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Abstract

Latent Dirichlet allocation (LDA) and other
related topic models are increasingly popu-
lar tools for summarization and manifold dis-
covery in discrete data. However, LDA does
not capture correlations between topics. In
this paper, we introduce the pachinko alloca-
tion model (PAM), which captures arbitrary,
nested, and possibly sparse correlations be-
tween topics using a directed acyclic graph
(DAG). The leaves of the DAG represent in-
dividual words in the vocabulary, while each
interior node represents a correlation among
its children, which may be words or other in-
terior nodes (topics). PAM provides a flex-
ible alternative to recent work by Blei and
Lafferty (2006), which captures correlations
only between pairs of topics. Using text data
from newsgroups, historic NIPS proceedings
and other research paper corpora, we show
improved performance of PAM in document
classification, likelihood of held-out data, the
ability to support finer-grained topics, and
topical keyword coherence.

1. Introduction

Statistical topic models have been successfully used to
analyze large amounts of textual information in many
tasks, including language modeling, document classi-
fication, information retrieval, document summariza-
tion and data mining. Given a collection of textual
documents, parameter estimation in these models dis-
covers a low-dimensional set of multinomial word dis-
tributions called “topics”. Mixtures of these topics
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give high likelihood to the training data, and the high-
est probability words in each topic provide keywords
that briefly summarize the themes in the text collec-
tion. In addition to textual data (including news ar-
ticles, research papers and email), topic models have
also been applied to images, biological findings and
other non-textual multi-dimensional discrete data.

Latent Dirichlet allocation (LDA) (Blei et al., 2003)
is a widely-used topic model, often applied to textual
data, and the basis for many variants. LDA repre-
sents each document as a mixture of topics, where each
topic is a multinomial distribution over words in a vo-
cabulary. To generate a document, LDA first samples
a per-document multinomial distribution over topics
from a Dirichlet distribution. Then it repeatedly sam-
ples a topic from this multinomial and samples a word
from the topic.

The topics discovered by LDA capture correlations
among words, but LDA does not explicitly model cor-
relations among topics. This limitation arises because
the topic proportions in each document are sampled
from a single Dirichlet distribution. As a result, LDA
has difficulty modeling data in which some topics co-
occur more frequently than others. However, topic
correlations are common in real-world text data, and
ignoring these correlations limits LDA’s ability to pre-
dict new data with high likelihood. Ignoring topic cor-
relations also hampers LDA’s ability to discover a large
number of fine-grained, tightly-coherent topics. Be-
cause LDA can combine arbitrary sets of topics, LDA
is reluctant to form highly specific topics, for which
some combinations would be “nonsensical”.

Motivated by the desire to build accurate models that
can discover large numbers of fine-grained topics, we
are interested in topic models that capture topic cor-
relations.

Teh et al. (2005) propose hierarchical Dirichlet pro-
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Figure 1. Model structures for four topic models (a) Dirichlet Multinomial: For each document, a multinomial distribution
over words is sampled from a single Dirichlet. (b) LDA: This model samples a multinomial over topics for each document,

and then generates words from the topics.

(c¢) Four-Level PAM: A four-level hierarchy consisting of a root, a set of

super-topics, a set of sub-topics and a word vocabulary. Both the root and the super-topics are associated with Dirichlet
distributions, from which we sample multinomials over their children for each document. (d) PAM: An arbitrary DAG

structure to encode the topic correlations.
distribution.

cesses (HDP) to model groups of data that have a
pre-defined hierarchical structure. Each pre-defined
group is associated with a Dirichlet process, whose
base measure is sampled from a higher-level Dirich-
let process. HDP can capture topic correlations de-
fined by this nested data structure, however, it does
not automatically discover such correlations from un-
structured data. A simple version of HDP does not
use a hierarchy over pre-defined groups of data, but
can be viewed as an extension to LDA that integrates
over (or alternatively selects) the appropriate number
of topics.

An alternative model that not only represents topic
correlations, but also learns them, is the correlated
topic model (CTM) (Blei & Lafferty, 2006). It is sim-
ilar to LDA, except that rather than drawing topic
mixture proportions from a Dirichlet, it does so from
a logistic normal distribution, whose parameters in-
clude a covariance matrix in which each entry speci-
fies the correlation between a pair of topics. Thus in
CTM topics are not independent, however note that
only pairwise correlations are modeled, and the num-
ber of parameters in the covariance matrix grows as
the square of the number of topics.

In this paper, we introduce the pachinko allocation
model (PAM), which uses a directed acyclic graph
(DAG) structure to represent and learn arbitrary-arity,
nested, and possibly sparse topic correlations. In
PAM, the concept of topics are extended to be distri-
butions not only over words, but also over other topics.
The model structure consists of an arbitrary DAG, in
which each leaf node is associated with a word in the
vocabulary, and each non-leaf “interior” node corre-
sponds to a topic, having a distribution over its chil-
dren. An interior node whose children are all leaves
would correspond to a traditional LDA topic. But

Each interior node is considered a topic and associated with a Dirichlet

some interior nodes may also have children that are
other topics, thus representing a mixture over topics.
With many such nodes, PAM therefore captures not
only correlations among words (as in LDA), but also
correlations among topics themselves.

For example, consider a document collection that dis-
cusses four topics: cooking, health, insurance and
drugs. The cooking topic co-occurs often with health ,
while health, insurance and drugs are often discussed
together. A DAG can describe this kind of correlation.
Four nodes for the four topics form one level that is
directly connected to the words. There are two addi-
tional nodes at a higher level, where one is the parent
of cooking and health, and the other is the parent of
health, insurance and drugs.

In PAM each interior node’s distribution over its chil-
dren could be parameterized arbitrarily. In the re-
mainder of this paper, however, as in LDA, we use a
Dirichlet, parameterized by a vector with the same di-
mension as the number of children. Thus, here, a PAM
model consists of a DAG, with each interior node con-
taining a Dirichlet distribution over its children. To
generate a document from this model, we first sample
a multinomial from each Dirichlet. Then, to generate
each word of the document, we begin at the root of
the DAG, sampling one of its children according to its
multinomial, and so on sampling children down the
DAG until we reach a leaf, which yields a word. The
model is named for pachinko machines—a game popu-
lar in Japan, in which metal balls bounce down around
a complex collection of pins until they land in various
bins at the bottom.

Note that the DAG structure in PAM is extremely
flexible. It could be a simple tree (hierarchy), or an
arbitrary DAG, with cross-connected edges, and edges
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skipping levels. The nodes can be fully or sparsely
connected. The structure could be fixed beforehand
or learned from the data. It is easy to see that LDA
can be viewed as a special case of PAM: the DAG
corresponding to LDA is a three-level hierarchy con-
sisting of one root at the top, a set of topics in the
middle and a word vocabulary at the bottom. The
root is fully connected to all the topics, and each topic
is fully connected to all the words. (LDA represents
topics as multinomial distributions over words, which
can be seen as Dirichlet distributions with variance 0.)

In this paper we present experimental results demon-
strating PAM’s improved performance over LDA in
three different tasks, including topical word coherence
assessed by human judges, likelihood on held-out test
data, and document classification accuracy. We also
show a favorable comparison versus CTM and HDP
on held-out data likelihood.

2. The Model

In this section, we detail the pachinko allocation model
(PAM), and describe its generative process, inference
algorithm and parameter estimation method. We be-
gin with a brief review of latent Dirichlet allocation.

Latent Dirichlet allocation (LDA) (Blei et al., 2003)
can be understood as a special-case of PAM with
a three-level hierarchy. Beginning from the bottom,
it includes: V = {z1,x9,...,2,}, a vocabulary over
words; T = {t1,t2,...,ts}, a set of topics; and r, the
root, which is the parent of all topic nodes and is asso-
ciated with a Dirichlet distribution g(«). Each topic is
represented as a multinomial distribution over words
and sampled from a given Dirichlet distribution g(83).
The model structure of LDA is shown in Figure 1(b).

To generate a document, LDA samples a multinomial
distribution over topics from g(a), then repeatedly
samples a topic from this multinomial, and a word
from the topic.

Now we introduce notation for the pachinko allocation
model. PAM connects words in V' and topics in T
with an arbitrary DAG, where topic nodes occupy the
interior levels and the leaves are words. Two possible
model structures are shown in Figure 1(c) and (d).
Each topic t; is associated with a Dirichlet distribution
gi(;), where «; is a vector with the same dimension
as the number of children in ¢;. In general, g; is not
restricted to be Dirichlet. It could be any distribution
over discrete children, such as logistic normal. But in
this paper, we focus only on Dirichlet and derive the
inference algorithm under this assumption.

To generate a document d, we follow a two-step pro-
cess:

1. Sample 9§f), Ht(;i), cey Gt(j) from g1 (1), go(ae), ...,

gs(as), where 9%:1) is a multinomial distribution of
topic t; over its children.

2. For each word w in the document,

e Sample a topic path z, of length L,: <
Zwls Zw2y -y ZwL, - 2wl is always the root
and z,2 through z,r, are topic nodes in
T. zy; is a child of z,;_1) and it is sam-

pled according to the multinomial distribu-
(d)

tion 0z, ;-

e Sample word w from ei‘j?Lw.
Following this process, the joint probability of gener-

ating a document d, the topic assignments z(¥) and the
multinomial distributions 8(®) is

P(d, 7, 60]a) = [T P} o)
1=1

Lo

w 1=2

Integrating out (%) and summing over z(¥), we calcu-
late the marginal probability of a document as:

P(da) = [ T]P60)

L

< [ID (T Pl )P(wl6l?, ))de'®

W Zyy 1=2

Finally, the probability of generating a whole corpus
is the product of the probability for every document:

P(D]a) = [[ P(dla)
d

2.1. Four-Level PAM

While PAM allows arbitrary DAGs to model the topic
correlations, in this paper, we focus on one special
structure in our experiments. It is a four-level hierar-
chy consisting of one root topic, s; topics at the second
level, s topics at the third level and words at the bot-
tom. We call the topics at the second level super-topics
and the ones at the third level sub-topics. The root
is connected to all super-topics, super-topics are fully
connected to sub-topics and sub-topics are fully con-
nected to words (Figure 1(c)). We also make a simpli-
fication similar to LDA: the multinomial distributions
for sub-topics are sampled once for the whole corpus,
from a single Dirichlet distribution g(8). The multino-
mials for the root and super-topics are still sampled in-
dividually for each document. As we can see, both the
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Figure 2. Graphical models for (a) LDA and (b) four-level
PAM

model structure and generative process for this spe-
cial setting are similar to LDA. The major difference
is that it has one additional layer of super-topics mod-
eled with Dirichlet distributions, which is the key com-
ponent capturing topic correlations here. We present
the corresponding graphical models for LDA and PAM
in Figure 2.

2.2. Inference and Parameter Estimation

The hidden variables in PAM include the sampled
multinomial distributions ® and topic assignments z.
Furthermore, we need to learn the parameters in the
Dirichlet distributions o = {a, aa, ..., as}. We could
apply the Expectation-Maximization (EM) algorithm
for inference, which is often used to estimate param-
eters for models involving hidden variables. However,
EM has been shown to perform poorly for topic models
due to many local maxima.

Instead, we apply Gibbs Sampling to perform infer-
ence and parameter learning. For an arbitrary DAG,
we need to sample a topic path for each word given
other variable assignments enumerating all possible
paths and calculating their conditional probabilities.
In our special four-level PAM structure, each path con-
tains the root, a super-topic and a sub-topic. Since
the root is fixed, we only need to jointly sample the
super-topic and sub-topic assignments for each word,
based on their conditional probability given observa-
tions and other assignments, integrating out the multi-
nomial distributions ©; (thus the time for each sam-
ple is in the number of possible paths). The following
equation shows the joint probability of a super-topic
and a sub-topic. For word w in document d, we have:

P(ZwQ = tg, Zw3 :tp|D»sz7aaﬁ) X

d
ng? + Oag ngcp) + Qgp

ngd) + D Q1w nx(cd) + 2 Ay

« Npw +ﬁw
ny + Zm B

Here we assume that the root topic is t1. zw2 and 2,3
correspond to super-topic and sub-topic assignments
respectively. z_,, is the topic assignments for all other

(d)

words. Excluding the current token, ny’ is the num-

ber of occurrences of topic t, in document d; n%) is
the number of times topic t, is sampled from its par-
ent t, in document d; n, is the number of occurrences
of sub-topic t, in the whole corpus and n,, is the
number of occurrences of word w in sub-topic t,. Fur-
thermore, oy, is the yth component in o, and S, is
the component for word w in 3.

Note that in the Gibbs sampling equation, we assume
that the Dirichlet parameters a are given. While LDA
can produce reasonable results with a simple uniform
Dirichlet, we have to learn these parameters for the
super-topics in PAM since they capture different cor-
relations among sub-topics. As for the root, we assume
a fixed Dirichlet parameter. To learn «, we could use
maximum likelihood or maximum a posteriori estima-
tion. However, since there are no closed-form solu-
tions for these methods and we wish to avoid iterative
methods for the sake of simplicity and speed, we ap-
proximate it by moment matching. In each iteration
of Gibbs sampling, we update

(d)
1 Ngy
N Z @)
4 Nz

meang, =
d
_ 1 ”:(vy) 2.
varey = 5 X E (W — Meangy)”;
a M=
meangy X (1 — meangy)
Mgy = -1
VAT gy
gy  OC MEANLy;
Nowy = b empEl,
" i 5 So — 1 '

For each super-topic x and sub-topic y, we first cal-
culate the sample mean mean,, and sample variance
VAT gy nﬁfj} and n{” are the same as defined above.
Then we estimate oy, the yth component in o, from
sample mean and variance. N is the number of docu-

ments and s, is the number of sub-topics.

Smoothing is important when we estimate the Dirich-
let parameters with moment matching. From the
equations above, we can see that when one sub-topic y
does not get sampled from super-topic x in one itera-
tion, gy will become 0. Furthermore from the Gibbs
sampling equation, we know that this sub-topic will
never have the chance to be sampled again by this
super-topic. We introduce a prior in the calculation
of sample means so that mean,, will not be 0 even if

n%) is 0 for every document d.
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3. Experimental Results

In this section, we present example topics that PAM
discovers from real-world text data and evaluate
against LDA using three measures: topic clarity by
human judgement, likelihood of held-out test data,
and document classification accuracy. We also com-
pare held-out data likelihood with CTM and HDP.

In the experiments we discuss below, we use a fixed
four-level hierarchical structure for PAM, which in-
cludes a root, a set of super-topics, a set of sub-topics
and a word vocabulary. For the root, we always as-
sume a fixed Dirichlet distribution with parameter
0.01. We can change this parameter to adjust the
variance in the sampled multinomial distributions. We
choose a small value so that the variance is high and
each document contains only a small number of super-
topics, which tends to make the super-topics more in-
terpretable. We treat the sub-topics in the same way
as LDA and assume they are sampled once for the
whole corpus from a given Dirichlet with parameter
0.01. So the only parameters we need to learn are the
Dirichlet parameters for the super-topics, and multi-
nomial parameters for the sub-topics.

In Gibbs sampling for both PAM and LDA we use
2000 burn-in iterations, and then draw a total of 10
samples in the following 1000 iterations. The total
training time for the NIPS dataset (as described in
Section 3.2) is approximately 20 hours on a 2.4 GHz
Opteron machine with 2GB memory.

3.1. Topic Examples

Our first test dataset comes from Rexa, a search en-
gine over research papers (http://Rexa.info). We ran-
domly choose a subset of abstracts from its large col-
lection. In this dataset, there are 4000 documents,
278438 word tokens and 25597 unique words. Figure
3 shows a subset of super-topics in the data, and how
they capture correlations among sub-topics. For each
super-topic x, we rank the sub-topics {y} based on the
learned Dirichlet parameter o,. In Figure 3, each cir-
cle corresponds to one super-topic and links to a set of
sub-topics as shown in the boxes, which are selected
from its top 10 list. The numbers on the edges are
the corresponding « values. As we can see, all the
super-topics share the same sub-topic in the middle,
which is a subset of stopwords in this corpus. Some
super-topics also share the same content sub-topics.
For example, the topics about scheduling and tasks co-
occur with the topic about agents and also the topic
about distributed systems. Another example is infor-
mation retrieval. It is discussed along with both the
data mining topic and the web, network topic.

PAM LDA PAM LDA
control control motion image
systems systems image motion

robot based detection images
adaptive adaptive images multiple

environment direct scene local
goal con vision generated
state controller texture noisy
controller change segmentation optical
5 votes 0 vote 4 votes 1 vote

PAM LDA PAM LDA
signals signal algorithm algorithm
source signals learning algorithms

separation single algorithms gradient
eeg time gradient convergence
sources low convergence  stochastic
blind source function line
single temporal stochastic descent
event processing weight converge
4 votes 1 vote 1 vote 4 votes
Table 1. Example topic pairs in human judgement
LDA | PAM
5 votes 0 5
> 4 votes 3 8
> 3 votes 9 16

Table 2. Human judgement results. For all the categories,
5 votes, > 4 votes and > 3 votes, PAM has more topics
judged better than LDA.

3.2. Human Judgement

We provided each of five human evaluators a set of
topic pairs, one each from PAM and LDA, anonymized
and in random order. Evaluators were asked to choose
which one has stronger sense of semantic coherence
and specificity.

These topics were generated using the NIPS abstract
dataset (NIPS00-12), which includes 1647 documents,
a vocabulary of 11708 words and 114142 word tokens.
We use 100 topics for LDA, and 50 super-topics and
100 sub-topics for PAM. The topic pairs are created
based on similarity. For each sub-topic in PAM, we
find its most similar topic in LDA and present them
as a pair. We also find the most similar sub-topic
in PAM for each LDA topic. Similarity is measured
by the KL-divergence between topic distributions over
words. After removing redundant pairs and dissimilar
pairs that share less than 5 out of their top 20 words,,
we provide the evaluators with a total of 25 pairs. We
present four example topic pairs in Table 1. There are
5 PAM topics that every evaluator agrees to be the
better ones in their pairs, while LDA has none. And
out of 25 pairs, 19 topics from PAM are chosen by
the majority (> 3 votes). We show the full evaluation
results in Table 2.
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Figure 3. Topic correlation in PAM. Each circle corresponds to a super-topic each box corresponds to a sub-topic. One
super-topic can connect to several sub-topics and capture their correlation. The numbers on the edges are the correspond-

ing « values for the (super-topic, sub-topic) pair.

3.3. Likelihood Comparison

In addition to human evaluation of topics, we also pro-
vide quantitative measurements to compare PAM with
LDA, CTM and HDP. In this experiment, we use the
same NIPS dataset and split it into two subsets with
75% and 25% of the data respectively. Then we learn
the models from the larger set and calculate likelihood
for the smaller set. We use 50 super-topics for PAM,
and the number of sub-topics varies from 20 to 180.

To calculate the likelihood of heldout data, we must
integrate out the sampled multinomials and sum over
all possible topic assignments. This problem has no
closed-form solution. Previous work that uses Gibbs
sampling for inference approximates the likelihood of
a document d by the harmonic mean of a set of con-
ditional probabilities P(d|z(?), where the samples are
generated using Gibbs sampling (Griffiths & Steyvers,
2004). However, this approach has been shown to be
unstable because the inverse likelihood does not have
finite variance (Chib, 1995) and has been widely crit-
icized (e.g. (Newton & Raftery, 1994) discussion).

In our experiments, we employ a more robust al-
ternative in the family of non-parametric likelihood
estimates—specifically an approach based on empiri-
cal likelihood (EL), e.g. (Diggle & Gratton, 1984). In
these methods one samples data from the model, and
calculates the empirical distribution from the samples.
In cases where the samples are sparse, a kernel may
be employed. We first randomly generate 1000 docu-

ments from the trained model, based on its own gen-
erative process. Then from each sample we estimate a
multinomial distribution (directly from the sub-topic
mixture). The probability of a test document is then
calculated as its average probability from each multi-
nomial, just as in a simple mixture model. Unlike in
Gibbs sampling, the samples are unconditionally gen-
erated; therefore, they are not restricted to the topic
co-occurrences observed in the held-out data, as they
are in the harmonic mean method.

We show the log-likelihood on the test data in Figure
4, averaging over all the samples in 10 different Gibbs
sampling. Compared to LDA, PAM always produces
higher likelihood for different numbers of sub-topics.
The advantage is especially obvious for large numbers
of topics. LDA performance peaks at 40 topics and
decreases as the number of topics increases. On the
other hand, PAM supports larger numbers of topics
and has its best performance at 160 sub-topics. When
the number of topics is small, CTM exhibits better
performance than both LDA and PAM. However, as
we use more and more topics, its likelihood starts to
decrease. The peak value for CTM is at 60 topics and
it is slightly worse than the best performance of PAM.
We also apply HDP to this dataset. Since there is no
pre-defined data structure, HDP does not model any
topic correlations but automatically learns the num-
ber of topics. Therefore, the result of HDP does not
change with the number of topics and it is similar to
the best result of LDA.
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class # docs | LDA | PAM
graphics 243 [ 83.95]86.83
0s 239 [ 81.59[84.10

pc 245 [ 83.67 | 88.16
mac 239 | 86.61 | 89.54
windows.x 243 88.07 | 92.20
total 1209 | 84.70 | 87.34

Table 3. Document classification accuracy (%)

We also present the likelihood for different numbers
of training documents in Figure 5. The results are all
based on 160 topics except for HDP. As we can see,
the performance of CTM is noticeably worse than the
other three when there is limited amount of training
data. One possible reason is that CTM has a large
number of parameters to learn especially when the
number of topics is large.

3.4. Document Classification

Another evaluation comparing PAM with LDA is doc-
ument classification. We conduct a 5-way classifica-
tion on the comp subset of the 20 newsgroup dataset.
This contains 4836 documents with a vocabulary size
of 35567 words. Each class of documents is divided
into 75% training and 25% test data. We train a model
for each class and calculate the likelihood for the test
data. A test document is considered correctly classi-
fied if its corresponding model produces the highest
likelihood. We present the classification accuracy for
both PAM and LDA in Table 3. According to the sign
test, the improvement of PAM over LDA is statisti-
cally significant with a p-value < 0.05.

4. Related Work

Previous work in document summarization has ex-
plored topic hierarchies built with a probabilistic lan-
guage model (Lawrie et al., 2001).The dependence be-
tween a topic and its children is captured by relative
entropy and encoded in a graph of conditional proba-
bilities. Unlike PAM, which simultaneously learns all
the topic correlations at different levels, this model in-
crementally builds the hierarchy by identifying topic
terms for individual levels using a greedy approxima-
tion to the Dominating Set Problem.

Hierarchical LDA (hLDA) (Blei et al., 2004) is a vari-
ation of LDA that assumes a hierarchical structure
among topics. Topics at higher levels are more gen-
eral, such as stopwords, while the more specific words
are organized into topics at lower levels. To generate a
document, it samples a topic path from the hierarchy
and then samples every word from those topics. Thus
hLDA can well explain a document that discusses a
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Figure 4. Likelihood comparison with different numbers of
topics: the results are averages over all samples in 10 dif-
ferent Gibbs sampling and the maximum standard error is
113.75.
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Figure 5. Likelihood comparison with different amounts of
training data: the results are averages over all samples in
10 different Gibbs sampling and the maximum standard
error is 171.72.

mixture of computer science, artificial intelligence and
robotics. However, for example, the document can-
not cover both robotics and natural language process-
ing under the more general topic artificial intelligence.
This is because a document is sampled from only one
topic path in the hierarchy. Compared to hLDA, PAM
provides more flexibility because it samples a topic
path for each word instead of each document. Note
that it is possible to create a DAG structure in PAM
that would capture hierarchically nested word distri-
butions, and obtain the advantages of both models.

Another model that captures the correlations among
topics is the correlated topic model introduced by Blei
and Lafferty (2006). The basic idea is to replace the
Dirichlet distribution in LDA with a logistic normal
distribution. Under a single Dirichlet, the topic mix-
ture components for every document are sampled al-
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most independently from each other. Instead, a logis-
tic normal distribution can capture the pairwise corre-
lations between topics based on a covariance matrix.
Although CTM and PAM are both trying to model
topic correlations directly, PAM takes a more flexible
approach that can capture n-ary and nested correla-
tions. In fact, CTM is very similar to a special-case
structure of PAM, where we create one super-topic for
every pair of sub-topics. Not only is CTM limited to
pairwise correlations, it must also estimate parameters
for each possible pair in the covariance matrix, which
grows as the square of the number of topics. In con-
trast, with PAM we do not need to model every pair
of topics but only sparse mixtures of correlations, as
determined by the number of super-topics.

In this paper, we have described PAM operating on
fixed DAG structures. It would be interesting to
explore methods for learning the number of (super-
and sub-) topics and their nested connectivity. This
extension is closely related to hierarchical Dirichlet
processes (HDP) (Teh et al., 2005), where the per-
document mixture proportions over topics are gener-
ated from Dirichlet processes with an infinite number
of mixture components. These models have been used
to estimate the number of topics in LDA. In addition,
when the data is pre-organized into nested groups,
HDP can capture different topic correlations within
these groups by using a nested hierarchy of Dirichlet
processes. In future work, we plan to use Dirichlet
processes to learn the numbers of topics at different
levels, as well as their connectivity. Note that unlike
HDP, PAM does not rely on pre-defined hierarchical
data, but automatically discovers topic structures.

5. Conclusion

In this paper, we have presented pachinko allocation,
a mixture model that uses a DAG structure to capture
arbitrary topic correlations. Each leaf in the DAG is
associated with a word in the vocabulary, and each
interior node corresponds to a topic that models the
correlation among its children, where topics can be not
only parents of words, but also other topics. The DAG
structure is completely general, and some topic models
like LDA can be represented as special cases of PAM.
Compared to other approaches that capture topic cor-
relations such as hierarchical LDA and correlated topic
model, PAM provides more expressive power to sup-
port complicated topic structures and adopts more re-
alistic assumptions for generating documents.
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