorithm for any τ -bounded
Df in the combined oracle model making O(τε−2 log(δ−1)/Df (p, q)) queries.

Proof. Consider the value (a + b)/(2τ) added to E in each iteration. This
is a random variable with range [0, 1] and mean Df (p, q)/(2τ). By applying the
Chernoff-Hoeffding bounds,

Pr
[
|E −m

Df (p, q)
2τ

| < εm
Df (p, q)

2τ

]
≤ 2e−ε2Df (p,q)m/6τ ≤ 1− δ .

Therefore E is an (ε, δ)-approximation for mDf (p, q)/2τ . Hence, 2τE/m is an
(ε, δ)-approximation for Df (p, q) as required.
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Algorithm Combined Oracle Distance Testing(m, τ)

1. E ← 0

2. for t = 1 to m:
3. do i← sample(p) and x = probe(q, i)/probe(p, i)

4. If x > 1 then a← f(x) else a← 0
5. j ← sample(q) and x = probe(q, j)/probe(p, j)

6. If x < 1 then b← f∗(1/x) else b← 0

7. E ← (a + b)/2τ + E
8. return 2τE/m

Fig. 2. Divergence-Testing in the Combined Oracle Model

We now prove a corresponding lower bound that shows that our algorithm is tight.
Note that while it is relatively simple to see that there exists two distributions that
are indistinguishable with less than o(1/`1) oracle queries, it requires some work
to also show a lower bound with a dependence on ε. Further note that the proof
below also gives analogous results for JS, Hellinger and ∆.

Theorem 4.3 `1 Lower Bound. Any (ε, 1/4)-approximation algorithm of `1
in the combined oracle model requires Ω(ε−2/`1) queries.

Proof. Let p and qr be the distributions on [n] described by the following two
probability vectors:

p = (1− 3a/2,

k/ε︷ ︸︸ ︷
3aε/2k, . . . , 3aε/2k, 0, . . . , 0)

qr = (1− 3a/2,

r︷ ︸︸ ︷
0, . . . 0,

k/ε︷ ︸︸ ︷
3aε/2k, . . . , 3aε/2k, 0, . . . , 0)

Let r1 = kε−1/3 and r2 = kε−1/3 + k. Then `1(p, qr1) = a and `1(p, qr2) =
a(1 + 3ε). Hence to 1 + ε approximate the distance between p and qr we need to
distinguish between the cases when r = r1 and r = r2. Consider the distributions
p′ and qr ′ formed by arbitrarily permuting the base sets of the p and qr. Trivially,
`1(p′, qr ′) = `1(p, qr). We will show that, without knowledge of the permutation,
it is impossible to estimate this distance with o(1/(ε2a)) oracle queries. We reason
this by first disregarding the value of any “blind probes”, i.e., a probe probe(p′, i)
or probe(q′, i) for any i that has not been returned as a sample. This is the case
because, by choosing n � k/(aε2) we ensure that, with arbitrarily high probability,
for any o(1/(ε2a)) set of i’s chosen from any n − o(1/(aε2)) sized subset of [n],
pi
′ = qr

i
′ = 0. This is the case for both r1 and r2. Let I = {i : pi or qr

i = 3aε/(2k)}
and I1 = {i ∈ I : pi 6= qr

i }. Therefore determining whether r = r1 or r2 is equivalent
to determining whether |I1|/|I| = 1/2 or 1/2 + 9ε

8+6ε . We may assume that every
time an algorithm sees i returned by sample(p) or sample(q), it learns the exact
values of pi and qi for free. Furthermore, by making k large (k = ω(1/ε3) suffices)
we can ensure that no two sample oracle queries will ever return the same i ∈ I
(with high probability.) Hence distinguishing between |I1|/|I| = 1/2 and 1/2+ 9ε

8+6ε

is analogous to distinguishing between a fair coin and a 9ε
8+6ε = Θ(ε) biased coin. It

is well known that the latter requires Ω(1/ε2) samples. Unfortunately only O(1/a)
samples return an i ∈ I since with probability 1 − 3a/2 we output an i 6∈ I when
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm Combined Oracle Entropy Testing(m)

1. E ← 0

2. for t = 1 to m:
3. do i← sample(p)

4. pi ← probe(p, i)

5. if pi ≥ n−3 then a← lg(1/pi)/(3 lg n) else a← 0
6. E ← a + E

7. return 3E lg n/m

Fig. 3. Entropy-Testing in the Combined Oracle Model

sampling either p or q. The bound follows.

5. ENTROPY TESTING (COMBINED ORACLE)

In this subsection, we present a simple algorithm that achieves the optimal bounds
for estimating the entropy in the combined oracle model. Note that this algorithm
improves upon the previous upper bound of Batu et al. [Batu et al. 2005] by a
factor of Ω(log n/H) where H is the entropy of the distribution. The authors of
[Batu et al. 2005] showed that their algorithms were tight for H = Ω(log n); we
show that the upper and lower bounds match for arbitrary H. The algorithm is
presented in Figure 3. It is structurally similar to the algorithm given in [Batu et al.
2005] but uses a cut-off that will allow for a tighter analysis via Chernoff bounds.

The next lemma estimates the contribution of the unseen elements and that leads
to the main theorem about estimating entropy in the combined oracle model.

Lemma 5.1. For any S ⊂ [n],
∑

i∈S pi lg 1/pi ≤ lg(n/
∑

i∈S pi)
∑

i∈S pi.

Theorem 5.2. There exists an (ε, δ)-approximation algorithm for H(p) in the
combined oracle model making O(ε−2H−1 log(n) log(δ−1)) queries.

Proof. We restrict our attention to the case when H(p) > 1/n and ε > 1/
√

n
since otherwise we can trivially find the entropy exactly in O(ε−2H−1) time by
simply probing each of the n pi’s. Consider the value a added to E in each itera-
tion. This is a random variable with range [0, 1] since pi ≥ 1/n3 guarantees that
− lg(1/pi)/(3 lg n) ≤ 1. Now, the combined mass of all pi such that pi < 1/n3 is at
most 1/n2. Therefore, by Lemma 5.1, the maximum contribution to the entropy
from such i is less than n−2 lg n3 ≤ n−1/2n−1/3 ≤ εH(p)/3 for sufficiently large n.
Hence the expected value of a is between (1− ε/3)H(p)/(3 lg n) and H(p)/(3 lg n)
and therefore, if we can 1 + ε/2 approximate E [a] then we are done. By applying
the Chernoff-Hoeffding bounds,

Pr [|E −mE [a] | < (ε/2)mE [a]] ≤ 2e−(ε/2)2mE[a]/3 .

Therefore with O(1/(ε2E [a]) log(δ−1)) = O(ε−2H−1 log(n) log(δ−1)) samples/probes
the probability that we do not 1 + ε/2 approximate E [a] is at most δ.

6. ALGORITHMS IN THE DATA-STREAM MODEL

In this section we relate the computational power of the oracle models to the data-
stream model. In the process of doing so, we present data stream algorithms for
approximating entropy and f -divergences.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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6.1 Relating Oracle Models to the Data-Stream Model

We direct the reader to [Bar-Yossef 2002] for a detailed treatment of the relative
computational power of the data stream and generative sampling models. Here
we restrict ourselves to comparing the combined oracle model to the data-stream
model. Specifically we consider a combined oracle that “knows” the empirical
distribution defined by the stream. We will show how to emulate any combined-
oracle algorithm for a symmetric function in the data-stream model.

Definition 6.1. We say that a function f : Rn → R is symmetric, if for all
p1, . . . , pn ∈ R, i, j ∈ [n],

f(p1, . . . , pi−1, pi, pi+1, . . . , pj−1, pj , pj+1, . . . , pn)
= f(p1, . . . , pi−1, pj , pi+1, . . . , pj−1, pi, pj+1, . . . , pn) .

Symmetry is a desirable and often-assumed property of functions on distributions.
It is a special case of general invariance under coordinate re-parametrizations [Čencov
1981].

First we will show that we can always express an algorithm for a symmetric
function in the combined oracle model in a canonical form where the algorithm
first samples and then probes the samples along with a few other elements. The
idea would be to view the original algorithm, after the sampling stages and probing
of the samples, as a randomized decision tree that we rewrite as an oblivious decision
tree along the lines of Bar-Yossef et al. [Bar-Yossef et al. 2001; Bar-Yossef 2002].
We start with the necessary definitions.

Definition 6.2 Decision Trees. A randomized decision tree for a function f is a
decision tree having three types of nodes: a query node that asks for the value of
an input parameter and maps the resulting value to a choice of child node to visit;
a random choice node, where the child node is chosen at random; and an output
node, where an answer is expressed as a function of all queries thus far is returned.

An oblivious decision tree is one where the queries are made independently of the
input, or the random choices in the algorithm. Formally, suppose we have a tree T
with worst-case query complexity u. Then an I-relabeling of T by I = {i1, . . . iu}
relabels all query nodes of depth j by the query to ij , yielding the tree T I . An
oblivious decision tree is then a pair T,∆u, where T is a decision tree with worst-
case complexity u and ∆u is a distribution on [n]u. A computation on an oblivious
decision tree consists of two steps: (1) sample u elements I from ∆q, (2) Relabel T
to T I and run it on input x.

An important step in our argument will be the transition between using a ran-
domized decision tree and an oblivious decision tree. We will do this using the
following result due to Bar-Yossef [Bar-Yossef 2002].

Lemma 6.3 [Bar-Yossef 2002, Lemma 4.17]. Let T be a randomized deci-
sion tree that computes an (γ, δ)-approximation to a symmetric function f with
u queries in the worst case and uE queries in the expected case with the expecta-
tion taken over the random choices used by T . Then, there is an oblivious deci-
sion tree (T,Wu) of worst-case query complexity u and expected query complexity
uE that computes an (γ, δ)-approximation to f where Wu is the uniform-without-
replacement distribution.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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The next lemma shows how any combined oracle algorithm can be transformed
into one of a canonical form.

Lemma 6.4 Canonical Form Algorithm. Let A be a (γ, δ)-approximation
algorithm for a symmetric function f using (worst-case) t oracle queries to a com-
bined oracle. Then, there exists a (γ, δ)-approximation canonical algorithm A′ that
uses (worst case) 3t oracle queries.

Proof. Note that sample does not take a parameter and therefore only the
number of samples we make can depend on the outcome of probes we may do.
However, we know that there can be at most t samples taken. Hence if we request
t samples initially we can assume that we do not need to do any further sampling.
Note that we have at most doubled the number of oracle queries. Let S be the set
of i’s seen as samples. Then, for each value i ∈ S we perform probe(p, i). This
only adds t queries to the complexity.

We now have a randomized algorithm that takes as input the outcome from our t
samples and the value pi for all i ∈ S and performs a series of further probes. Note
that since all samples have already been made, this phase of the computation can
be viewed as a randomized decision tree. But now we use the fact that the function
is symmetric and appeal to Lemma 6.3 to argue that this randomized decision tree
can be rewritten as an oblivious decision tree. In such a tree, all queries can be
decided in advance and we now have an algorithm of the desired canonical form.

We are now ready to prove the main structural result of this section. The central
idea for simulating a combined oracle algorithm in two passes of an adversarially
ordered stream is to simulate the sample queries in the first pass and simulate the
probe queries in the second pass. If the stream is randomly ordered, we will be able
to do both in the same pass by using, roughly speaking, the prefix of the random
order stream as a source for sample oracle queries.

Theorem 6.5. Let A be a (γ, δ)-approximation algorithm for a symmetric func-
tion f with t-query complexity in the combined oracle model. Then, there exist
algorithms returning a (γ, δ)-approximation for f that use O(t) space3 and make
either a) a single pass over a randomly-ordered stream or b) two passes over an
adversarially ordered stream.

Proof. Assume A is in the canonical form. We first consider a stream in random
order. Consider the following streaming algorithm that uses O(t) space. We store
the first t items in the data stream, P = (〈p, i1〉, 〈p, i2〉, . . . 〈p, it〉). Now for each
i ∈ S = {i1, i2, . . . it} we set up a counter that will be used to maintain as exact
count of the frequency of i. We now chose t values, S′ from k ∈ [n] \ S uniformly
at random (without replacement) and set up a counter for each of these t values.
We also maintain a counter to estimate the length of the stream m. At the end of
the data stream we claim that we can simulate the oracles queries made by A. The
only difficulty in establishing this claim is showing that we can use the elements of
P to simulate the sample oracle queries. Ideally we would like to claim that we can
just return ij on the j-th sample query. However, to genuinely simulate the sample

3We measure space in word use and assume that any value in [n] or [m] can be expressed in a

single word of space.

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Sudipto Guha et al.

queries we must rather sample with replacement from P . This can be achieved in the
obvious way: on the j-th sample queries we output ij with probability (m−j+1)/m
and otherwise output ij′ where j′ is chosen uniformly at random from [j − 1]. We
thus can emulate the sample queries made by A. The probes performed by A, can
also be emulated because for each ij we have maintained counters that give us pij

and for each k ∈ S′ we know pk.
For a stream in adversarial order things are simpler. In the first pass we generate

our random sample (with replacement) using standard techniques. In the second
pass we count the exact frequencies of the relevant i.

The proof can be generalized to the case of computing a symmetric function of
two distributions. We say that such a function f : Rn × Rn → R is symmetric, if
for all p1, . . . , pn, q1, . . . , qn ∈ R, i, j ∈ [n],

f(p1, . . . , pi, . . . , pj , . . . , pn, q1, . . . , qi, . . . , qj , . . . , qn)
= f(p1, . . . , pj , . . . , pi, . . . , pn, q1, . . . , qj , . . . , qi, . . . , qn) .

The only important caveat is that, in the random-order result, we need m(p) =
Θ(m(q)) such that, with high probability, there are t elements of the form 〈p, i〉
(for some i) and t elements of the form 〈q, i〉 (for some i) in the first O(t) data
items.

6.2 Data-Stream Algorithms for Approximating Entropy and f -Divergences

The algorithmic results in Section 4 and Section 5, when combined with the results
in the previous section naturally gives rise to the following theorem.

Theorem 6.6. In two passes of an adversarially-ordered stream, there exist al-
gorithms that return,

(1 ) An (ε, δ)-approximation of entropy H using O(ε−2H−1 log n log δ−1) space.
(2 ) An (ε, δ)-approximation of a bounded f-Divergence Df using O(ε−2D−1

f log δ−1)
space.

If the stream is randomly ordered then one pass suffices in each case.
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