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Abstract

This paper presents multi-conditional learning (MCL), a
training criterion based on a product of multiple conditional
likelihoods. When combining the traditional conditional
probability of “label given input” with a generative proba-
bility of “input given label” the later acts as a surprisingly ef-
fective regularizer. When applied to models with latent vari-
ables, MCL combines the structure-discovery capabilitiesof
generative topic models, such as latent Dirichlet allocation
and the exponential family harmonium, with the accuracy and
robustness of discriminative classifiers, such as logisticre-
gression and conditional random fields. We present results on
several standard text data sets showing significant reductions
in classification error due to MCL regularization, and sub-
stantial gains in precision and recall due to the latent structure
discovered under MCL.

Introduction
Conditional-probability training, in the form of maximum
entropy classifiers (Berger et al., 1996) and conditional ran-
dom fields (CRFs) (Lafferty et al., 2001; Sutton & McCal-
lum, 2006), has had dramatic and growing impact on natural
language processing, information retrieval, computer vision,
bioinformatics, and other related fields. However, discrimi-
native models tend to overfit the training data, and a prior on
parameters typically provides limited relief. In fact, it has
been shown that in some cases generative naı̈ve Bayes clas-
sifiers provide higher accuracy than conditional maximum
entropy classifiers (Ng & Jordan, 2002). We thus consider
alternative training criteria with reduced reliance on parame-
ter priors, which also combine generative and discriminative
learning.

This paper presentsmulti-conditional learning, a family
of parameter estimation objective functions based on a prod-
uct of multiple conditional likelihoods. In one configuration
of this approach, the objective function is the (weighted)
product of the “discriminative” probability of label givenin-
put, and the “generative” probability of the input given la-
bel. The former aims to find a good decision boundary, the
later aims to model the density of the input, and the single
set of parameters in our naı̈ve-Bayes-structured model thus
strives for both. All regularizers provide some additional
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constraints on parameter estimation. Our experimental re-
sults on a variety of standard text data sets show that this
density-estimation constraint is a more effective regularizer
than “shrinkage toward zero,” which is the basis of tradi-
tional regularizers, such as the Gaussian prior—reducing er-
ror by nearly 50% in some cases. As well as improving ac-
curacy, the inclusion of a density estimation criterion helps
improve confidence prediction.

In addition to simple conditional models, there has been
growing interest in conditionally-trained models with latent
variables (Jebara & Pentland, 1998; McCallum et al., 2005;
Quattoni et al., 2004). Simultaneously there is immense in-
terested in generative “topic models,” such as latent Dirich-
let allocation, and its progeny, as well as their undirected
analogues, including the harmonium models (Welling et al.,
2005; Xing et al., 2005; Smolensky, 1986).

In this paper we also demonstrate multi-conditional learn-
ing applied to latent-variable models. MCL discovers
a latent space projection that captures not only the co-
occurrence of features in input (as in generative models),
but also provides the ability to accurately predict designated
outputs (as in discriminative models). We find that MCL is
more robust than the conditional criterion alone, while also
being more purposeful than generative latent variable mod-
els. On the document retrieval task introduced in Welling
et al. (2005), we find that MCL more than doubles precision
and recall in comparison with the generative harmonium.

In latent variable models, MCL can be seen as a form
of semi-supervised clustering—with the flexibility to op-
erate on relational, structured, CRF-like models in a prin-
cipled way. MCL here aims to combine the strengths of
CRFs (handling auto-correlation and non-independent input
features in making predictions), with the strengths of topic
models (discovering co-occurrence patterns and useful la-
tent projections). This paper sets the stage for various in-
teresting future work in multi-conditional learning. Many
configurations of multi-conditional learning are possible, in-
cluding ones with more than two conditional probabilities.
For example, transfer learning could naturally be configured
as the product of conditional probabilities for the labels of
each task, with some latent variables and parameters shared.
Semi-supervised learning could be configured as the product
of conditional probabilities for predicting the label, as well
as predicting each input given the others. These configura-
tions are the subject of ongoing work.



Multi-Conditional Learning and MRFs
In the following exposition we first present the general
framework of multi-conditional learning. We then derive
the equations used for multi-conditional learning in sev-
eral structured Markov Random Field (MRF) models. We
introduce discrete hidden (sub-class) variables into naı̈ve
MRF models, creating multi-conditional mixtures, and dis-
cuss how multi-conditional methods are derived. We then
construct binary word occurrence models coupled with hid-
dencontinuousvariables, as in the exponential family har-
monium, demonstrating the advantages of multi-conditional
learning for these models also.

The MCL Framework
Consider a data set consisting ofi = 1, . . . , N instances. We
will construct probabilistic models consisting of discrete ob-
served random variables{x}, discrete hidden variables{z}
and continuous hidden variablesz. Denote an outcome of
a random variable as̃x. Definej = 1, . . . , Ns pairs of dis-
joint subsets of observations{x̃A}ij and{x̃B}ij , where our
indices denote theith instance of the variables in subsetj.
We will construct a multi-conditional objective by taking the
product of different conditional probabilities involvingthese
subsets and we will useαj to weight the contributions of the
different conditionals. Using these definitions the optimal
parameter settings under our multi-conditional criterionare
given by

argmax
θ

∏

i,j

∑

{z}ij

∫

P
({

{x̃A}, {z}, z
}

ij
|{x̃B}ij ; θ

)αj
dzij ,

(1)
where we derive these marginal conditional likelihoods from
a single underlying joint probability model with parameters
θ. Our underlying joint probability model may itself be nor-
malized locally, globally or using some combination of the
two.

For the experiments in this paper we will partition ob-
served variables into a set of “labels”y and a set of “fea-
tures” x. We define two pairs of subsets:{xA, xB}1 =
{y,x} and{xA, xB}2 = {x,y}. We then construct multi-
conditional objective functionsLMC with the following
form

LMC = log
(

P (y|x)αP (x|y)β
)

= αLy|x(θ) + βLx|y(θ).
(2)

In this configuration one can think of our objective as having
a generative componentP (x|y) and a discriminative com-
ponentP (y|x). Another attractive definition using two pairs
is: {xA, xB}1 = {y,x} and{xA, xB}2 = {x, ∅}, giving
rise to objectives of the following form

L = log(P (y|x)αP (x)β
)

, (3)

which represents a way of restructuring a joint likelihood to
concentrate modeling power on a conditional distribution of
interest. This objective is similar to the approach advocated
in Minka (2005).

Näıve MRFs for Documents
The graphical descriptions of the naı̈ve Bayes model for text
documents (Nigam et al., 2000) and the multinomial logistic

regression or maximum entropy (Berger et al., 1996) model
can be written with similar naı̈ve graphical structures. Here
we consider naı̈ve MRFs which can also be represented by
a similar graphical structure but define a joint distribution in
terms of unnormalized potential functions.

Consider dataD = {(ỹn, x̃j,n); n = 1, . . . , N, j =
1 . . .Mn} where there areN instances and within each in-
stance there areMn realizations of discrete random vari-
ables{x}. We will useyn to denote a single discrete random
variable for a class label. Model parameters are denoted by
θ. For a collection ofN documents we thus haveMn word
events for each document. The joint distribution of the data
can be modeled using a set of naı̈ve MRFs, one for each
observation such that

P (x1, . . . , xMn
, y|θ) =

1

Z
φ(y|θy)

Mn
∏

j=1

φ(xj , y|θx,y) (4)

where

Z =
∑

y

∑

x1

. . .
∑

xMn

φ(y|θy)

Mn
∏

j=1

φ(xj , y|θx,y). (5)

If we define potential functionsφ(·) to consist of exponen-
tiated linear functions ofmultinomialvariables (sparse vec-
tors with a single1 in one of the dimensions),y for labels
andwj for each word, a naı̈ve MRF can be written as

P (y, {w}) =
1

Z
exp

(

yT θy + yT θT
x,y

Mn
∑

j=1

wj

)

. (6)

To simplify our presentation, consider now combining
our multinomial word variables{w} such that x =

[
∑Mn

j=1 wj ; 1]. One can also combineθy and θx,y into θ

such that

P (y,x) =
1

Z
exp(yT θTx) (7)

Under this model, to optimizeLMC from (2) we have

P (y|x) =
exp(yT θTx)

∑

y
exp(yT θTx)

andP (x|y) =
exp(yT θTx)

Z(y)

(8)
where

Z(y) =
∑

w1

. . .
∑

wMn

Mn
∏

j=1

exp(yT θT
x,ywj) exp(yT θy). (9)

The gradients of the log conditional likelihoods containedin
our objective can then be computed using:

∇Ly|x(θ) =

N
∑

n=1

(

xnyT
n −

∑

y
exp(yT θTxn)xnyT

∑

y
exp(yT θTxn)

)

= N
(

〈xyT 〉P̃ (x,y) − 〈〈xyT 〉P (y|x)〉P̃ (x)

)

(10)

where〈·〉P (x) denotes the expectation with respect to distri-
butionP (x) and we usẽP (x) to denote the empirical distri-
bution of the data, the distribution obtained placing a delta
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Figure 1: (Left) A factor graph (Kschischang et al., 2001) for a
naı̈ve MRF. (Right) A factor graph for a mixture of naı̈ve MRFs.
In these models each word occurrence is a draw from a discrete
random variable; there areMn random variables in documentn.

function on each data point and normalized byN . To com-
pute∇Lx|y(θx,y), we observe that

P (x|y) =

Mn
∏

j=1

P (wj |y) =

Mn
∏

j=1

(

exp(yT θT
x,ywj)

∑

wj
exp(yT θT

x,ywj)

)

,

(11)

and therefore

∇Lx|y(θx,y) =

N
∑

n=1

Mn
∑

j=1

(

w̃j,nỹT
n − wj,nỹT

n P (wj,n|ỹn)
)

.

(12)

Mixtures of Naı̈ve MRFs
We can extend the basic naı̈ve MRF model shown in Figure
1 (Left) by adding a hidden subclass variable as illustrated
(Right). In a mixture of naı̈ve MRFs the joint distribution of
the data for each observation can be modeled using

P ({x}, y, z|θ) =
1

Z
φ(y|θy)φ(y, z|θy,z)

Mn
∏

j=1

φ(xj , z|θx,z),

(13)
where theφ(y, z|θy,z) potential encodes a sparse compati-
bility function relating labels or classes to a subset of states
of the hidden discrete variablez.

To optimize a mixture of naı̈ve MRFs, we use the ex-
pected gradient algorithm (Salakhutdinov et al., 2003). In
this model we can compute the gradient of the complete log
likelihood and this gradient decomposes with respect to our
expectation such that the following computation can be effi-
ciently performed,

∇Lx|y(θ) =
∂

∂θ
lnP ({x}|y; θ)

=
∑

z

P (z|{x}, y; θ)
∂

∂θ
lnP ({x}, z|y; θ).

(14)

For example, the gradient for the “weights”λxe,zs
compris-

ing the elements of the potential function parametersθx,z

are computed from

∂Lx|y(θ)

∂λxe,zs

=

N
∑

n=1

Mn
∑

j=1

[

∑

zn

P (zn|{x̃}n, ỹn; θ)fxe,zs
(x̃j,n, zn)

−
∑

zn

∑

{x}n

P ({x}n, zn|ỹn; θ)fxe,zs
(xj,n, zn)

]

,

(15)

wherefxe,zs
(x, z) are binary feature functions evaluating to

one when the state ofx = xe and the state ofz = zs. The
updates for the potentials function parameters usingLy|x

take a form similar to the standard “maximum entropy” gra-
dient computations, augmented with a hidden variable. We
term mixture models trained my multi-conditional learning
multi-conditional mixtures(MCM).

Harmonium Structured Models
A harmonium model (Smolensky, 1986) is a two layer
Markov Random Field (MRF) consisting of observed vari-
ables and hidden variables. Like all MRFs, the model we
present here will be defined in terms of a globally normal-
ized product of (unnormalized) potential functions defined
upon subsets of variables. A harmonium can also be de-
scribed as a type of restricted Boltzmann machine (Hinton,
2002). In the following we present a new type of exponen-
tial family multi-attribute harmonium, extending the models
used in Welling et al. (2005) and the dual-wing harmonium
work of Xing et al. (2005).

Our exponential family harmonium structured model can
be written as

P (x, z|Θ) = exp

{

∑

i

θT
i f i(xi) +

∑

j

θT
j f j(zj)

+
∑

i

∑

j

θ
T
ijf ij(xi, zj) − A(Θ)

}

,

(16)

wherez is a vector of continuous valued hidden variables,
x is a vector of observations,θi represents parameter vec-
tors (or weights),θij represents a parameter vector on a
cross product of states,f i denotes feature functions,Θ =
{θij , θi, θj} is the set of all parameters andA is the log-
partition function or normalization constant. A harmonium
model factorizes the third term of (16) intoθT

ijf ij(xi, zj) =

f i(xi)
TWT

ijf j(zj), whereWT
ij is a parameter matrix with

dimensionsa × b, i.e., with rows equal to the number of
states off i(xi) and columns equal to the number of states
of f j(zj). In the models we construct here we will usebi-
nary word occurrence vectors that have dimensionMv, the
size of our vocabulary. This is in contrast to our models in
the previous section where we had a different number of dis-
crete word eventsMn for each documentn. We will denote
one of the observed input variablesxd as a discrete label
denoted asy in Figure 2.

Figure 2 illustrates a multi-attribute harmonium model as
a factor graph. A harmonium represents the factorization of
a joint distribution for observed and hidden variables using
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Figure 2: A factor graph for a multi-attribute harmonium model
or two layer MRF.

a globally normalized product of local functions. In our ex-
periments here we shall use the harmonium’s factorization
structure to define an MRF and we will then define sets of
marginal conditionals distributions of someobservedvari-
ables given others that are of particular interest so as to form
our multi-conditional objective.

Importantly, using a globally normalized joint distribution
with this construction it is also possible to derive two consis-
tent conditional models, one for hidden variables given ob-
served variables and one for observed variables given hidden
variables (Welling et al., 2005). The conditional distribu-
tions defined by these models can also be used to implement
sampling schemes for various probabilities in the underly-
ing joint model. However, it is important to remember that
the original model parameterization is not defined in terms
of these conditional distributions. In our experiments be-
low we use a joint model with a form defined by (16) with
WT = [WT

b WT
d ] such that the (exponential family) condi-

tional distributions consistent with the joint model are

P (zn|x̃) = N (zn; µ̂, I), µ̂ = µ + WT x̃ (17)

P (xb|z̃) = B(xb; θ̂b), θ̂b = θb + Wbz̃ (18)

P (xd|z̃) = D(xd; θ̂d), θ̂d = θd + Wdz̃, (19)
whereN (), B() andD() represent Normal, Bernoulli and
Discrete distributions respectively. The following equation
can be used to represent the marginal distribution ofx,

P (x|θ,Λ) = exp{θTx + xT Λx − A(θ,Λ)}, (20)

whereΛ = 1
2WWT andθ combinesθd andθb. The labels

for this model are the discrete random variable (i.e.y = xd)
and the features are the binary variables.

In an exponential family model with exponential func-
tion F(x; θ), it is easy to verify that the gradient of the log
marginal likelihoodL of the observed datax, can be ex-
pressed

∂L(θ;x)

∂θ
= N

[〈

∂F(x; θ)

∂θ

〉

P̃ (x)

−

〈

∂F(x; θ)

∂θ

〉

P (x;θ)

]

,

(21)

where 〈·〉P̃ (x) denotes the expectation under the empiri-
cal distribution,〈·〉P (x) is an expectation under the models
marginal distribution andN is the number of data elements.
We can thus compute the gradient of the log-likelihood with
respect to the weight matrixW using

∂L

∂WT
=

1

Nd

Nd
∑

i=1

(

WT x̃ix̃
T
i −

1

Ns

Ns
∑

j=1

WT x̃i,(j)x̃
T
i,(j)

)

,

(22)
whereNd are the number of vectors of observed data,x̃i,(j)

are samples indexed byj andNs are the number of samples
used per data vector, computed using Gibbs sampling with
conditionals (17), (18) and (19). In our experiments here we
have found it possible to use either one or a small number of
Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003)
steps initialized from the data vector (the contrastive diver-
gence approach (Hinton, 2002)). Standard MCMC approxi-
mations for expectations are also possible. We use straight-
forward gradient-based optimization for model parameters
with a learning rate and a momentum term. Finally, for con-
ditional likelihood and multi-conditional likelihood based
learning, gradient values can be obtained from

∂LMC

∂θ
= N

[

(α + β)

[〈

∂F(xb,xd; θ)

∂θ

〉

P̃ (xb,xd)

− α

〈〈

∂F(xb,xd; θ)

∂θ

〉

P (xd|xb;θ)

〉

P̃ (xb)

]

− β

〈〈

∂F(xb,xd; θ)

∂θ

〉

P (xb|xd;θ)

〉

P̃ (xd)

]]

(23)

Relationships to Other Work
Theoretical and empirical results in Ng and Jordan (2002)
have supported the notion that, while a discriminative model
may have a lower asymptotic error (with more data), the
error rate of classifications based on an analogous genera-
tive model can often approach an asymptotically higher er-
ror rate faster. Hybrids methods combining generative and
discriminative methods are appealing in that they have the
potential to draw upon the strengths of both approaches. For
example, in Raina et al. (2003), a high dimensional subset
of parameters are trained under a joint likelihood objective
while another smaller subset of parameters are trained un-
der a conditional likelihood objective. In contrast, in our
approach all parameters are optimized under a number of
conditional objectives.

In Corduneanu and Jaakkola (2003), a method character-
ized as information regularization is formulated for using
information about the marginal density of unlabeled data to
constrain an otherwise free conditional distribution. Their
approach can be thought of as a method for penalizing de-
cision boundaries that occur in areas of high marginal den-
sity. In terms of the regularization perspective, our multi-
conditional approach uses additional or auxiliary conditional
distributions derived from an underlying joint probability
model as regularizers. Furthermore, our approach is defined
within the context of an underlying joint model. It is our
belief that these additional conditional distributions inour



objective function can serve as a regularizer for the condi-
tional distributions we primarily care about, the probability
of labels. As such, we weight the conditional distributions
differently in our objective.

With equal weighting of conditionals and an appropriate
definition of subsets of variables, the method can be seen
as a type of pseudo-likelihood (Besag, 1975). However, our
goals are quite different, in that we are not trying toapprox-
imatea joint likelihood, but rather, we wish to explicitly op-
timize for the conditional distributions in our objective.

The mixtures of naı̈ve MRFs we present resemble the
multiple mixture components per class approach used in
Nigam et al. (2000). The conditional distributions arising
for our labels given our data are also related to mixtures of
experts (Jordan & Jacobs, 1994), conditional mixture mod-
els (Jebara & Pentland, 1998), simple mixtures of maximum
entropy models (Pavlov et al., 2002), and mixtures of condi-
tional random fields (McCallum et al., 2005; Quattoni et al.,
2004). The continuous latent variable model we present here
is similar to the dual wing harmonium or two layer random
field presented in Xing et al. (2005) for mining text and im-
ages. In that approach a lower dimensional representation
of image and text data is obtained by optimizing the joint
likelihood of a harmonium model.

Experimental Results
In this section, we present experimental results using multi-
conditional objective functions in the context of the models
described. First, we apply naı̈ve Markov random fields to
document classification and show that the multi-conditional
training provides better regularization than the traditional
Gaussian prior. Next, we demonstrate mixture forms of the
model on both real and synthetic data, including an example
of topic discovery. Finally, we show that in harmonium-
structured models, the multi-conditional objective provides
a quantitatively better latent space.

Näıve MRFs and MCL as Regularization
We use the objective functionαLy|x(θ)+βLx|y(θ) in naı̈ve
MRFs and compare to the generative naı̈ve Bayes model and
the discriminative maximum entropy model for document
classification. We present extensive experiments with com-
mon text data sets, which are briefly described below.

• 20 Newsgroups is a corpus of approximately 20,000
newsgroup messages. We use the entire corpus (abbre-
viated asnews), as well as two subsets (talk andcomp).

• The industry sector corpus is a collection of corporate
webpages split into about 70 categories. We use the en-
tire corpus (sector), as well as three subsets:healthcare,
financial (finan), andtechnology.

• The movie review corpus (movie) is a collection of user
movie reviews from the Internet Movie Database, com-
piled by Bo Pang at Cornell University. We used the po-
larity data set (v2.0), where the task is to classify the sen-
timent of each review as positive or negative.

• Thesraadata set consists of 73,218 UseNet articles from
four discussion groups: simulated auto racing, simulated
aviation, real autos, and real aviation.

• The Web Knowledge Base (webkb) data set consists of
webpages from four universities that are classified into
faculty, student, course, and project (we discard the
categories ofstaff, department, andother).

We determineα andβ, the weights of each component of
our objective function, and the Gaussian prior varianceσ2

using cross validation. Specifically, we use 10-fold cross-
validation, with 5 folds used for choosing these parameters
and 5 folds used for testing. The models tend to be quite
sensitive to the values ofα andβ. Additionally, because
there is no longer a guarantee of convexity, thoughtful ini-
tialization of parameters is sometimes required. In future
work, we hope to more thoroughly understand and control
for these engineering issues.

During preprocessing, we remove words that only occur
once in the each corpus, as well as stopwords, HTML, and
email message headers. We also test with small-vocabulary
versions of each data set in which the vocabulary size is re-
duced to 2000 using information gain.

The results are presented in Table 1. The parenthesized
values are the standard deviations of the test accuracy across
the cross validation folds. On 15 of 20 data sets, we show
improvements over both maximum entropy and naı̈ve Bayes.
Although the differences in accuracy are small in some
cases, the overall trend across data sets illustrates the po-
tential of MCL for regularization. In fact, the difference be-
tween the mean accuracy for maximum entropy and MCL
is larger than the difference between the mean accuracies of
naı̈ve Bayes and maximum entropy. Across all data sets, the
mean MCL accuracy is significantly greater than the mean
accuracies of naive Bayes (p = 0.001) and maximum en-
tropy (p = 0.0002) under a one-tailed pairedt-test.

We also found that in 10 of 15 data sets on which we also
calculated the area under the accuracy/coverage curve, MCL
provided better confidence estimates.

Mixtures of Naı̈ve MRFs
In order to demonstrate the ability of multi-conditional mix-
tures to successfully classify data that is not linearly sep-
arable, we perform the following synthetic data experi-
ments. Four class labels are each associated with four 4-
dimensional Gaussians, having means and variances uni-
formly sampled between 0-100. Positions of data points
generated from the Gaussians are rounded to integer values.
For some samples of the Gaussian means and variances—
e.g. an XOR configuration—a significant portion of the
data would be misclassified by the best linear separator.
MCMs, however, can learn and combine multiple linear de-
cision boundaries. A MCM with two hidden subclasses
per class attains an accuracy of75%, whereas naı̈ve Bayes,
maximum entropy, and non-mixture multi-conditional naı̈ve
MRFs have accuracies of54%, 52%, and56%, respectively.
With explicitly-constructed XOR positioning, MCM attains
99%, while the others yield less than 50%.

Running these MCMs on thetalk data set yields “top-
ics” similar to latent Dirichlet allocation (LDA) (Blei et al.,
2003), except that parameter estimation is driven to discover
topics that not only re-generate the words, but also help pre-
dict the class label; (thus MCM can also be understood as a
“semi-supervised” topic model). Furthermore, MCM topics



Data Naive Bayes MaxEnt MCL
news 85.3 (0.61) 82.9 (0.82) 85.9 (0.89)
news (2000) 76.4 (0.88) 77.4 (0.81) 77.7 (0.48)
comp 85.1 (1.78) 83.7 (0.68) 83.4 (0.94)
comp (2000) 81.8 (1.36) 82.2 (0.75) 84.0 (1.05)
talk 84.6 (1.02) 82.3 (1.43) 83.7 (1.27)
talk (2000) 83.7 (2.17) 81.6 (2.27) 84.3 (1.21)
sector 75.6 (2.05) 88.0(1.13) 87.4 (0.84)
sector (2000) 73.9 (0.78) 82.0 (1.03) 83.2 (1.56)
tech 91.0 (1.33) 91.8 (2.24) 93.1 (1.69)
tech (2000) 92.9 (2.46) 91.4 (2.03) 94.5 (1.81)
finan 92.3 (2.36) 89.2 (1.52) 91.5 (2.57)
finan (2000) 87.3 (3.31) 89.6 (1.82) 94.6 (1.79)
health 93.5 (4.36) 94.0 (3.74) 95.5 (4.00)
health (2000) 95.0 (5.00) 91.0 (3.39) 95.5 (4.30)
movie 78.6 (1.20) 82.6 (2.96) 82.7 (2.50)
movie (2000) 90.9 (1.98) 88.8 (1.96) 94.0 (1.05)
sraa 95.9 (0.15) 96.1 (0.23) 96.7 (0.09)
sraa (2000) 93.7 (0.20) 94.7 (0.13) 95.0 (0.21)
webkb 87.9 (2.14) 92.4 (0.84) 92.4 (1.04)
webkb (2000) 84.7 (1.20) 92.4 (1.07) 92.7 (1.40)
mean 86.5 (6.73) 87.7 (5.39) 89.4 (5.76)

Table 1:Document classification accuracies for naive Bayes, max-
imum entropy, and MCL.

are defined not only by positive word associations, but also
by prominent negative word associations. The words with
most positive and negativeθx,z are shown in Table 2.

Lower-variance Conditional Mixture Estimation
Consider data generated from two classes, each with four
sub-classes drawn from 2-D isotropic Gaussians (similar to
the example in Jebara and Pentland (2000)). The data are
illustrated by red◦’s and blue×’s in Figure 3. Using joint,
conditional, and multi-conditional likelihood, we fit mixture
models with two (diagonal covariance,i.e. naı̈ve) subclasses
using conditional expected gradient optimization (Salakhut-
dinov et al., 2003). The figure depicts the parameters of the
best models found under our objectives using ellipses for
constant probability under the model.

From this illustrative example, we see that the parame-
ters estimated by joint likelihood would completely fail to
classify◦ versus× given location. In contrast, the condi-
tional objective focuses completely on the decision bound-
ary, however, in 30 random initializations, this produced
parameters with very high variance, and little interpretabil-
ity. Our multi-conditional objective, however, optimizesfor
both class label prediction and class-conditioned density,
yielding good classification accuracy, and sensible, low-
variance parameter estimates.

Multi-Conditional Harmoniums
We are interested in the quality of the latent representations
obtained when optimizing multi-attribute harmonium struc-
tured models under standard (joint) maximum likelihood
(ML), conditional likelihood (CL) and multi-conditional
likelihood (MCL) objectives. We use a similar testing strat-
egy to Welling et al. (2005) but focus on comparing the
different latent spaces obtained with the various optimiza-
tion objectives. As in Welling et al. (2005), we used the

Topic 1 (gun control) Topic 2 (Waco incident)
guns 1.27 nra 1.63
texas 1.19 assault 1.52
gun 1.18 waco 1.21
enforcement 1.14 compound 1.19
... ... ... ...
president -0.83 employer -0.90
peace -0.85 cult -0.94
years -0.88 terrorists -1.02
feds -1.17 matthew -1.15

Table 2: Two MCM-discovered “topics” associated with the
politics.guns label in a run ontalk data set. On the
left, discussion about gun control in Texas. The negatively-
weighted words are prominent in other classes, including
politics.misc. On the right, discussion about the gun rights
of David Koresh when federal agents stormed their compound in
Waco, TX. Aspects of the Davidian cult, however, were discussed
in religion.misc.
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Figure 3: (Left) Joint likelihood optimization. (Middle) One of
the many near optimal solutions found by conditional likelihood
optimization. (Right) An optimal solution found by our multi-
conditional objective.

reduced 20 newsgroups data set prepared in MATLAB by
Sam Roweis. In this data set, 16242 documents are repre-
sented by 100 word vocabulary binary occurrences and are
labeled as one of four domains.

To evaluate the quality of our latent space, we retrieve
documents that have the same domain label as a test doc-
ument based on their cosine coefficient in the latent space
when observing only binary occurrences. We randomly split
data into a training set of 12,000 documents and a test set of
4242 documents. We use a joint model with a corresponding
full rank multi-variate Bernoulli conditional for binary word
occurrences and a discrete conditional for domains. Figure4
shows the precision-recall results. ML-1 is our model with
no domain label information. ML-2 is optimized with do-
main label information. CL is optimized to predict domains
from words and MCL is optimized to predict both words
from domains and domains from words. From Figure 4 we
see that the latent space captured by the model is more rele-
vant for domain classification when the model is optimized
under the CL and MCL objectives. MCL more than doubles
the precision and recall at reasonable values of the counter-
parts.

Discussion and Conclusions
We have presented multi-conditional learning in the context
of naı̈ve MRFs, mixtures of naı̈ve MRFs and harmonium-
structured models. For Naive MRFs, we show
that multi-conditional learning provides improved regu-
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Figure 4:Precision-recall curves for the “20newsgroups” data us-
ing ML, CL and MCL with 20 latent variables. Random guessing
is a horizontal line at .25.

larization, and flexible, robust mixtures. In the context
of harmonium-structured models our experiments show
that multi-conditional contrastive-divergence-based opti-
mization procedures can lead to latent document spaces with
superior quality.

Multi-conditional learning is well suited for multi-task
and semi-supervised learning, since multiple prediction
tasks are easily and naturally defined in the MCL frame-
work. In recent work by Ando and Zhang (2005), semi-
supervised and multi-task learning methods are combined.
Their approach involves auxiliary prediction problems de-
fined for unlabeled data such that model structures arising
from these tasks are also useful for another classification
problem of particular interest. Their approach involves find-
ing the principal components of the parameters space for
auxiliary tasks. One can similarly use the MCL approach to
define auxiliary conditional distributions among features. In
this way MCL is a natural framework for semi-supervised
learning. We are presently exploring MCL in these multi-
task and semi-supervised settings.
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