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ABSTRACT approximates a distribution with a large state space by a mix
Hidden Markov models and linear-chain conditional randornfure of many fewer Kronecker delta functions. This motigate
fields (CRFs) are applicable to many tasks in spoken lansparseforward-backward, a novel message-passing algorithm
guage processing. In large state spaces, however, trainifiggwhich approximate marginal distributions are comprdsse
can be expensive, because it often requires many iteratiomdter each message pass. Essentially, this extends beerh sea
of forward-backward. Beam search is a standard heuristic fdrom max-productinference to sum-product. Our perspectiv
controlling complexity during Viterbi decoding, but dugn also motivates theninimum-divergence beam, a new beam
forward-backward, standard beam heuristics can be dangeriterion that selects a compressed marginal distribwtitimin
ous, as they can make training unstable. We introdpaese  a fixed Kullback-Leibler (KL) divergence of the true mardina
forward-backward, a variational perspective on beam meth-Not only does this criterion perform better than standaatie
ods that uses an approximating mixture of Kronecker deltgriteria for Viterbi decoding, ititeracts more stably wittodel
functions. This motivates a noveinimum-divergencebeam  optimization.
criterion based on minimizing KL divergence between the re-  The contributions of this paper are: (1) proposigrse
spective marginal distributions. Our beam selection apgino  forward-backward as a fast method for computing marginals
is not only more efficient for Viterbi decoding, but also more during training of hidden Markov models (HMMs) and con-
stable within sparse forward-backward training. For a-standitional random fields (CRFs), (2) proposing the minimum-
dard text-to-speech problem, we reduce CRF training timelivergence criterion for selecting the beam, (3) experimen
fourfold—from over a day to six hours—with no loss in ac- tal comparison of minimum divergence to other criteria for

curacy. Viterbi beam search, and (4) experimental comparison of min
imum divergence to other criteria for CRF training on the
1. INTRODUCTION well-known NetTalk text-to-speech data [3].
Model optimization for finite state transducers with lartge 2 BACK GROUND AND NOTATION

spaces can be slow, because standard estimation techniques

such as expectation maximization and conditional maximuny, this section, we present our notation for hidden Markov
likelihood, often require repeatedly running foward-baekd  mogels (HMMs) and conditional random fields (CRFs). We
over the training set. This is especially problematic whenys priefly review current techniques for CRF training.

the state space is large, because forward-backward require \Ms are a classical type of directed graphical model
quadratic time in the number of states. During Viterbi de-,, sequence data. Define an observation sequence of dis-
coding, a standard technique to address this probldyesis _crete random variables as= (z1,...,z7) and a sequence

search, that is, ignoring variable configurations whose esti-ut iscrete random variables for the state (label) varmble
matgd max—m:_;\rgmal is spfﬁuently low. Beam search is esy — (y1,...,yr). Then an HMM models the sequence prob-
sential to practical recognition systems [1, 2]. For sumepict ability as

inference methods such as forward-backward, folk wisdom

exists in the community that beam methods can be effective. T

Howe\_/er, th_ey can also be dan_gerous2 because stam_zlard beam p(y,x) = Hp(ivtlyt)p(ytIyt_1), 1)
selection criteria can inappropriately discard probabitiass ity

in a way that makes optimization unstable. Perhaps for this

reason they have received little attention in the literatur where for simplicity we defin@(y1|yo) = p(y1). During in-

In this paper, we introduce a perspective on beam seardbrence and parameter estimation, we are often interested i
that motivates its use within sum-product inference. In parcomputing marginal distributiong(y:|x) for all time steps
ticular, we cast beam search as a variational procedure that During decoding, we are interested in efficiently com-



puting the most probable state sequengethat is,y* = Consider the problem of finding the distributigfy) of

arg maxy p(y|x). smallest weight such that Kk||p) < e. First, suppose the
A conditional random field (CRF) [4] models the condi- setI = {ii,...,ix} is fixed in advance, and we wish to
tional distributionp(y|x) directly. A first-order, linear-chain choose the probabilitieg to minimize KL(¢||p). Then the
CRF is defined as: optimal choice is simply; = pi/ > ,c; pi» a result which
1 can be verified using Lagrange multipliers on the normaliza-
pylx) =~ T vera, %), (2)  tion constraint of;.
(x) t Second, suppose we wish to determine the set of indices

of a fixed sizek which minimize KL(¢||p). Then the optimal
hoice is whenl = {iy,...,i;} consists of the indices of
he largesk values of the discrete distributign To see this,
firstdefineZ (1) = > _,.; pi- Thenthe optimal approximating
distribution is:

whereZ (x) = Zy [L Ye(ye, yi41,%) is @anormalizing factor
over all output configurations. A CRF is parameterized usin
feature functiong fi } such that

Uy (Yt, Yer1,X) = exp ( E /\kfk(ytayt+lvx)>v 3
k . . . qi

KL = i log — 6

arg minKL (q|}p) = arg rr;m{arg{mmE gilog } (6)

where);, are the parameters or feature weights for the model. a} o] i
Training of a CRF is typically done by maximizing the D i/ Z(I)
conditional log-likelihood of fully-observed training D = =arg rrlnn{ Z Z(ZI) log = o } (™)

{%, ¥} f Fy(y,x) = {fx(vs, yer1, x)} denotes the vec- iel
tor of feature values at timg andF(y,x) = >, Fi(y,x) — arg max log Z(I)} 8)
denotes theglobal feature function, then the gradient of the 1

conditional log likelihoodl = ", log p(y;|%i, A) with re-

spect to the model parametéxs= { \y} is given by That is, the optimal choice of indices is the one that retains

most probability mass. This means that it is straightfodvar
L B to find the discrete distributiopof minimal weight such that

VAL = Z (F(Yiaxi) - EP<F(yiaXi)>)’ (4)  KL(q||lp) < e. We sort the elements of the probability vec-
i tor p, truncate aftetog Z(I) exceeds-¢, and renormalize to

where E,,(-) denotes the expectation under the distributiorPPtaing. _ _

p = p(y;|%i, A). Itis important to observe that this requires 10 apply these ideas to forward-backward in sequence
performing inference once for each sequence, per iterafion Models, essentially we compress the marginal beliefs after
the optimizer. For data sets with large state spaces, this prévery message pass. We call this metisparse forward-
cedure can requirdays of computation. Following previous Packward, which we define as follows. Let, (i) denote the
work [5], we optimize the parameters using limited-memoryforward messages (i) the backward messages, andi) =
BFGS (L-BFGS) [6], a limited-memory variant of a standard(i)5: (i) be the computed marginals. We initializg(j) =
quasi-Newton gradient-based optimizer. This has implical for all ime steps and states and;j. Then the sparse for-
tions for inference algorithms that comput,(-) approxi- ~ Ward recursion is:

mately, because inaccurate gradients will degrade the BFGS
approximation to the Hessian, severely hurting convergenc
of the optimizer.

1. Pass the message in the standard way:

a(j) — Y Wili, jow—1 (i) ©)
3. SPARSE FORWARD-BACKWARD ’
2. Compute the new dense beligfas

Y2(5) oc e (5)Be(4) (10)

Standard beam search can be viewed as maintaining dparse

cal marginal distributions such that together they are as close

as possible to a large distribution. In this section, we farm

ize this intuition using a variational argument, which moti . e .

vates our new beam criterion for sparse forward-backward. 3. ComE)ress into & sparse beli€f;), maintaining

Consider a discrete distributigriy), wherey is assumed KL(y'[l7) < e Call the resulting bean.

to have very mqny_possible cpnfiguratipns. We approximate 4. Compressy(j) to respect the new beafp

p by a sparse distributiog, which we write as a mixture of

Kronecker delta functions: The backward recursion is defined similarly. Note that in ev-

_ . ery compression operation, the bedis recomputed from

q(y) = Z 4i0i(y), ) scratch; therefore, during the backward pass, variablégzon

urations can both leave and enter the beam on the basis of

wherel = {iy,...,ix} is the set of indices such thay(y =  backward information. Just as in standard forward-bactywar

1) is non-zero, and,(y) = 1 if y = i. We referto the sefas it can be shown by recursion the sum of final alphas yields the

the beamand its cardinality/| as theweight of the beam. mass of the beam. That is,fifis the set of all state sequences

icl



in the bea_m, thel’E ar (]) = Zye[ Ht v, (yt’ Yt—1, x)_ ‘ ‘ Compu‘nation Tirr‘levs. Likelihood ‘ ‘
Therefore, because backward revisions to the beam do not de -1t < ol
crease the local sum of betas, they do not damage the quality
of the global beam over sequences.

The criterion in step 3 for selecting the beam is novel, and
we call it theminimum-divergencecriterion. Alternatively, we
could take the topV states, or all states within a threshold. In
the next section we will compare to these alternate criteria

Finally, we discuss a few practical considerations. We
have found improved results by adding a minimum belief size
constraint/’, which prevents a belief statg (j) from being
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compressed belo non-zero entries. Also, we have found - l
that the minimum-divergence criterion usually finds a good -10f
beam after a single forward pass. Minimizing the number of o0 w0 oo e 1m0 o0 100
passes is desirable, because if finding a good beam require Computation Time (seconds)
many forward and backward passes, one may as well do exact
forward-backward. Fig. 1. Learning curves for CRF training on synthetic data. Sparse
forward-backward has the same accuracy as exact trainig egis
4. RESULTSAND ANALYSIS than a quarter of the training time. Other beam criteria #teee

slower or less robust than minimum divergence.

In this section we evaluate sparse forward-backward fdn bot
max-product and sum-product inference in HMMs and CRFs,

using both synthetic data and the well known NetTalk text-to /1OYS section. We usB0 sequences for training arﬁy) Se-
speech data set quences for testing. In all cases we use exact Viterbi daegodi

to compute testing accuracy.
_ _ Figure 1 shows learning curves plotting log likelihood on
4.1. Decoding Experiments the training set against computation time in seconds. We
While our primary focus is on sparse forward-backward durompare five different methods: (1) the minimum-divergence
ing training, in this section we compare minimum divergencd®@m WithK' L < 0.5, |I;| > 30, (2) a small fixed beam of
to traditional beam search criteria during Viterbi decadin |1il = 30, (3) a larger fixed beam, (4) a threshold beam, and
We generate synthetic data from an HMM of lenggh Tran- (5) exact forward backward: Both the larger fixed beam and
sition matrix entries are sampled from a Dirichlet with= .1 the threshold beam are cahbratgc_i to exp_lore on average the
and emission matrices are generated from a mixture of tw§2Me Number of states as the minimum-divergence beam.
distributions: (1) a low entropy, sparse conditional dist Compared to exact forward backward, the minimum di-
tion with 10 non-zero elements and (2) a high entropy Dirich-Vergence beam uses one-fourth of the time of exact training
let with o = 104, with priors of.75 and.25 respectively. The With no loss in accuracy. The larger fixed beam is designed
goal is to simulate a regime where most states are highly irf® test how important it is for the beam to be adaptive, be-
formative about their destination, but a few are less inform Cause this fixed beam uses the average number of states used
tive. We compare our minimum-divergence criterion againsPy our minimum-divergence criterion. Although minimum
two traditional beam search criteria: (1) a fixed beam sizedivergence and the larger fixed beam converge to the same
and (2) an adaptive beam where message entries are retairf@dution, minimum divergence finishes faster, indicatinatt
if their log score is within a fixed threshold of the best sothe adaptive beam does improve training time. Most of the
far. Minimum divergence using’ L < 0.001 and minimum benefit occurs later in training, as the model becomes farthe
beam sizel;| > 4 finds the exact Viterbi solution with an from uniform.
average of only).6 states per variable. On the other hand, the ~ The small fixed beam performs poorly, because the noisy
fixed beam requires betweef and25 states, and the simple gradient computation causes our L-BFGS optimizer to termi-
threshold beam requir@$.4 states per variable to achieve the nate early. Finally, the threshold beam results in somewhat
same accuracy. We have similar results on the NetTalk datainaccurate gradients, but L-BFGS does terminate normally.
However, the recognition accuracy of the final model is low,
at67.1%.

Finally, we present results training on the real-world NditT
In this section, we presentresults showing that sparsegioiw data set [3]. The task is to produce the proper phones given
backward can be embedded within CRF training, yielding siga string of letters as input. The data consists of 20,008 En-
nificant speedups in training time with no loss in testing perglish words. In Figure 2 we present run time, model likeli-
formance. hood and accuracy results foba-state CRF for the NetTalk

First, we train CRFs on synthetic data generated from g@roblem that is trained on 19075 examples and tested on 934
100 state HMM generated in the same manner as in the preexamples. In CRFs without latent variables, as here, cludice

4.2. Training Experiments
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Fig. 2. Learning curves for CRF training on NetTalk. Sparse
forward-backward (final test accuracy @f.7%) performs equiva-
lently to exact training41.6%) using only a quarter of the training
time. A fixed-size beam yields unstable resuis.{%).

initialization does not change the final solution, becahse t
penalized likelihood for CRFs is strictly concave. But good
initialization can still reduce the number of gradient stegp-
quired to find the optimum. Therefore, we initialize the CRF
parameters using a subseti@f of the data, before training
on the full data until convergence. Beam methods are us
both during this initialization period and during the coetgl

training run. We compare the minimum divergence beam with

KL < .005 and|l;] > 10 to a fixed bean{|I;| = 20), a
threshold beam (set to averag states per time step), an
exact forward backward. After the initialization periotigt
threshold beam has test set accurac§/@t, while minimum

d

divergence, the fixed-sized beam, and exact forward bacl!

ward all have accuracy on the test se7¢%.
After the complete training run, exact forward-backward
training results in a test set accuracydf6%. The fixed

beam terminates normally, but with very noisy gradients in

the final iteration, resulting in a test accuracy of o8#y7%.

The threshold beam results in gradient estimates that are eﬁ%

complete step. In contrast, minimum divergence achieves an
accuracy 001.7% in less than one-quarter of the time of exact[

noisy that our L-BFGS optimizer is unable to take a singl

forward-backward.
5. RELATED WORK

Although beam search is commonly used for Viterbi decod-
ing [1], we are unaware of published descriptions of its use

3

during forward-backward. In the probabilistic graphicaladn
els community, there is related work on zero-compression i
cligue trees [7], described in [8]. Their technique conside
every factor in a clique tree, and sets the smallest factier v
ues to zero, with the constraint that the total mass of the fa
tor does not fall below a fixed valu& In contrast to our

a
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inference. Indeed, in our method the beam can change during
inference as new information arrives from other parts of the
model. There is also closely related work in sparse loopy be-
lief propagation in computer vision [9], but this does no¢ us
the minimum-divergence beam.

6. CONCLUSIONS

We have presented a principled method for significantlydpee
ing up decoding and learning tasks in HMMs and CRFs. We
also have presented experimental work illustrating thigyuti

of our approach. As future work, we believe a promising av-
enue of exploration would be to explore adaptive strategies
involving interaction of our L-BFGS optimizer, detecting-e
cessively noisy gradients and automatically settinglues.
While the results we have presented here are with HMMs and
linear-chain CRFs, we believe this line of work can be gener-
alized to other structures.

ACKNOWLEDGMENT S This work was supported in part by the Cen-
ter for Intelligent Information Retrieval, in part by The @eal Intelligence
Agency, the National Security Agency and National Scienmerni@ation un-
der NSF grants #11S-0326249 and #11S-0427594, and in path®&pefense
Advanced Research Projects Agency (DARPA), through theaBeent of
the Interior, NBC, Acquisition Services Division, undernt@ct number
NBCHDO030010. Any opinions, findings and conclusions or neg@nda-
tions expressed in this material are the author(s) and doewetssarily reflect
those of the sponsor.

7. REFERENCES

e[q] X. Huang, A. Acero, and H. W. Hor§poken Language Process-

ing: A Guide to Theory Algorithms and System Devel opment,
chapter 12, Prentice Hall, New Jersey, 2001.

[2] Mosur K. RavishankarEffcient Algorithms for Speech Recogni-
tion, Ph.D. thesis, School of Computer Science, Carnegie Mel-

lon University, Pittsburgh, PA, 1996.

T.J. Sejnowski and C.R. Rosenberg, “Nettalk: a parakivork
that learns to read aloudCognitive Science, vol. 14, pp. 179—
211, 1990.

4] John Lafferty, Andrew McCallum, and Fernando Perei@ofi-
ditional random fields: Probabilistic models for segmemtimd
labeling sequence data,” Proc. 18th International Conf. on
Machine Learning, 2001, pp. 282-289.

Fei Sha and Fernando Pereira, “Shallow parsing with con-
ditional random fields,” inProceedings of Human Language
Technology-NAACL 2003, Edmonton, Canada, 2003.

6] J. Nocedal and S. J. Wrighiumerical Optimization, Springer-
Verlag, 1999.

F. Jensen and S. K. Andersen, “Approximations in Bayebia
lief universes for knowledge-based systent&@ceedings of the
6th Conference on Uncertainty in Artifcial Intelligence, 1990,
Appears to be unavailable.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spikege
halter, Probabilistic Networks and Expert Systems, Springer,
1999.

James M. Coughlan and Sabino J. Ferreira, “Finding deéftne
shapes using loopy belief propagation,’Baropean Conference
on Computer Vision, 2002.

(7]

work, they prune the model’s factors once before performing
inference, whereas we dynamically prune the beliefs during



