Information Extraction with HMMs and Shrinkage

Dayne Freitag

dayne@justresearch.com

Andrew Kachites McCallum

mccallum@justresearch.com

Just Research
4616 Henry Street
Pittsburgh, PA 15213

Abstract

Hidden Markov models (HMMs) are a powerful prob-
abilistic tool for modeling time series data, and have
been applied with success to many language-related
tasks such as part of speech tagging, speech recogni-
tion, text segmentation and topic detection. This pa-
per describes the application of HMMs to another lan-
guage related task—information extraction—the prob-
lem of locating textual sub-segments that answer a
particular information need. In our work, the HMM
state transition probabilities and word emission prob-
abilities are learned from labeled training data. As
in many machine learning problems, however, the lack
of sufficient labeled training data hinders the reliabil-
ity of the model. The key contribution of this paper
is the use of a statistical technique called “shrinkage”
that significantly improves parameter estimation of the
HMM emission probabilities in the face of sparse train-
ing data. In experiments on seminar announcements
and Reuters acquisitions articles, shrinkage is shown
to reduce error by up to 40%, and the resulting HMM
outperforms a state-of-the-art rule-learning system.

Introduction

The Internet makes available a tremendous amount of
text that has been generated for human consumption;
unfortunately, this vast quantity of information is not
easily manipulated or analyzed by computers. Infor-
mation extraction is the process of filling fields in a
database by automatically extracting sub-sequences of
human-readable text. Examples include extracting the
location of a meeting from an email message, or extract-
ing the name of the acquired company in a newswire
article about a company takeover.

This paper advocates the use hidden Markov mod-
els (HMMs) for information extraction. HMMs are a
type of probabilistic finite state machine, and a well-
developed probabilistic tool for modeling sequences of
observations. They have been applied with significant
success to many language-related tasks, including as
part-of-speech tagging (Kupiec 1992), speech recogni-
tion (Rabiner 1989), text segmentation and topic de-
tection (van Mulbregt et al. 1998).

Because HMMs have foundations in statistical the-
ory, there is a rich body of established techniques for

learning the parameters of an HMM from training data
and for classifying test data. In our work HMM state-
transition probabilities and word emission probabilities
are learned from labeled training data. However, as
is the case in many machine learning problems, large
amounts of training data are required to learn a model
that generalizes well and has high accuracy. Since train-
ing data must usually be painstakingly labeled by hand,
it is often difficult to obtain enough, and the small quan-
tities of available training data is a limiting factor on
performance of the learned extractor.

The key contribution of this paper is the integration
of a statistical technique called shrinkage into infor-
mation extraction by HMMs. In our system, shrink-
age is used to learn more robust HMM emission prob-
abilities in the face of limited training data. The
technique works by “shrinking” parameter estimates
in data-sparse individual states towards the estimates
calculated for data-rich conglomerations of states, and
does so in ways that are provably optimal under the ap-
propriate conditions. Shrinkage has been widely used
in statistics and language modeling, including in HMMs
for acoustic modeling in speech recognition (Lee 1989).

In our approach to information extraction, the HMM
forms a probabilistic generative model of an entire doc-
ument from which sub-segments are to be extracted.
Separate HMMs are built to extract different fields from
a document. In each HMM, a subset of the states are
distinguished as “target” states, and any words of the
document that are determined to have been generated
by those states are part of the extracted sub-sequence.

Several recent reports have described IE systems that
break documents into many small fragments for the
purposes of learning and prediction. Such approaches
require sometimes unsatisfactory heuristic choices and
can result in a huge space of possible fragments. Our
approach effectively solves this fragment enumeration
problem by means of the Viterbi algorithm, an efficient
method for finding the most probable sequence of model
states corresponding to a given document.

A few previous projects have used HMMs for infor-
mation extraction, although with differing structures,
and none with shrinkage over HMM states (Leek 1997;
Bikel et al. 1997). A related project focuses on the

quite different task of learning HMM state-transition
structure for information extraction (Seymore, McCal-
lum, & Rosenfeld 1999).

We describe experiments on two real-world data sets:
on-line seminar announcements and Reuters newswire
articles on company acquisitions. Results show that
shrinkage consistently improves the performance over
absolute discounting. A representative HMM out-
performs a state-of-the-art rule-learning system on
seven of nine extraction tasks.

HMMs for Information Extraction

Suppose we are given the task of extracting the purchas-
ing price from each document in a collection of articles
describing corporate acquisitions. We can imagine that
a given article is the result of a stochastic process involv-
ing two unigram language models: a background model
that typically emits tokens like ’that’ and ’said’; and a
model specific to prices that typically emits tokens like
’$” and ’'million’. To generate a document, the process
emits tokens from the background model, at some point
switching to the price model for a few tokens, then re-
turning to the background model to complete the doc-
ument. Slightly more realistically, there might be a
number of specialized models from which the process
draws, some of them devoted to the context of the pur-
chasing price, models responsible for prefix fragments
like “purchased XYZ Corp for”.

HMMs represent precisely this kind of process. A
HMM is a finite state automaton with stochastic state
transitions and symbol emissions (Rabiner 1989). The
automaton models a probabilistic generative processes
whereby a sequence of symbols is produced by starting
at a designated start state, transitioning to a new state,
emitting a symbol selected by that state, transitioning
again, emitting another symbol—and so on until a des-
ignated final state is reached. Associated with each of
a set of states, S = {s1,--+,8n}, is a probability dis-
tribution over the symbols in the emission vocabulary
V = {w1,ws,...w,}. The probability that state s; will
emit the vocabulary item w is written P(w|s;). Simi-
larly, associated with each state is a distribution over its
set of outgoing transitions. The probability of moving
from state s; to state s; is written P(s;|s;).

Model transition and emission probabilities can be
learned from training data. When the training se-
quences are sufficiently labeled so as to be associated
with a unique path of states, the probabilities can be
calculated straightforwardly with ratios of counts (max-
imum likelihood) or smoothed ratios of counts (maxi-
mum a posteriori).

Given a model and all its parameters, information
extraction is performed by determining the sequence
of states that was most likely to have generated the
entire document, and extracting the symbols that were
associated with designated “target” states.

To perform extraction we therefore require an algo-
rithm for finding the most likely state sequence given a
HMM model M and a sequence of symbols. Although

Figure 1: Three example topologies.

a naive approach to finding the most likely sequence
would take time exponential in the sequence length, a
dynamic programming solution called the Viterbi algo-
rithm solves the problem in just O(T'N?) time, where
T is the length of the sequence and N is the number
of states in M. Thus the Viterbi algorithm executes
with time linear in the length of the sequence—much
more efficiently than several other information extrac-
tion approaches that evaluate a super-linear number of
sub-sequences.

The models we use for information extraction have
the following characteristics:

e Each HMM extracts just one type of field (such as
“purchasing price”). When multiple fields are to be
extracted from the same document (such as “pur-
chasing price” and “acquiring company”), a separate
HMM is constructed for each field.

e They model the entire document, and thus do not re-
quire pre-processing to segment document into sen-
tences or other pieces. The entire text of each train-
ing document is used to train transition and emission
probabilities.

e They contain two kinds of states, background states
and target states. Target states are intended to pro-
duce the tokens we want to extract.

e They are not fully connected. The restricted tran-
sition structure captures context that helps improve
extraction accuracy. State-transition topology is set
by hand, not learned from training data.

Figure 1 shows three example topologies. The model
in Figure 1(a) is the simplest possible topology. In prac-
tice, of course, we expect that context around the target
state to provide important clues in the search for target
text. We can exploit some of these clues by adding pre-
fix and suffix states, as in Figure 1(b). Similarly, target
fragments can vary in length, and certain tokens may
be more common at the beginning or end of the frag-
ments. If the object is to extract the name of a company
for example, the tokens “Inc” and “Corp” are almost
certainly at the end of a fragment. We can attempt to

capture such structure by expanding the single target
state into an array of parallel paths of varying length.
The final state in the longest such path includes a self-
transition, in order to account for unusually long target
fragments. Figure 1(c) shows a set of target paths of
lengths one to three.

Figure 1 illustrates the two topological parameters we
experiment with, context window size and target path
count. The window size is the number of prefix and
suffix states. The model in Figure 1(b) has a window
size of four. Of course, nothing requires that a model
have the same number of prefix and suffix states; we
assume this for simplicity. The path count is the num-
ber of parallel, length-differentiated, sequential target
paths. If the path count is P, then a model has P tar-
get paths, varying in length from one to P. The model
in Figure 1(b) has a path count of one; the model in
Figure 1(c) has a path count of three.

In order to train a model, each token in a document is
labeled according to whether it is part of the target text.
We require that only target states emit such tokens, and
only non-target states emit non-target tokens. Given
this constraint, and a particular non-empty document,
only a single, unambiguous path is possible through any
of the topologies in Figure 1.

Estimating Emission Probabilities

When the emission vocabulary is large with respect to
the number of training examples, maximum likelihood
estimation of emission probabilities will lead to poor es-
timates, with many words inappropriately having zero
probability. The use of a well-chosen prior in conjunc-
tion with maximum a posteriori or Bayes optimal esti-
mation will prevent zero-probability estimates and im-
prove estimation overall.

For example, Bayes optimal parameter estimation in
conjunction with a uniform Dirichlet prior results in
the widely used Laplace smoothing, in which the count
of every word in the vocabulary in incremented by a
single extra “priming” occurrence. This is also known
as additive smoothing. An alternative smoothing tech-
nique that performs better when the number of zero-
count words varies widely from state to state is abso-
lute discounting. This method subtracts a fixed dis-
count, 0 < d < 1 from all words with count greater
than zero. The resulting available probability mass is
then distributed over all words that have zero count ac-
cording to some prior distribution (in our case uniform).
Thus we have

N(w,s)—d .
P(wl|s) = { Ny o if N(w;s) >0

a-(V|212,)) - _
71(\;(8‘”'25“),& N(w,s) = 0.

(1)

where |V| is the size of the vocabulary, N(w,s) is the
number of times w occurs in the training data for state
s, N(s) is the total number of word occurrences across
all words in training data for state s, and |Z;| is the
number of unique words with zero count in state s.
There is no closed-form solution for the optimal value

of d. A typical choice is 2(s,1)/(z(s,1) + 2 - 2(s,2)),
where z(s,n) is the number of unique words in state s
with count n.

Both Laplace smoothing and absolute discounting cal-
culate the word distribution in a state using only the
training data in state s itself. In the next section, we
discuss shrinkage, a method that leverages the word dis-
tributions in several related states in order to improve
parameter estimation.

Shrinkage

In many machine learning tasks there is a tension be-
tween constructing complex models with many states
and constructing simple models with only a few states.
The complex model is able to represent intricate struc-
ture of the task, but often results in poor (high vari-
ance) parameter estimation because the training data
highly fragmented. The simple model results in robust
parameter estimates, but performs poorly because it is
not sufficiently expressive to model the data (too much
bias).

Shrinkage is a statistical technique that balances
these competing concerns by “shrinking” parameter es-
timates from data-sparse states of the complex model
toward the estimates in related data-rich states of the
simpler models. The combination of the estimates
is provably optimal under the appropriate conditions.
Shrinkage has been extensively studied in statistics
(Carlin & Louis 1996). Versions of this technique are
also used widely in statistical language modeling for
speech recognition. We employ a simple form of shrink-
age that combines the estimates with a weighted aver-
age, and learns the weights with Expectation Maximiza-
tion. In speech recognition this form is called deleted
interpolation (Jelinek & Mercer 1980).

Shrinkage for HMMs and Information
Extraction

Shrinkage is typically defined in terms of some hier-
archy that represents the expected similarity between
parameter estimates, with the estimates at the leaves.
To create a hierarchy from an HMM, we define subsets
of states that have word emission distributions we ex-
pect to be similar, and declare them to share a common
“parent” in a hierarchy of word distributions.

Figure 2 shows such a hierarchy. It depicts, for exam-
ple, that all prefix states are expected to have related
word distributions—reflecting also the fact that in a
simpler model, all four prefix states might have been
represented by a single state that allowed up to four
self-transitions. Internal nodes of the hierarchy can also
have parents, reflecting expectations about weaker sim-
ilarity between groups of states, and representing HMM
emission distributions that are yet again more simple.
At the top of each hierarchy is the most unassuming of
all word distributions, the uniform distribution, which
gives all words in the vocabulary equal probability. Be-
cause the uniform distribution is included we no longer

uniform]
A

global []
)

' C}Oﬁ@%@»@»@%@#

Figure 2: A shrinkage configuration that addresses data
sparsity in contextual states, showing shrinkage only for
non-target states.

need to smooth the local estimates with Laplace or ab-
solute discounting.

We have compared several shrinkage hierarchy con-
figurations. Given that we distinguish four classes of
states: mon-target, target, prefir, and suffiz, the four
shrinkage configurations are described as follows:

e None. No shrinkage; only absolute discounting is
used.

¢ Uniform. Instead of absolute discounting, all single-
state distributions are shrunk toward the uniform dis-
tribution.

e Global. The distributions of all target states are
shrunk toward a common parent, as well as the uni-
form distribution; likewise for the non-target states
with a different parent.

e Hierarchical. (Shown in Figure 2.) Target distri-
butions are handled in the same way as in global.
Each of the other classes of states—non-target, prefiz,
and suffix—is shrunk toward a separate, class-specific
parent. The prefix and suffix parents are furthermore
shrunk toward a shared “context” grandparent. Fi-
nally, all non-target, prefix, and suffiz states are also
shrunk toward a single ancestor, shared among all
states that are not target states. Again, every state
is also shrunk toward the uniform distribution.

Shrinkage-Based Word Probabilities

Our new, shrinkage-based parameter estimate in a leaf
of the hierarchy (state of the HMM) is a linear interpo-
lation of the estimates in all distributions from the leaf
to its root. Local estimates are calculated from their
training data by maximum likelihood (simple ratios of
counts, with no additions or discounting). The training
data for an internal node of the hierarchy is the union
of all the data in its children.

We write the word probability estimates for
the nodes on the path starting at state s; as
{P(w|s9), P(w]s}), ...P(w|s)}, where P(w|s9) is the es-
timate at the leaf, and P(w|s;?) is the uniform distribu-
tion at the root. The interpolation weights among these

estimates are written {A9,\},..AF}, where Sk

VIR ER =1 A =

1. The new, shrinkage-based estimate for the probabil-
ity of word w in state s; is written P(w|s;), and is the
weighted average:

P(wls;) Z/\ P(w|s (2)

Determining Mixture Weights

We derive empirically optimal weights, A%, between the
ancestors of state s;, by finding the welgfwts that maxi-
mize the likelihood of some hitherto unseen “held-out”
data, H. This maximum can be found by a simple form
of Expectation-Maximization (EM) (Dempster, Laird,
& Rubin 1977), where each each word is assumed to
have been generated by first choosing one of the hier-
archy nodes in the path to the root, say s} (with prob-
ability)\j-), then using that node’s word distribution to
generate that word. EM then maximizes the total like-
lihood when the choices of nodes made for the various
words are unknown. EM begins by initializing the \;’s
to some initial values, say /\§ = %, then iterating the
following two steps until the A;’s do not change:

E-step Calculate the degree to which each node pre-
dicts the words in state s;’s held-out set, H,;:

XiP (wy]s5
Z >om)\’“P(wt|s (3)

wr€EH

M-step Derive new (and guaranteed improved) weights
by normalizing the (’s:

i_ P

While correct and conceptually simple, this method
makes inefficient use of the available training data by
carving off a held-out set. We fix this problem by eval-
uating the E-step with each individual word occurrence
held out in turn. This method is very similar to the
“leave-one-out” cross-validation commonly used in sta-
tistical estimation.

Experiments

We present experimental results on nine information
extraction problems from two corpora: a collection of
seminar announcements posted to local newsgroups at
a large university, and a collection of articles describing
corporate acquisitions taken from the Reuters dataset
(Lewis 1992). Both of these datasets, as well as the IE
problems defined for them, are described in detail in
previously published work (Freitag 1999).

The performance of an algorithm is measured docu-
ment by document. If the task is to extract the start
time of a seminar from an announcement, we assume
that there is a single correct answer (perhaps presented
several different times in the same or superficially dif-
ferent ways). We ask whether a learner’s single best

speaker | location | stime | etime
Window =1 0.431 0.797 | 0.943 | 0.771
Window = 4 0.460 0.653 0.960 | 0.716
Window = 10 | 0.363 0.558 0.967 | 0.746

Table 1: Effect on F1 performance of changing “win-
dow” size (number of context states) on four seminar
announcement fields under absolute discounting.

speaker | location | stime | etime
None 0.460 0.653 0.960 | 0.716
Uniform | 0.499 0.660 0.971 | 0.840
Global 0.558 0.758 0.984 | 0.589
Hier. 0.531 0.695 0.976 | 0.565

Table 2: Effect on F1 performance of different shrink-
age configurations on four seminar announcement fields,
given a topology with a window size of four and a single
target state.

prediction exactly identifies one of the fragments repre-
senting the start time. If a learner’s best prediction does
not align exactly with an actual start time, as identified
by the human labeler, it is counted as an error.

Let C be the number of test documents for which a
learner’s best prediction correctly identifies an instance
of the target field. Precision (P) is C divided by the
number of documents for which the learner issues any
prediction. Recall (R) is C' divided by the number of
documents actually containing an instance of the target
field. We present results in terms of F1, which is the
harmonic mean of P and R, i.e. 2/(1/P + 1/R).

We assume that context is necessary for correct ex-
traction on most IE tasks, but we do not know, given
a particular problem, how much a HMM can exploit.
Table 1 explores the effect on F1 performance of win-
dow sizes 1, 4, and 10 on the four extraction tasks
from the seminar announcement domain when only ab-
solute discounting is used to estimate emission prob-
abilities. Note that between the smallest and largest
window size performance actually decreases on three
of the four problems, reflecting the fact that the more
complex model fractures the training data, making it
more difficult to obtain reliable parameter estimates.

By softening the dependence of emission estimates on
relative position, shrinkage allows the model to make
improved use of larger window sizes. Table 2 shows the
effect of shrinkage on performance of a window-size-four
topology. For all fields one or more of the shrinkage con-
figurations out-performs absolute discounting. In some
cases the improvement is dramatic; for example shrink-
age reduces error on the speaker field by 40%. “Global”
shrinkage is best for three of the four fields. We at-
tribute the large performance differences on the etime
task to the relative infrequency of this field. Although
times in general are prevalent in the seminar announce-
ment corpus, only about half of the documents contain

Distance | speaker | location | stime | etime
1 0.84 0.84 0.92 0.95
2 0.81 0.90 0.98 0.98
3 0.73 0.80 0.85 0.95
4 0.65 0.74 0.86 0.93

Table 3: Local mixture weights along the prefix path
as a function of distance from the target states.

speaker | location | stime | etime
None 0.513 0.735 | 0.991 | 0.814
Uniform | 0.614 0.776 | 0.991 | 0.933
Global 0.711 0.839 | 0.991 | 0.595
Hier. 0.672 0.850 | 0.987 | 0.584

Table 4: Effect on F1 performance of different shrink-
age configurations on four seminar announcement fields,
given a topology with a window size of four and four
parallel length-differentiated target paths.

a seminar end time. The decrease in F1 for the bottom
two shrinkage configurations is due to a large number
of spurious predictions, extractions from documents in
which no end time is present. Thus, by making sparsely
trained states more willing to emit tokens they haven’t
seen in training, shrinkage can sometimes have a dele-
terious effect.

It is interesting to ask how the distribution of mix-
ture weights varies as a function of a state’s role in the
model. Table 3 shows, for sample runs on each of the
four seminar announcement tasks, how much weight is
placed on the local token distribution of each of four
prefix states. The “global” shrinkage configuration is
used in this case. Note how the local weight tends to
decline with increasing distance from the target text,
agreeing with our intuition that the most consistent
patterns are the closest. Also, local weight decreases
in proportion to the difficulty of the field, as reflected
in F1 results. Clearly, the two time fields tend to occur
in very predictable contexts.

The combination of shrinkage with multiple target
paths is particularly powerful. Table 4 shows the
effect of the various shrinkage configurations on the
performance of the network of Table 2 in which the
single target state is replaced by four parallel target
paths of lengths one, two, three, and four. Compared
with the earlier model, we see a universal increase in
performance—a 27% increase in performance on the lo-
cation field. On this field, the performance of the HMM
is far better than other non-HMM learning methods we
have seen.

The combination of shrinkage with appropriately de-
signed topologies yields a learning algorithm that is
based on sound statistical principles, runs efficiently,
and performs at a level competitive with or better than
the best learning algorithms with which we have ex-
perimented. Table 5 compares HMM performance on

speaker location stime etime
SRV 0.703 0.723 0.988 0.839
HMM 0.711 0.839 0.991 0.595

acquired | purchaser | acqabr | dlramt | status
SRV 0.343 0.429 0.351 0.527 0.380
HMM 0.309 0.481 0.401 0.553 0.467

Table 5: F1 of SRV and a representative HMM on nine
fields from two domains, the seminar announcements
and corporate acquisitions.

nine information extraction problems with that of SRV,
a consistently strong rule-learning algorithm described
elsewhere (Freitag 1999). The model in question has a
context window size of four, four target paths, and uses
the global shrinkage configuration. On all but etime
and acquired, the HMM obtains a higher F1 score than
SRV. Note, however, that on etime the performance of
the uniform shrinkage configuration does beat SRV (see
Table 4).

Related Work

HMMs are well suited to a range of language processing
tasks and have previously been applied to the problem
of information extraction in ways that differ from our
approach in various ways.

In a related project, Seymore, McCallum, & Rosen-
feld present an effort to learn HMMs state/transition
structure 1999. Unlike this paper, the approach uses a
single HMM to extract many fields which are densely
packed in moderately structured text (such as research
paper references and headers). Since many fields must
be represented in a single HMM, all observed and ex-
pected relative orderings of the fields must be captured,
and structure learning becomes a challenging and nec-
essary task.

Leek applies HMMs to the problem of extracting gene
locations from biomedical texts (Leek 1997). In con-
trast with the models we study, Leek’s models are care-
fully engineered for the task at hand—both the general
topology (which is hierarchical and complex), and the
language models of individual states. Leek uses net-
work topology to model natural language syntax and
trims training examples for presentation to the model.
States are unigram language models, as in our work, but
it is unclear what smoothing policy is used. Unknown
tokens are handled by special “gap” states.

The Nymble system (Bikel et al. 1997) uses HMMs
to perform “named entity” extraction as defined by
MUC-6. All different fields to be extracted are mod-
eled in a single HMM, but to avoid the resulting diffi-
cult structure-learning problem, there is a single state
per target and the state-transition structure is com-
pletely connected. Emission and transition probabili-
ties are conditioned not only on the state, but also on
the last emission—resulting in highly fragmented prob-
ability functions, and sparse training data. Thus they
use a form of shrinkage to obtain more robust parameter

estimates. However, unlike our shrinkage, which aver-
ages among different HMM states, they average among
distributions that use different representations of the
last emission. They also do not learn the optimal mix-
ture weights with EM.

Conclusions

This paper has demonstrated the ability of shrinkage
to improve the performance of HMMs for information
extraction. The tension between the desire for com-
plex models and the lack of training data is a constant
struggle here (as in many machine learning tasks) and
shrinkage provides for us a principled method of strik-
ing a balance. We have also strived to motivate the
high suitability of HMMs to the information extraction
task in general—for example, by pointing out that the
availability of the Viterbi algorithm avoids the need to
evaluate a super-linear number of sub-sequences.

References

Bikel, D. M.; Miller, S.; Schwartz, R.; and Weischedel, R.
1997. Nymble: a high-performance learning name-finder.
In Proceedings of ANLP-97, 194-201.

Carlin, B., and Louis, T. 1996. Bayes and Empirical Bayes
Methods for Data Analysis. Chapman and Hall.

Dempster, A.; Laird, N.; and Rubin, D. 1977. Maxi-
mum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society 39(B):1-38.

Freitag, D. 1999. Machine Learning for Information
Extraction in Informal Domains. Ph.D. Dissertation,
Carnegie Melon University.

Jelinek, F.; and Mercer, R. 1980. Interpolated estimation
of Markov source parameters from sparse data. In Gelsema,
S., and Kanal, L. N., eds., Pattern Recognition in Practice,
381-402.

Kupiec, J. 1992. Robust part-of-speech tagging using a
hidden Markov model. Computer Speech and Language
6:225-242.

Lee, K.-F. 1989. Automatic Speech Recognition: The De-
velopment of the SPHINX System. Kluwer Academic Pub-
lishers.

Leek, T. R. 1997. Information extraction using hidden
Markov models. Master’s thesis, UC San Diego.

Lewis, D. 1992. Representation and Learning in Informa-
tion Retrieval. Ph.D. Dissertation, Univ. of Massachusetts.
CS Tech. Report 91-93.

Rabiner, L. 1989. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of
the IEEE T7(2).

Seymore, K.; McCallum, A.; and Rosenfeld, R. 1999.
Learning hidden markov model structure for information
extraction. Submitted to the AAAI-99 Workshop on Ma-
chine Learning for Information Extraction.

van Mulbregt, P.; Carp, I.; Gillick, L.; and Yamron, J.
1998. Text segmentation and topic tracking on broadcast
news via a hidden markov model approach. In Proceed-
ings of the International Conference on Spoken Language
Processing.

