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Abstract. Traditional generative Markov random fields for seg-

menting images model the image data and corresponding labels

jointly, which requires extensive independence assumptions for tract-

ability. We present the conditional random field for an application

in sign detection, using typical scale and orientation selective tex-

ture filters and a nonlinear texture operator based on the grating

cell. The resulting model captures dependencies between neighbor-

ing image region labels in a data-dependent way that escapes the

difficult problem of modeling image formation, instead focusing ef-

fort and computation on the labeling task. We compare the results

of training the model with pseudo-likelihood against an approxima-

tion of the full likelihood with the iterative tree reparameterization

algorithm and demonstrate improvement over previous methods.

INTRODUCTION
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Image segmentation and region labeling are common problems in computer
vision. In this work, we seek to identify signs in natural images by classifying
regions according to their textural properties. Our goal is to integrate with a
wearable system that will recognize any detected signs as a navigational aid
to the visually impaired. Generic sign detection is a difficult problem. Signs
may be located anywhere in an image, exhibit a wide range of sizes, and
contain an extraordinarily broad set of fonts, colors, arrangements, etc. For
these reasons, we treat signs as a general texture class and seek to discriminate
such a class from the many others present in natural images.

The value of context in computer vision tasks has been studied in various
ways for many years. Two types of context are important for this problem:
label context and data context. In the absence of label context, local regions
are classified independently, which is a common approach to object detection.
Such disregard for the (unknown) labels of neighboring regions often leads to
isolated false positives and missing false negatives. The absence of data con-
text means ignoring potentially helpful image data from any neighbors of the



region being classified. Both contexts are simultaneously important. For in-
stance, since neighboring regions often have the same label, we could penalize
label discontinuity in an image. If such regularity is imposed without regard
for the actual data in a region and local evidence for a label is weak, then
continuity constraints would typically override the local data. Conversely,
local region evidence for a “sign” label could be weak, but a strong edge in
the adjoining region might bolster belief in the presence of a sign at the site
because the edge indicates a transition. Thus, considering both the labels
and data of neighboring regions is important for predicting labels. This is
exactly what the conditional random field (CRF) model provides.

The advantage of the discriminative contextual model over a generative
one for detection tasks has recently been shown in [8]. We demonstrate a
training method that improves prediction results, and we apply the model
to a challenging real-world task. First the details of the model and how it
differs from the typical random field are described, followed by a description
of the image features we use. We close with experiments and conclusions.

RANDOM FIELDS

Model

For many computer vision tasks, the prior probability of the data being ob-
served is inconsequential. Images happen. We are primarily interested in
what may be inferred when given the images. However, probability distribu-
tions over labels y and an image x have traditionally been modeled jointly,
with the image prior probability being ignored at classification time. For that
reason, generative joint models require unnecessary modeling effort and more
computation than their conditional counterparts.

Markov random fields are probability distributions parameterized by a
graph topology G = (V,E). For tractability reasons, typical generative ran-
dom fields treat the interaction between local data and its label independently
of the interaction between neighboring labels. The joint distribution is thus
factored into the prior on label assignments and the probability of locally
observed data, conditioned on the single site label:

p (y,x) = p (x | y) p (y) ,
1

Z

∏

C∈C

ψC (yC)
∏

v∈V

ψv (yv, xv) , (1)

where ψ (·) are compatibility functions, Z is a normalizing constant making
the expression a probability distribution, C is a family of cliques of the graph,
and yC are the variables in a given clique C ⊂ V . In this model, objects x
(e.g., patch statistics, salient features, etc.) from each class y ∈ Y are gener-
ated by a class-conditional probability distribution p (x | y). This requires not
only a model for every class we wish to distinguish, but an accurate generative
background model even for classes of no interest; a non-trivial task because
the real world contains a myriad of image “classes” (region types, textures,
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Figure 1: Left: Traditional joint random field over data x and labels y (cf. Eq.
1). Right: Conditional random field where data is observed (cf. Eq. 2).

objects, etc.). In short, it is generally more difficult to explain the processes
that generate class data than it is to model the boundaries between classes.
In the latter approach, only boundaries among classes of interest must be dis-
tinguished, with the remainder easily collapsing into a single “background”
class. Modeling the interactions between data and labels separately, as (1)
does, is often too limiting for many computer vision tasks; we therefore use
a recently proposed model that handles the interaction between site labels in
a context-dependent way [9], describing it next.

The random field graph topology commonly used for joint image labeling
problems is the lattice, (Figure 1), where cliques are single nodes and edges.
We use a homogeneous, anisotropic random field. Thus, cliques of the same
class use the same compatibility functions regardless of image location, but
horizontal and vertical edges are considered different classes and thus have
distinct compatibility functions. Anisotropy allows the model to learn any
orientational bias of the labels. Our conditional random field has the form

p (y | x) =
1

Z (x)

∏

v∈V

ψV (yv,x)
∏

(u,v)∈E

ψE (yu, yv,x) (2)

=
1

Z (x)
exp





∑

v∈V

λ · F (yv,x) +
∑

(u,v)∈E

µ ·G (yu, yv,x)



 ,(3)

where Z is now an observation-dependent normalizer. The compatibilities are
functions of clique labels, allowing neighboring label interaction, but they are
also functions of the entire observation. This differs markedly from (1) by
allowing data-dependent label interaction (see Figure 1). F and G are vector-
valued feature functions, and λ and µ are vectors of parameters for nodes
and edges, respectively. Node labels come from a discrete, finite alphabet Y.
We use one set of observation features for nodes and edges and transform
them into feature functions (observation, label pairs) using the relationship

fk
y (yv,x) = δ (y, yv) fk (x)

g
j
y,y′ (yu, yv,x) = δ (y, yu) δ (y′, yv) gj (x) ,

where f =
(

fk
)

k=1...K
is a vector of node features (i.e., texture statistics of



a region) and g =
(

gj
)

j=1...J
is a vector of edge features (i.e., differences

between statistics of neighboring regions), so that F =
(

fk
y

)

k=1...K,y∈Y
and

G =
(

g
j
y,y′

)

j=1...J,y,y′∈Y×Y
. Thus λ ∈ R

K|Y| and µ ∈ R
J|Y|2 . When E =

∅, the model uses no label context and is commonly called a conditional
maximum entropy classifier (hence, MaxEnt), or logistic regression.

Training and Inference

Parameters for probabilistic models like CRFs are generally set by maximiz-
ing the likelihood of a data sample. Unfortunately, inference for any random
field with the lattice topology is intractable due to Z (an exponential sum).
Markov chain Monte Carlo (MCMC) (see e.g., [16]) is often used to approxi-
mate Z in similar generative models. However, in our conditional model Z is
dependent on the image data x and must be estimated for each observation

in the sample. A simpler approximation is to maximize the pseudo-likelihood
(PL) [1], which is the product of the probabilities of nodes given their neigh-
boring labels. The normalizers are then summations over labels at a single
node, rather than the possible labelings of all nodes.

A relatively new alternative to MCMC and PL for approximating like-
lihood is called tree reparameterization (TRP) [15]. Inference in graphical
models without cycles (unlike the lattice) is very efficient, i.e., due to the
junction tree algorithm (e.g., [10]). An important consequence of the junc-
tion tree algorithm is that marginal distributions are revealed on pairs of
neighboring nodes, inducing an alternative factorization of the joint distribu-
tion. TRP operates by using junction tree to compute the exact marginals on
a spanning tree of the cyclic graph. The spanning tree’s factorization is then
placed back into the original graph, and the process repeats with different
spanning trees until the parameterization converges, leaving the marginals.
We demonstrate improved detection performance using TRP to approximate
the likelihood over pseudo-likelihood. The likelihood function is convex and
may be optimized globally via gradient ascent. Pseudo-likelihood is sensitive
to initialization, however, so node parameters are optimized first. We use the
quasi-newton L-BFGS algorithm for maximization.

To prevent training procedures from overfitting parameters in conditional
models, a prior is introduced, and the posterior is maximized rather than
likelihood. We employ a diagonal zero-centered Gaussian prior on parameters
[2] (similar to weight decay in neural networks or ridge regression); variances
are experimentally determined through cross-validation.

Given the image data, our model simply yields a joint posterior distribu-
tion on labelings. When interested in picking a hard and fast label for each
region of the image (node in the graph), the question becomes what to do
with that distribution. A simple, oft-used answer is to find its maximum.
That is, use maximum a posteriori (MAP) estimation:

ŷ = arg max
y∈Y|V |

p (y | x) .



This search space is intractable. However, a slight alteration of TRP allows
MAP estimates to be quickly calculated. A simpler alternative is to search
for a local maximum of the posterior, an estimate called iterated conditional
modes (ICM). Given some initial labeling y0, subsequent labels are given by

yk+1
v = arg max

yv∈Y
p

(

yv | yk
N (v),x

)

, ∀v ∈ V

until yk+1 = yk or an iteration limit is exceeded. Often, the initial labeling
comes from the local compatibility maximum y0

v = arg maxyv∈Y ψ (yv,x) .
Like many point estimates, the MAP estimation has an important caveat:
poor predictions can result when the maximum of the posterior is not repre-
sentative of most of the other likely labelings [6]. An alternative method for
prediction is called maximum posterior marginal (MPM) estimation,

ŷv = arg max
yv∈Y

p (yv | x) , ∀v ∈ V,

which accounts for the probability of all labelings, not simply the maxi-
mal (joint) labeling, by choosing the label at each node that maximizes its
marginal probability. MAP and MPM are equivalent in the MaxEnt classi-
fier since node labels are independent. Marginalization suffers from the same
computational complexity problems as MAP, but since TRP reveals (ap-
proximate) marginals on the nodes, it is easily used for MPM. Comparisons
between ICM and MAP estimated with TRP are given in the experiments.

IMAGE FEATURES FOR SIGN DETECTION

Text and sign detection has been the subject of much research. Earlier ap-
proaches either use independent, local classifications (i.e., [5, 7, 11]) or use
heuristic methods, such as connected component analysis (i.e., [4, 14]). Much
work has been based on edge detectors or more general texture features, as
well as color. Our approach calculates a joint labeling of image patches,
rather than labeling patches independently, and it obviates layout heuristics
by allowing the CRF to learn the characteristics of regions that contain text.
Rather than simply using functions of single filters (e.g., moments) or edges,
we use a richer representation that captures important relationships between
responses to different scale- and orientation-selective filters.

To measure the general textural properties of both sign and especially
non-sign (hence, background) image regions, we use responses of scale and ori-
entation selective filters. Specifically, we use the statistics of filter responses
described in [13], where correlations between steerable pyramid responses of
different scales and orientations are the prominent features.

A biologically inspired non-linear texture operator for detecting gratings
of bars at a particular orientation and scale is described in [12]. Scale and
orientation selective filters, such as the steerable pyramid or Gabor filters,
respond indiscriminately to both single edges and one or more bars. Grating
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Figure 2: Grating cell data flow for a single scale and orientation. Two boxes at
I, T , and F represent center on and center off filters, while the boxes at M are for
the six receptive fields.

cells, on the other hand, respond selectively only to multiple (three or more)
bars. This property is an ideal match for detecting text, which is gener-
ally characterized by a “grating” of strokes. The original model is contrast-
normalized, but we expect text in signs to have high contrast for readability,
so we omit any normalization when calculating Iθ,ω,φ, the response of an in-
put image to a filter with preferred orientation θ, spatial frequency ω, and
phase φ (Figure 3, upper-right). Furthermore, letters have a limited aspect
ratio, thus the bars in text have bounded height. For this reason we subject
the responses Iθ,ω,φ to a second round of filtering with output Tθ,ω,φ, where
θ, ω, φ still indicates the parameters of the primary simple filter. The sec-
ondary filter has an orthogonal orientation θ+ π

2 , a center-on phase of π, and
should have a frequency of no more than ω/ 2. To elicit stronger responses
from bars of limited height, the original simple filter response is weighted by
the perpendicular response with the Schur product Fθ,ω,φ , Iθ,ω,φ ◦ Tθ,ω,φ.
Once the weighted responses are calculated, a binary grating cell subunit
Qθ,ω indicates the presence of a grating at each image location. To make
such a determination, alternating strong maximum center-on (φ = π) and
center-off (φ = 0) responses Mθ,ω,n are required in receptive field regions
Rθ,ω,n (−3 ≤ n ≤ 2) of length 1/ (2ω) along a line with orientation θ (Figure
3, bottom). We let the final output Pθ,ω be the mean response among the
receptive fields where Qθ,ω indicates a grating and zero elsewhere. This also
differs from the original model, which simply gives the spatial average of the
grating indicator. Use of actual filter responses in the output is important
because it represents the strength of the grating, rather than only its pres-
ence. After taking maximum responses over a set of scales, we use the mean,
max, variance, skew and kurtosis of the outputs in a region as features.

Additionally, histograms of patch hue and saturation are used, which also
allows us to measure color discontinuities between patches.

Using an algorithm [3] that ranks discriminative power of random field
model features, we found the top three in the edge-less, context-free MaxEnt
model to be (i) the level of green hue (easily identifying vegetation as back-
ground), (ii) mean grating cell response (easily identifying text), and (iii)
correlation between a vertically and diagonally oriented filter of moderate
scale (the single most useful other ‘textural’ feature).



Figure 3: Grating operator on text. Upper Left: Input image. Upper Right:
Center-on and center-off simple filter responses (θ = 0). Bottom: Slice of simple
filter responses and receptive regions for a marked point.

Figure 4: Multi-scale text detection with grating cells. Left: Input image with
sign areas outlined. Right: Grating cell responses.

EXPERIMENTS

Our sign experiments are based on a hand-labeled database of 309 images
collected from a North American downtown area with a still camera.1 We
view the 1024x768 pixel images as an 8x6 grid of 128x128 pixel patches over
which the features are computed. This outer scale was chosen to balance
computational burden against typical sign size; some patches contain more
sign than others. Let fp represent the statistics of the steerable pyramid, fg
the grating statistics, and fh, fs the hue and saturation histograms, respec-
tively. Our node features are the concatenated vectors f = 〈fp, fg, fh, fs, 1〉

1Available at <http://vis-www.cs.umass.edu/projects/vidi>.



Classifier Prediction Recall Precision F1

MaxEnt MAP 48.36 68.02 56.45
ICM 49.42 70.23 57.90

PL MAP 49.53 70.23 57.97
MPM 49.97 69.77 58.13

CRF ICM 54.01 66.54 59.49
TRP MAP 54.58 66.07 59.57

MPM 54.58 66.07 59.65

Table 1: Prediction results for signs. PL indicates training with

pseudo-likelihood, and TRP training with approximated full likelihood.

MAP and MPM for the CRF is estimated with TRP.
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Figure 5: Discriminative power. Left: ROC curves and areas for MaxEnt on
patches that are nearly all (75%-100%) sign or mostly (50-75%) sign. Right: ROC
curves and areas for MaxEnt and CRF in patches containing less than 25% sign.

plus a bias feature. Edge features are the L2 norms of differences between
statistics at neighboring patches, g =

〈∥

∥fp − f ′p
∥

∥ , ‖fh − f ′h‖ , ‖fs − f ′s‖ , 1
〉

.
The image set is split evenly with half each for training and testing. Ta-

ble 1 contains the average prediction results of 20 such splits. Since this
is a detection task, we report precision and recall (common in information
retrieval) for each prediction method. Let DS be the number of true sign
patches detected with D the total number of detections and S the actual
number of true sign patches. Precision is P = DS/D, the percentage of
detections that are correct (not the complement of false alarm). Recall is
R = DS/S, the detection rate. The harmonic mean of recall and precision
F1 = 2PR/ (P +R) reflects the balance (or lack thereof) between the rate
and accuracy of detections; higher F1 indicates better overall performance.

MAP and ICM are point estimates of the unwieldy joint posterior prob-
ability, but the marginal posterior of a label (i.e., “sign”) at a node is a real
quantity that may be easily varied. Figure 5 (left) demonstrates that overall
discrimination is very good even in the context-free MaxEnt classifier when



Figure 6: Example detection results. Left-Right: MaxEnt, CRF ICM and MAP.

a patch contains nearly all sign, but performance degrades as the amount of
sign in a patch decreases. Figure 5 (right) shows that adding context with a
CRF improves the ability to identify all regions of a sign, especially those on
the border where the patch contains more background.

Using a CRF significantly improves F1 over the local MaxEnt classifier.2

Training with TRP also improves recall. Because it is given true neighboring
labels, which are unavailable at test time, PL training tends to be overcon-
fident with edge parameters, leading to higher precision (excepting MPM)
as a result of over-smoothing the labels. TRP training yields higher F1 and
recall over PL for all prediction methods.

CONCLUSIONS

The conditional random field is a powerful new model for vision applica-
tions that does not require the strong independence assumptions of genera-
tive models. With it, we demonstrate sign detection in natural images using
both general texture features and special features for text. Adding context
increases the detection rate faster than the false alarm rate by drawing on
both observed data and unknown labels from neighboring regions.

The complexity issues of cyclic random fields are well known. Although
training times are greater, prediction with a CRF still only requires about 3
seconds on a 3GHz desktop workstation. We have shown the superiority of
tree reparameterization over the pseudo-likelihood approximation for param-
eter estimation and prediction in the CRF model for our detection task.

We plan to add more edge features to increase our use of the model’s
contextual power by incorporating feature selection and induction methods.
Overfitting remains a constant problem in such a high-dimensional model, so
regularization is an important area for study.
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