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Abstract

Conditional Random Fields (CRFs) are undi-
rected graphical models, a special case of which
correspond to conditionally-trained finite state
machines. A key advantage of CRFs is their
great flexibility to include a wide variety of ar-
bitrary, non-independent features of the input.
Faced with this freedom, however, an impor-
tant question remains: what features should be
used? This paper presents an efficient feature
induction method for CRFs. The method is
founded on the principle of iteratively construct-
ing feature conjunctions that would significantly
increase conditional log-likelihood if added to
the model. Automated feature induction en-
ables not only improved accuracy and dramatic
reduction in parameter count, but also the use
of larger cliques, and more freedom to liber-
ally hypothesize atomic input variables that may
be relevant to a task. The method applies to
linear-chain CRFs, as well as to more arbitrary
CREF structures, such as Relational Markov Net-
works, where it corresponds to learning clique
templates, and can also be understood as super-
vised structure learning. Experimental results
on named entity extraction and noun phrase seg-
mentation tasks are presented.

Introduction

model because the dependencies among generated vari-
ables should be explicitly captured in order to reproduce
the data. However, conditional probability models, such as
conditional maximum entropy classifiers, need not capture
dependencies among variables on which they condition, but
do not generate. There has been significant work, for in-
stance, with such models for greedy sequence modeling in
NLP, e.g. (Ratnaparkhi, 1996; Borthwick et al., 1998).

Conditional Random Fields (CRFs) (Lafferty et al., 2001)
are undirected graphical models, trained to maximize the
conditional probability of the outputs given the inputs.
When the edges among the output variables form a linear
chain, they correspond to conditionally-trained finite state
machines. While based on the same exponential form as
maximum entropy models, they have efficient procedures
for complete, non-greedy finite-state inference and train-
ing. CRFs have achieved empirical success recently in POS
tagging (Lafferty et al., 2001), noun phrase segmentation
(Sha & Pereira, 2003) and table extraction from govern-
ment reports (Pinto et al., 2003).

Given these models’ great flexibility to include a wide ar-
ray of features, an important question that remains is what
features should be used? Some features are atomic and pro-
vided, but since CRFs are log-linear models, one will also
want to gain expressive power by using some conjunctions.
Previous standard approaches build large set of feature con-
junctions according to hand-built, general patterns. This
can result in extremely large feature sets, with millions of
featurese.g.(Sha & Pereira, 2003).

However, even with this many parameters, the feature set
is still restricted. For example, in some cases capturing a

Many tasks are best performed by models that have thword tri-gram is important, but there is not sufficient mem-
flexibility to use arbitrary, overlapping, multi-granularity ory or computation to include all word tri-grams. As the
and non-independent features. For example, in naturalumber of overlapping atomic features increases, the dif-
language tasks, the need for labeled data can be drasficulty and importance of constructing only select feature
cally reduced by using features that take advantage of dosombinations grows.

main knowledge in the form of word lists, part-of-speech

¢ h ; italizati it | This paper presents a feature induction method for
ags, character n-grams, capitalization patterns, page a%rbitrarily—structured and linear-chain CRFs. Founded on
out and font information. It is difficult to capture such

) X _ -~ the principle of constructing only those feature conjunc-
inter-dependent features with a generative probabilistic P P g ony J



tions that significantly increase log-likelihood, the ap- mersley & Clifford, 1971), CRFs define the conditional
proach builds on that of Della Pietra et al. (1997), but isprobability of a set of output values given a set of input
altered to work with conditional rather than joint probabili- values to be proportional to the product of potential func-
ties, and with a mean-field approximation and other modifi-tions on cliques of the graph,

cations to improve efficiency specifically for a conditional 1

model. In comparison with traditional approaches, auto- Pa(s|lo) = =— H D, (s, 00),

mated feature induction offers both improved accuracy and Zo ceC(s,0)

significantly reduction in feature count; it enables the use of ) ) . )

richer, higher-order Markov models; and offers more free-Where ®.(sc,oc) is the clique potential on clique,

dom to liberally guess about which atomic features may bd@ non-negative real value, often determined by an ex-
relevant to a task. ponentiated weighted sum over features of the clique,

D.(s.,0.) = exp(Xr; Mfr(se0.))), and whereZ,
We present results on two natural language tasks. Thg 5 normalization factor over all output valueg, —
CoNLL-2003 named entity recognition shared task con-s~ HceC(s/ o d,(s.,0.), also known as theartition
sists of Reuters news articles with tagged entitier $oN function ’

LoCATION, ORGANIZATION and Misc. The data is quite

complex, including foreign person names (suchyaguk In the special case in which the output nodes of the graph-
BasukiandInnocent Butarg a wide diversity of locations ical model are linked by edges in lanear chain, CRFs
(including sports venues such @ike Ova) and rare loca- Make a first-order Markov independence assumption, and
tion names such aNirmal Hriday), many types of orga- thus can be understood as cond|t!onally—tra|ned finite state
nizations (from company names such3i8, to acronyms Machines (FSMs). CRFs of this type are a globally-
for political parties such a$DP, to location names used to Normalized extension tdaximum Entropy Markov Models
refer to sports teams such Gteveland, and a wide vari- (MEMMSs) (McCallum et al., 2000) that avoid tHabel-

ety of miscellaneous named entities (from software such aBias problem(Lafferty et al., 2001). Voted perceptron se-

Java to nationalities such aBasqueto sporting competi- duence models (Collins, 2002) are approximations to these
tions such ad,000 Lakes Rally CRFs that use stochastic gradient descent and a Viterbi ap-

_ _ _ _proximation in training. In the remainder of this section we
On this task feature induction reduces error by 40% (inntroduce the likelihood model, inference and estimation
creasing F1 from 73% to 89%) in comparison with fixed, procedures for linear-chain CRFs.

hand-constructed conjunction patterns. There is evidence .
that the fixed-pattern model is severely overfitting, and thafNOW leto = (01,02, ...or) be some obse.rved input data
feature induction reduces overfitting while still allowing S€duence, such as a sequence of words in a text document,

use of large, rich knowledge-laden feature sets. (the values orf” input nodes of the graphical model). Let
) S be a set of FSM states, each of which is associated with
On a standard noun phrase segmentation task we mat@gpel ; ¢ £, (such as BRSON). Lets = (sy, sa,...57)

world-class accuracy while using far less than an order ohe some sequence of states, (the valueE oatput nodes).

magnitude fewer features. The cliques of the graph are now restricted to include just
pairs of state$s;_1, s;) that are neighbors in the sequence;
2 Conditional Random Fields connectivity among input nodes, remains unrestrictetl.

Linear-chain CRFs thus define the conditional probability

.. i of a state sequence given an input sequence to be
Conditional Random FieldéCRFs) (Lafferty et al., 2001)

are undirected graphical models (also knownrasdom 1 T K
field9 used to calculate the conditional probability of val- ~ Pa(s|o) = —-exp D> Mefilsic1,si,0.t) |
ues on designated output nodes given values assigned to ° t=1 k=1

other designated input nodes. The term “random field” haghere 7, is a normalization factor over all state sequences,
common usage in the statistical physics and computer ViT, (s;_1, 5¢,0,t) is an arbitrary feature function over its

sion. In the graphical modeling community the same mOd'arguments, and,, (ranging from—oo to oc) is a learned

els are often known as “Markov networks”; thuendi- \yeight for each feature function. A feature function may,
tional Markov networkgTaskar et al., 2002) are the same ¢, example, be defined to have value 0 in most cases, and

as conditional random fields. have value 1 if and only if,_; is state #1 (which may

Let O be a set of “input” random variables whose valueshave label OHER), ands, is state #2 (which may have
are observed, anfl be a set of “output” random variables label LOCATION), and the observation at positidnin o
whose values the task requires the model to predict. Thés @ word appearing in a list of country names. Higher

random variables are connected by undirected edges indi- 1gjnce the values on the input nodesare known and fixed,

cating dependencies, and {0, S) be the set of cliques  arbitrarily large and complex clique structure there does not com-
of this graph. By the Hammersley-Clifford theorem (Ham- plicate inference.



weights make their corresponding FSM transitions moreraining setD = {{o,1)("), ...(0,1)U), ...(0,1)(M)},
likely, so the weight\; in this example should be posi- N .
tive since words appearing in the list of country names are N A2
Ly = log (PA(Dj00))) = 3= 2k
k=1

likely to be locations. 252’
j=1

More generally, feature functions can ask powerfully arbi-
trary questions about the input sequence, including querieghere the second sum is a Gaussian prior over parame-
about previous words, next words, and conjunctions of alkgrg (with variances?) that provides smoothing to help

these. Nearly universally, however, feature functigpslo  cope with sparsity in the training data (Chen & Rosenfeld,
not depend on the value obther than as an index inta  1999),

and thus parameters, aretied across time steps, just as o

are the transition and emission parameters in a traditionaf/hen the training labels make the state sequence unam-
hidden Markov model (Rabiner, 1990). Feature functions?iguous (as they often do in practice), the likelihood func-
may have values from oo to oo, although binary values fionin exponential models such as CRFs is convex, so there
are traditional. are no local maxima, and thus finding the global optimum

is guaranteed.
CRFs define the conditional probability of a label se-

quence based on total probability over the state sequences,iS not, however, straightforward to find it quickly. Pa-
PA(1l0) = Y..s)—1 Pa(s|o), wherel(s) is the sequence rameter estimation in CRFs requires an iterative proce-
of labels corresponding to the labels of the states in sedure, and some methods require fewer iterations than oth-
quences. ers. lterative scaling is the traditional method of train-
ing these maximum-entropy models (Darroch et al., 1980;
Note that the normalization factok,, is the sum of the  pejia Pietra et al., 1997), however it has recently been

“scores” of all possible state sequences, shown that quasi-Newton methods, such as L-BFGS, are
T K significantly more efficient (Byrd et al., 1994; Malouf,
Zo = Z exp (Z Z Mefr(St—1, 8¢, 0, t)) , 2002; Sha & Pereira, 2003). This method approximates the
seST t=1 k=1 second-derivative of the likelihood by keeping a running,

and that the number of state sequences is exponential in tif!ite-sized window of previous first-derivatives. Sha and
input sequence length. In arbitrarily-structured CRFs, Pereira (2003) show that training CRFs by L-BFGS is sev-

calculating the normalization factor in closed form is in- €@l orders of magnitude faster than iterative scaling, and
tractable, and approximation methods such as Gibbs sandSC much faster than conjugate gradient.

pling or loopy belief propagation must be used. In linear-| -BFGS can simply be treated as a black-box optimization
chain-structured CRFs, which we have here for SequenCSrocedure, requiring Qn|y that one provide the value and
modeling, the partition function can be calculated effi-first-derivative of the function to be optimized. Assuming

ciently in closed form, as described next. that the training labels on instangemake its state path
unambiguous, les(?) denote that path, and then the first-
2.1 Inference in Linear-chain CRFs derivative of the log-likelihood is

As in forward-backward for hidden Markov models SL N
(HMMs), inference can be performed efficiently by dy- — = [> Cy(s¥),0) | -

namic programming. We define slightly modified “forward A j=1

values”,a.(s;), to be the probability of arriving in state N

given the observation&, ...0;). We setng(s) equal to the p 68, G| Ak
probability of starting in each statg and recurse: ZZ A(s]0™)Ci(s, o)

K
arga(s) = Z%(S/)GXP (Z )‘kfk(slasaoat)> : _ _
o k=1 where Ci(s,0) is the “count” for featurek given s
T
The backward procedure and the remaining details ofnd o, equal to >, ; fi(si-1,5:,0,1), the sum of
Baum-Welch are defined similarlyZ, is then>", ap(s).  Jk(si—1,5¢, 0,1) values for all positions, in the sequence
The Viterbi algorithm for finding the most likely state se- S- The first two terms correspond to the difference between
quence given the observation sequence can be corresporile empirical expected value of featyfgand the model's
ingly modified from its HMM form. expected value(E|[fx] — Ea[fx])N. The last term is the
derivative of the Gaussian prior.

Jj=1 s

2.2 Training CRFs

. L 2When the training labels do not disambiguate a single state
The weights of a CRFA = {}, ...}, are set to maximize path, expectation-maximization can be used to fill in the “miss-
the conditional log-likelihood of labeled sequences in someng” state paths. For example, see Teh et al. (2002)



3 Efficient Feature Induction for CRFs weight . to have the same form as the original model (as if
this new candidate feature were included along side the old

Typically the featuresf;, are based on some number of ones):

hand-crafted atomic observational tests (suclwagl is

capitalized or word is “said”, or word appears in lexi-

con of country namégs—and a large collection of features Pa(s|o) exp (Zcec(s o) rg(se, Oc))
is formed by making conjunctions of the atomic tests in P, ,(s|o) = AN : ;
certain user-defined patterns, (for example, the conjunc- o(A,g, 1) )

tions consisting of all tests at the current sequence positio% A def P (s
conjoined with all tests at the position one step ahead— o(A g, 1) = Xg Pa(s']0) exp(X ccs,0) 1 9(Sc, 0c))

producing in one instanceprrent word is capitalized and in the denominator is simply the additional portion of nor-
next word is “Inc”) malization required to make the new function sum to 1 over

all output values.

Conjunctions are important because the model is log- . . -
linear, and the only way to represent certain complex deFollowmg (Della Pietra et al., 1997), we efficiently assess

cision boundaries is to project the problem into a higher—marly candidate features in parallel by assuming thahthe

dimensional space comprised of other functions of muItiple.oaramete.rS on all old features remain fixed Wh"? estimat-
variables. ing thegain, G(g), of a candidate featurg, The gain of a

feature is defined as the improvement in log-likelihood the
There can easily be over 100,000 atomic tests (many basddature provides,
on tests for the identity of words in the vocabulary), and ten
or more shifted-conjunction patterns—resulting in severalGa(9) = max Galg, ) = max Lasgu—La—(u?/20%).
million features (Sha & Pereira, 2003). This large number )
of features can be prohibitively expensive in memory andNote that theu that gives maximum gain must be fouhd.
computation; furthermore many of these features are irrelAs will be further explained below, in conditional probabil-
evant, and others that are relevant are excluded. ity models—unlike binary-featured joint probability mod-

In response, we wish to use just those conjunctioss ( els (Della Pietra et al., 1997)—the optimal valueuoéan-

feature-function-enabling cliques) that will significantly Nt be calculated in closed-form. An iterative procedure,
improve performance. We start with no features, and ovePUc" @S Newton's method must be used, and this involves
several rounds of feature induction: (1) consider a set oFalCUlat'ngLAJrW ,W'th anew for gach iteration—thus re-
proposed new features (both atomic observational tests arﬂ]e_at?dly performing inference, with a ieparzge‘?r each
conjunctions), (2) select for inclusion those candidate fealraining instance. (Remember'that an ‘instance” here is a
tures that will most increase the log-likelihood of the cor- set of values for all the nodes in a graph.)

rect state patis?), (3) train weights for all included fea- With this daunting prospect in mind, we make the feature
tures, and (4) iterate to step (1) until a stopping criteria isgain calculation significantly more time-efficient for CRFs
reached. and for large training sets with two further reasonable and

The proposed new features are based on the hand-craftétually-supporting approximations:
observational tests, consisting of singleton tests, and bi- ) _ ) ) _
nary conjunctions of singleton tests with each other, and 1. During the iterative gain calculation procedure, we

with other features currently in the model. The later al- ~ USe & type of mean field approximation to avoid joint
lows arbitrary-length conjunctions to be built. The factthat ~ inference over all output variables, and rather make
not all singleton tests are included in the model gives the ~ €ach state a separate, independent inference problem.
designer great freedom to use a very large variety of ob- In particular, when inferring the distribution over val-

servational tests and a large window of time shifts. Noisy ~ Ues of each output node we assume that distribu-
and irrelevant features—as measured by lack of likelihood ~ tions at all other output nodes are fixed at their max-

gain—will simply never be selected for inclusion in the imqm likelihood values,&.g. for sequence problems,.
model. their Forward-Backward-determined values). Early in

As in the previous section, we begin by describing fea- 3E>_<periments using the derivative of likelihood with respect
ture induction for the general case of arbitrarily—structuredto u did not perform as well as gain, presumably because some

. . initially-steep hills actually have lower peaks.
CREFs, and then focus on linear-chain CRFs. 4In Della Pietraet als (1997) feature induction procedure

for non-conditional probability models, the partition functign
could be calculated just once for each Newton iteration since it
did not depend on a conditioning input, but we cannot. How-

. . ever, as they do, we can still shafg across the gain calculation
To measure the effect of adding a new feature, we define th@r many candidate featureg, since we both assume that the pa-
new conditional model with the additional featuyawith rameters on old features remain fixed.

3.1 Feature Induction for Arbitrarily-Structured
CRFs



training it may be helpful to use the true values of thelnput: (1) Training set: paired sequences of feature vectors and

neighbors instead, as in pseudo-likelihood methods. labels; for example, associated with the sequence of words in the
. ” . English text of a news article: a binary vector of observational-
The calculation of the partition functiot], for each  (est results for each word, and a label indicating if the word is a

inference problem thus becomes significantly simplerperson name or not. (2) a finite state machine with labeled states
since it involves a sum over only the alternative val- and transition structure. _
ues for a single output node—not a sum over all Algorithm: (1) Begin with no features in the modely = 0.

. - . : . (2) Create a list of candidate features consisting of observational
alternative configurations for the entire graph, Wh'Chtests, and conjunctions of observational tests with existing fea-

is exponential in the number of output nodes in theyres. Limit the number of conjunctions by only building with a
graph. limited number of conjuncts with highegtin (Eqs 2 or 4). (3)
Evaluate all candidate features, and add to the model some sub-
2. The first assumption allows us to treat each outputet of candidates with highest gain, thereby increaging (4)
nodes as a separate inference problem, and thus giveblse a quasi-Newton method to adjust all the parameters of the

us the opton (0 choose 10 skp some ofthem. In manERE model 20 85 to ncrease condtona kelihood of e labe
tasks, the great ma!orlty of the output nod(.as_ are Cor'qu(islckly by ru%ming only aphandfﬂl of NeV\’/ton iterations. (5) Gogto
rectly labeled, even in the early stages of training. (Forstep 2 unless some convergence criteria is met.

example, in a named entity extraction task, nearly alloutput: A finite state CRF model that finds the most likely label
lowercase words are not named entities; the mode$equence given an input sequence by using its induced features,
learns this very quickly, and there is little reason to 'earmned weights and the Viterbi algorithm.

include inference on these words in the gain calcula-

tion.)

o ) o ) ~_ Figure 1: Outline of the algorithm for linear-chain CRFs.
We significantly increase efficiency by including in

the gain calculation only those output nodes that are . )

mislabeled by the current model, (or correctly labelegtransitions, and more important to explore the space of fea-
only within some margin of the decision surface). tures that concern observational tesfs)) (we can define

and evaluate alternative agglomerated featwés, o, t),
that ignore the previous state, ;. When such a feature

It is not that joint inference over all output variables is in- . ; S . :
is selected for inclusion in the model, we can include in

tractable (after all, it is performed both during estlmauonthe model the several analogous featwés, 1, s, o, £)

of the As and a test time), but rather that performing full, for s,_, equal to each of the FSM statesdn or a subset

joint inference repeatedly inside an inner loop to estlmateOf FSM states selected by a simpler criteria. Using these

K wqqld be extremely time-consuming and unnecess":lr”yassumptions, the marginal probability of FSM statat
inefficient. o : .
sequence position (given a new candidate featugeand

. ) ) weightp) is
3.2 Feature Induction for Linear-Chain CRFs

Pass u(slo.t) = Pa(slo,t) exp (1 g(st, 0,1))
The feature induction procedure is now described in more Atgni2l '

. . ; i ZOt (A7 9, ,U,)
detail for the specific case of linear-chain CRFs. Below we def , ,
also describe three additional important modeling choicesWhere  Z,, (A, g, 1) =3 ., Pa(s'|o, 1) exp(pg(st, 0, 1)),
(indicated with1*, 2%, 3%). and whereP, (s|o, t) is the original marginal probabil-
] ] ] ] ity of FSM state s at position¢ (known in Rabiner’s
Fqllowmg'equatlon 1, the.new Il'near-chaln.CRF model(lggo) notation asy,(s)), calculated by full dynamic-
with additional featurey having weightu has cliques con- programming-based inference and fixed parameterss-

sisting only of adjacent pairs of states: ing “forward” o and “backward”3 values analogously to
HMMs: Py (slo,t) = a¢(s]0)Bi41(s]0)/Zo.
Pa(slo) exp (X1, #g(si—1,51,0,0)) | | N
: Using the mean field approximation and the agglomerated
Zo(A, 9, 1) features, thepproximate likelihood of the training data us-
o ing the new candidate featugeand weightu is L ,, =
Zo(A, g, 1) £ Pa(s']0) exp(3,; pg(s) s, 5, 0,1)) .

PAtg,u(slo) =

in the denominator is again the additional portion of nor- /[ N T; Do 2 x Ai

L ; g ; |
malization required by the candidate feature. Zl tzzl log (PA+gu(5t ol ,t)) - - ; ok
With the mean field approximation we instead perform '~ = 3)

p-aware inference on individual output variablesepa- and 1, is defined analogously, witR, instead ofP 4,
rately. Furthermore, we can drastically reduce the numbey, 4 \vithout— 12 /202, "

of new features evaluated by measuring the gain of courser- _ _
grained, agglomerated features. In particular, if it is lesgHowever, rather than summing oTveH output variables
important to explore the space of features that concern FSNbr all training instancest.V:1 >:21, we significantly



gain efficiency by including only thos&/ tokens that are Without induction With induction
mislabeled by the current mode, (or alternatively to- Prec Recall F1] Prec Recall FI

kens with true label probability within some margin). Let PER 918 467 61.9) 932 933 932
{o(i) : i = 1...M} be those tokens, anda(i) be the in- Loc | 941 805 867 930 919 924
T T . ) ! . ORG | 920 485 635|849 839 844
put sequence in which thiéh error token occurs at position | misc | 91.7 66.7 772/ 83.1 77.0 80.0
t(i). Overall | 92.7 60.7 73.3|| 89.8 88.2 89.0
Then algebraic simplification using these approximations, Figure 2: English named entity extraction.
equations 2 and 3 gives, (g, 1) =
M N 9
3" log exp (ng(si(i),0(0). (1)) |\ p* an automated method (c) 16 character-level regular expres-
Zoiy(A, g, 1) 202 sions, mostly concerning capitalization and digit patterns,
i—1 (4)

such asA, A+, Aa+, AatAa*, A., D+ .*D.* |, whereA,
e a andD indicate the regular expressiofs-Z] , [a-z]
202’ and[0-9] respectively, (d) 8 lexicons entered by hand,
such as honorifics, days and months, (e) 35 lexicons (ob-
The optimal value of: cannot be solved in closed form, but tained from Web sites), such as countries, publicly-traded
Newton’s method typically finds it in about 10 iterations. companies, surnames, stopwords, and universities, people

There are two additional important modeling choices) ( names, organ_izationg, NGOs and nationalities, (f) all the
Because we expect our models to still require several thol2P0Ve tests, time-shifted by -2, -1, 1 and 2, (g) the sec-
sands of features, we save time by addingy of the fea- ond time a capltgllzed word app’ears, the re.sults of all Fhe
tures with highest gain each round of induction rather tharf"bove tests applied tf? that Wo_rd S flrst_mentlon are copied
just one? (including a few redundant features is mildly t_o the current token with the tdgstmention, (h) some ar-
wasteful, but not harmful).3¢) Because even models with UCleS have a header, such as<EBALL, SOCCER or H-

a small select number of features can still severely overfitNANCE; when present, these are noted on every token of
we train the model with just a few BFGS iterations (not to the documentt.

convergence) before performing the next round of featur@pservational features are induced by evaluating candi-
induction. date features consisting of conjunctions of these observa-
ﬁional tests. Candidates are generated by building all pos-
sible conjunctions among the the 1000 atomic and existing

. M _ 2
= MuElg) =Y log (Ealexp(ug)lo )

Figure 1 outlines the inputs, steps and output of the overa

algorithm. . ; . . :
conjunction-features with the highest gain. CRF features
) consist of observational tests in conjunction with the iden-
4 Experimental Results tities of the source and destination states of the FSM.

Experimental results show the benefits of automated fegf first-order CRF was trained for about 12 hours ona 1GHz

ture induction on two natural language processing tasks® €Ntium with a Gaussian prior variance of 10, inducing
named entity recognition, where it reduces error by 4091000 or fewer features (down to a gain threshold of 5.0)
and noun phrase segmentation, where it matches worlgach round of 10 iterations of L-BFGS. Performance re-

class accuracy while reducing feature count by significanty>U!ts for each of the entity classes can be found in Figure 2.
more than an order of magnitude. The model achieved an overall F1 of 89% using 80,294 fea-

tures. Using the same features with fixed conjunction pat-
terns instead of feature induction results in F1 73% (with
about 1 million features).

CoNLL-2003 has provided named entity labelSRBON  There is evidence that the fixed-conjunction model is
LOCATION, ORGANIZATION, Misc, and O'HER, on @  severely overfitting. Experiments with some alternative
collection of Reuters newswire articles in English abOUthand-engineered and selective conjunction patterns may
various news tOpiCS from all over the world. The train- perform better; however, one of the goa|s of automated
ing set consists of 946 documents (203621 tokens); the tegéature induction is to avoid the need for this type of te-
set (CoNLLtesta ) consists of 216 documents (51362 to- dious and expensive manual search in structure space. Fur-
kens). ther supporting evidence of overfitting, a simpler CRF that

On this data set we use several families of atomic obse/S€S word identity only, with no other features, n-grams or
vational tests: (a) the word itself, (b) part-of-speech tagsconjunctlons of any kind overfits less and reaches 80% F1.

and noun phrase segmentation tags imperfectly assigned

4.1 Named Entity Recognition

SComplete source code, including all lexicons and exact reg-
5Although we avoid adding features with equal gains, whichular ~ expressions for features can be found at
are usually different names for exactly overlapping features. http://www.cs.umass.edumccallum/mallet.



Index  Feature Zhang et al., 2002). All operate in very high dimensional

0 Inside-noun-phraseq-1) space. For example, Sha and Pereira (2003) present results
5 stopword §;) . .
ol with two models: one using about 800,000 features, and

20 capitalized d;+1) > ! )
75 word=the ;) the other 3.8 million features. The CRF feature induction
100 in-person-lexicono—1) method introduced here achieves 93.96% with just 25,296
200 word=in f;+2) _ features (and less than 8 hours of computation).
300 capitalized (firstmentiqn,)

& capitalized (firstmentiop, ) The benefit is not only the decreased memory footprint, but
500 word=Republicd;41) the possibility that this memory and time efficiency may
711~ word=RBI 6;) & header=B\SEBALL (o;) enable the use of additional atomic features and conjunc-
1027  header=RICKET (0:) & English-county 6) . . . .
1298  company-suffix-word (firstmention;) tion pa.tterns that (with further error analygs and. experi-
4040  location ¢;) & POS=NNP ¢,) mentation on the development set) could yield statistically-

& capitalized ¢;) & stopword ;1) significant improved performance.

4945  moderately-rare-first-name (1)
& very-common-last-name)
4474  word=thed;_>) & word=of (o:)

5 Related Work
Figure 3. Sampling of features induced for the named en-

tity recognition task. Index shows the order in which they Conditionally-trained exponential models have been used
were added. successfully in many natural language tasks, including doc-
ument classification (Nigam et al., 1999), sequence seg-

mentation (Beeferman et al., 1999), sequence tagging (Rat-

Feature induction seems to allow the use of more rich an‘?]aparkhi 1996; Punyakanok & Roth, 2001; McCallum
knowledge-laden features without such significant overfit-o o 2000- Laf,ferty ot al. 2001 Sha & Pereira 2003)—

. o

Eng' Nothe, however, that (;ur p;rforlr(nance OT _89/0 IS nOthowever, all these examples have used hand-generated fea-
est on the CoNLL-2003 shared task competition. We arg, o5 |n some cases feature set sizes are in the hundreds of

currently investigating the use of different types of feature‘?thousands or millions. In nearly all cases, significant hu-

used by othgr; (Sl,JCh as character n-grams), as vyell aS fian effort was made to hand-tune the patterns of features
sues of overfitting independent from feature induction.

A sample of conjunctions induced appears in Figure 3. FOFI'he best known method for feature induction on expo-
example, feature #1027 helps model the fact that when 8fential models, and the work on which this paper builds

Engllish county is mentioned in an grticle about the 9aMEs Della Pietra et al. (1997). However, they describe a
of cricket, the word is actually referring to arRGANIZA- method for non-conditional models, while the majority of

TION (a team), n_Ot‘?‘bCAT'ON(aS 't_WOU_Id be ()_therw!se). he modern applications of such exponential models are
Feature #1298 indicates that the first time this capitalize onditional models. This paper creates a practical method

ngd was “Seﬁ‘?‘ mdthe ar::cle,‘!t W"’}f fofilowed byacompany-for conditional models, also founded on the principle of
|n.”|ct:)at|.ng sg |xed, s_uhc. afs ”Infc. ' 0 Ien a comphamé NaMEik elihood-driven feature induction, but with a mean-field
will be introduced with its full, tormal name at the begin- 4 qer approximations to address tractability in the face

‘r‘ung _Of the article, but”Iater be us“ed na short fornl (such ag instance-specific partition functions and other new diffi-

‘Addison Wesley Inc. _an_d later “Addison We;ley_). Fea- culties caused by the conditional model.

ture #4474 probably indicates that an organization name

will appear at index + 1—the pattern matching phrases The method bears some resemblance to Boosting (Freund

such as “the CEO of” or “the chairperson of". & Schapire, 1997) in that it creates new conjunctions (weak

learners) based on a collection of misclassified instances,

and assigns weights to the new conjunctions. However, (1)

the selection of new conjunctions is entirely driven by like-

Noun phrase segmentation consists of applying tags B lihood; .(2) even after anew conjunction is_a(_jded_to t_he
model, it can still have its weight changed,; this is quite sig-

GIN, INTERIOR, OUTSIDE to English sentences indicating .. S .
) : ) nificant because one often sees Boosting inefficiently “re-
the locations and durations of noun phrases, such as “Rock-_""" " . . . :
» u earning” an identical conjunction solely for the purpose

well International Corp.”, “a tentative agreement”, “it”, and of “chanaing its weight™ and furthermore. when many in-
“its contract”. Results reported here are on the data used fg ging gnt, i y

the CoNLL-2000 shared task, with their standard train/tesfim.:ed features _h_ave been added to_ a CRF model, all th_elr
split. weights can efficiently be adjusted in concert by a quasi-

Newton method such as BFGS; (3) regularization is man-
Several systems are in a statistical tie (Sha & Pereiraifested as a prior over weights. A theoretical comparison
2003) for best performance, with F1 between 93.89% andbetween this induction method and Boosting is an area of
94.38%. (Kudo & Matsumoto, 2001; Sha & Pereira, 2003;future work.

4.2 Noun Phrase Segmentation



Boosting has been applied to CRF-like models (Altun et al. Chen, S. F., & Rosenfeld, R. (1999 Gaussian prior for smooth-
2003), however, without learning new conjunctions and ing maximum entropy modef$echnical Report CMU-CS-99-
with the inefficiency of not changing the weights of fea- 108). CMU.

tures once they are added. Other work (Dietterich’ 2003?0””‘]3, M. (2002). Discriminative tl’ai.ning met_hOdS for hidden
estimates parameters of a CRF by building trees (with markov models: Theory and experiments with perceptron al-

. . . . L . ithms.
many conjunctions), but again without adjusting weights gorithms

. . Darroch, J., Lauritzen, S., & Speed, T. (1980). Markov fields and
once a tree is incorporated. Furthermore it can be experP log-linear interaction models for contingency tablésnals of

sive to add many trees, and some tasks may be diverse andggatistics 8, 522-539.
complex enough to inherently require several thousand feaII')eIIa Pietra, S., Della Pietra, V. J., & Lafferty, J. D. (1997). Induc-

tures. ing features of random fieldsIEEE Transactions on Pattern
Analysis and Machine Intelligenc&9, 380—393.
6 Conclusions Dietterich, T. (2003). Personal Communication.

Freund, Y., & Schapire, R. (1997). A decision-theoretic general-

. . . o ization of on-line learning and an application to boostidgur-
andmonal random fleltjs provide tremendous flexibility nal of Computer and System Scien 119-139.
to include a great diversity of features. The paper has pre- _ ) -
. . . . Hammersley, J., & Clifford, P. (1971). Markov fields on finite
sented an efficient method of automatically inducing fea-

N that e giti | loa-likelihood. Th graphs and lattices. Unpublished manuscript.
ures_ at most improve C(.)n "°r_“?‘ 0g-likelihood. € Kudo, T., & Matsumoto, Y. (2001). Chunking with support vector
experimental results are quite positive.

machines.
We have focused here on inducing new conjunctions (otafferty, J., McCallum, A., & Pereira, F. (2001). Conditional ran-
cliques) of the input variables, however the method also dom fields: Probabilistic models for segmenting and labeling
. . . . . sequence dat&roc. ICML
naturally applies to inducing new cliques of the output vari- ) _ _
ables, or input and output variables combined. This correMalouf, R. (2002). A cgmpargpnho\j\?lglfrkl]thms foé maximum e?'
. i ” _ tropy parameter estimatioixth Workshop on Computational
gponds to st_r_ucture learning and “clique template Igarn Language Learning (CONLL-2002)
ing for conditional Markov networks, such as Relational _ _ .
Markov Networks (Taskar et al., 2002), and ex erimentafMcallum. A, Freitag, D., & Pereira, F. (2000). Maximum en-
s : ) ! P tropy Markov models for information extraction and segmen-
exploration in this area is a topic of future work. tation. Proceedings of ICMI(pp. 591-598).
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