
Automatic Categorization of Email into Folders:
Benchmark Experiments on Enron and SRI Corpora

Ron Bekkerman ronb@cs.umass.edu
Department of Computer Science
University of Massachusetts, Amherst, USA

Andrew McCallum mccallum@cs.umass.edu
Department of Computer Science
University of Massachusetts, Amherst, USA

Gary Huang ghuang@cs.umass.edu

Department of Computer Science
University of Massachusetts, Amherst, USA

UMass CIIR Technical Report IR-418

Abstract

Office workers everywhere are drowning in email—not only spam, but also large quan-
tities of legitimate email to be read and organized for browsing. Although there have been
extensive investigations of automatic document categorization, email gives rise to a num-
ber of unique challenges, and there has been relatively little study of classifying email into
folders.

This paper presents an extensive benchmark study of email foldering using two large
corpora of real-world email messages and foldering schemes: one from former Enron em-
ployees, another from participants in an SRI research project. We discuss the challenges
that arise from differences between email foldering and traditional document classification.
We show experimental results from an array of automated classification methods and eval-
uation methodologies, including a new evaluation method of foldering results based on the
email timeline, and including enhancements to the exponential gradient method Winnow,
providing top-tier accuracy with a fraction the training time of alternative methods. We
also establish that classification accuracy in many cases is relatively low, confirming the
challenges of email data, and pointing toward email foldering as an important area for
further research.

1. Introduction

In the past decade text categorization has been a highly popular machine learning applica-
tion. In addition to the standard problem of categorizing documents into semantic topics
(Lewis, 1992), a variety of other problem domains have been explored, including catego-
rization by genre (Finn et al., 2002), by authorship (Diederich et al., 2003) and even by
author’s gender (Koppel et al., 2003).

In the domain of personal email messages, text categorization methods have been widely
applied to the problem of spam filtering (see, e.g., Drucker et al., 1999). Other email related
problems have also been tackled, such as extracting email threads (Lewis and Knowles, 1997)
and automatically creating new folders (Giacoletto and Aberer, 2003). However, there has

1

been little study of categorizing email into folders—also termed “email foldering”. There
are only a few notable exceptions.

Payne and Edwards (1997) use a rule induction algorithm CN2 (Clark and Niblett,
1989) and a k nearest neighbor (k-NN) classifier for foldering their own email and argued
that CN2 outperforms k-NN on this task. Cohen (1996) considers a number of binary
classification problems of one folder vs. all the others; he compares his RIPPER classifier
(which also belongs to the rule induction family) with a tfidf classifier and demonstrates
RIPPER’s superior performance. However, Provost (1999) shows that the Naive Bayes
classifier can outperform RIPPER on the email classification task. Rennie (2000) uses the
Naive Bayes for constructing a real-world email foldering system that suggests three most
appropriate folders for each incoming message. With very high precision the desired folder
can be found among the three suggested ones, which dramatically simplifies the process
of manual foldering. Kiritchenko and Matwin (2001) first use the popular Support Vector
Machine (SVM) for the email classification task and show its advantage over the Naive Bayes
classifier. We extend the previous research work by comparing email classification results
of four classifiers (Maximum Entropy, Naive Bayes, SVM and Winnow), using original
evaluation methodology.

Email foldering is a rich and multi-faceted problem, with many difficulties that make it
different from traditional topic-based categorization. Email users create new folders, and
let other folders fall out of use. Email folders do not necessarily correspond to simple se-
mantic topics—sometimes they correspond to unfinished todo tasks, project groups, certain
recipients, or loose agglomerations of topics. It is also interesting to note that email content
and foldering habits differ drastically from one email user to another—so while automated
methods may perform well for one user, they may fail horribly for another.

Furthermore, email arrives in a stream over time, and this causes other significant
difficulties. Some email messages only make sense in the context of previous messages.
Occasionally all messages in a thread should go to the same folder, but other times the
topic in a thread drifts. The topic associated with a certain email folder can also shift over
time. For example, a folder about funding opportunities may at first contain only messages
about the National Science Foundation, but later only get new messages about industrial
partnerships, each of which may have very different word distributions. Ironically, in all
but one related work the temporal aspect of email is missed, only Segal and Kephart (2000)
apply the tfidf classifier in a time-based incremental setup for foldering email.

A likely reason that the problem of automatic email foldering has not drawn significant
attention in the research community is the fact that there has been no standard, publicly-
available real-world email dataset on which foldering methods could be evaluated, and on
which the work of multiple researchers could be compared.

However, a large corpus of real-world email messages subpoenaed from Enron Corpora-
tion was placed in the public record, and recently made available to researchers electron-
ically.1 The data consists of over 500,000 email messages from the email accounts of 150
people. Furthermore, a smaller but also significant corpus of real-world, foldered email has
been created as part of the CALO DARPA/SRI research project.2 This corpus contains
snapshots of the email folders of 196 users, containing approximately 22,000 messages.

1. http://www-2.cs.cmu.edu/∼enron/ and http://iesl.cs.umass.edu/data/enron
2. Cognitive Agent that Learns and Organizes (CALO): http://www.ai.sri.com/project/CALO

2

In a recent work, Klimt and Yang (2004) present some basic statistics on the Enron
dataset and provide useful insights on email classification and thread recognition on this
data. They report a classification result that is averaged over all the Enron users and
achieved on an unnatural 50/50 training/test split. Klimt and Yang’s work cannot be used
as a baseline for comparing various email classification methods.

In this paper we present a benchmark case study of email foldering on both the Enron
and SRI email datasets. We concentrate on foldering email of particular users and establish
a framework for further email foldering experiments. Our resulting graphs and preprocessed
portions of the Enron dataset are available online at http://www.cs.umass.edu/∼ronb/. We
provide a wide performance comparison across several popular classifiers: Maximum En-
tropy (MaxEnt), Naive Bayes (NB), Support Vector Machine (SVM), as well as an enhanced
variant of Winnow. To our knowledge, this paper is the first work in which MaxEnt and
Winnow are applied to email classification. We show that the Winnow classifier is not only
computationally attractive and easy to implement, but achieves surprisingly good results
on the email foldering task, in many cases achieving statistically similar performance as
the well-established SVM classifier. We provide detailed description of the enhancements
to Winnow used here. We also propose a novel evaluation method for classification per-
formance particularly appropriate to the email domain. The method involves dividing a
dataset into time-based data chunks and incrementally testing classification performance
on each chunk while training on all the previous chunks.

The rest of the paper is organized as follows: in Section 2 we state the email foldering
problem; in Section 3 we discuss various design choices for our experimental setup, and how
they differ from the standard text categorization setting; in Section 4 we briefly overview
the classifiers we apply; in Section 5 we describe the datasets used for evaluation; in Section
6 we report and discuss our results; finally, in Section 7 we conclude and outline some open
problems.

2. Problem statement

Let us define formally the email foldering problem, as a special case of the general text
categorization problem. We are given a training set Dtrain = {(d1, `1), . . . , (dn, `n)} of
labeled text documents, where each document di belongs to a document set D, and the
label `i of di is selected from a predefined set of categories C = {c1, . . . , cm}. The goal
of text categorization is to induce a learning algorithm that, given the training set Dtrain,
generates a classifier h : D → C that can accurately classify unseen documents.

The design of learning algorithms for text categorization involves solutions to three basic
subtasks:

• Document Representation: In most cases documents are represented as distribu-
tions over features, where features can be words (Dumais et al., 1998), sequences of
words (Caropreso et al., 2001), part-of-speech tags (Finn et al., 2002), word clusters
(Bekkerman et al., 2003), etc. Document representations usually undergo a transfor-
mation of dimensionality reduction (see, e.g., Yang and Pedersen, 1997).

• Classifier Induction: Various off-the-shelf classifiers have been applied to the text
categorization. We distinguish between classifiers that employ generative and dis-

3

criminative approach to classification. Many times it has been empirically shown
that discriminative classifiers outperform generative classifiers on the topic-based text
categorization task (see, e.g., Dumais et al., 1998).

• Model Selection: Once a document is represented in the form convenient for classifi-
cation and the appropriate classifier is chosen, various parameters of the system, such
as the type of kernel to use for an SVM, need be specified. The categorization results
strongly depend on the parameters tuned, and can vary from very low performance
if the parameter values do not fit the task to almost perfect performance in certain
cases.

We suggest one particular choice of the document representation, then focus on the in-
duction of various classifiers, and briefly discuss essential model selection issues. In addition
to applying four classifiers and providing benchmark classification results, we propose a new
evaluation method for email foldering.

3. Design choices

There is a large number of design choices in how to set up the email foldering task. In this
section we explain our decisions on the major issues. Raw email datasets are often messy
and unstructured, and the Enron and SRI datasets are no exception. A large amount of
cleaning, preprocessing and organization steps should be taken before training classifiers.
The issue of performance evaluation also need to be resolved, because (as discussed in
Section 1) standard evaluation methods are not appropriate for the email foldering task.

3.1 Removal of non-topical folders

A folder is considered to be non-topical if email messages are stored in this folder regardless
of their content. This category includes folders such as Inbox, Sent, Trash, and Drafts. We
believe it makes more sense to remove the non-topical folders, because no automatic system
is going to assist the user in classifying messages into these folders. Non-topical folders
belong to three main categories:

• Automatically created folders of an email application (such as “Sent Items” of MS
Outlook or “sent-mail” of Pine).

• Archiving folders that are standard for all the users of a certain organization (such as
“all documents” and “discussion threads” that can be found in the folder hierarchies
of all former Enron employees).

• Archiving folders that are created by a particular user. This can be the case, for
example, if the user is currently unable to cope with the email stream and decides to
put aside a certain portion of the incoming email for further processing.

We remove all the non-topical folders of the first two types. We do not remove folders of
the third type because it requires familiarity with the foldering strategy that differs from
one user to another. For more detail, see Section 5.

4

3.2 Removal of small folders

Folders with a small number of messages are fairly common, and it is expected that a user
would especially want automatic categorization to work with these folders. However, the
folders must contain enough messages to provide training examples for the classifiers. In
our setting, we ignore folders that contain only one or two messages.

3.3 Training/test set splits

In many classification settings, the standard training/test split is done uniformly at random.
However, in practice email datasets are constantly growing over time, so random splits may
create unnatural dependencies of earlier email on later email. Thus, a more reasonable split
would be the one that is based on time: train on earlier email, and test on later email. This
approach is employed in (Klimt and Yang, 2004): the classifier is trained on the early half
of the email directory and then tested on the later half. A serious problem of this approach
can arise when the test set is large: topics discussed in email far in the future may have
nothing in common with the email the classifier was trained on. Another problem occurs
when some of the folders in the test set did not exist at training time. Still another problem
is in designing the training/test splits for assessing statistical significance of the foldering
results.

In this paper, we propose an incremental time-based split: after sorting the messages
according to their time stamp, we train a classifier on the first N messages and test it on
the following N messages, then train on the first 2N messages and test on the following N
messages etc., until we finally train on the first (K − 1)N messages and test on the rest of
the messages (where K is the number of dataset splits). This approach provides a practical
and intuitively clear split of the data that allows us to monitor the classifiers’ performance
as the number of messages increases over time. We ignore test messages in folders that do
not exist in the training data. We use N = 100 for Enron datasets and N = 50 for SRI
datasets.

To address the problem of achieving statistically significant classification results using a
time-based evaluation method, we propose to average the results over all the training/test
set splits. Intuitively, such averaging might appear inadequate, because we expect the sys-
tem to improve its performance as the training set grows, but in practice this improvement
is unlikely to occur (see Figures 1 and 3), which justifies the applicability of our averaging
approach.

Our evaluation method differs from the one proposed by Segal and Kephart (2000), who
apply an incremental classification procedure with N = 1. Such an approach, while legiti-
mate, is not computationally feasible for large datasets. This approach is also impractical
in real world applications: since a classifier induction is a resource consuming task, the
classifier would unlikely be retrained after every single email message is foldered.

Another design possibility could be to employ time-periodic data chunks, e.g., train on
email of the first day and test on email of the second day, then train on email of the first
two days and test on email of the third day etc. This approach suffers from the problem of
(unexpected) bursts of activity (see Kleinberg, 2002): if one day a user receives the amount
of email he or she normally receives in an entire week, the time-periodic split may cause
undesired anomalies.

5

3.4 Feature construction

There are many design choices in the feature construction. In this paper, we use the
traditional bag-of-words document representation: messages are represented as vectors of
word counts. We consider words as sequences of alphabetic, digit and underscore characters
appearing anywhere in the email header or body. Words are downcased, 100 most frequent
words and words that appear only once in the training set are removed, and the remaining
words are counted in each message to compose a vector. We remove MIME attachments
and do not apply stemming.

In future work, richer representations could be considered, including the following:

• Different sections of each email can be treated differently. For example, the system
could create distinct features for words appearing in the header, body, signature,
attachments, etc. Klimt and Yang (2004) consider the From, To and CC fields of the
message headers and advocate the importance of using features out of the From field.

• Named entities may be highly relevant features. It would be desirable to incorporate
a named entity extractor (such as MinorThird3, see, e.g., Cohen and Sarawagi (2004))
into the foldering system.

3.5 Evaluation measure and confidence ranking

We use traditional classification accuracy4 as our evaluation method. However, in a general
case, email messages can with certain probability belong to multiple folders, so it would
be beneficial not to directly assign a message into one folder but rather to rank folders
according to a confidence measure of the message belonging to each of these folders. This
approach is used by Rennie (2000) in his ifile foldering system. When such ranking is
obtained, the system can receive full credit if the correct folder is found among a number
of top-ranked choices. The application of a ranking method depends entirely on the use
scenario, e.g., will users read all their email from a common Inbox, performing foldering on
demand, or would we like the system to automatically route messages to different folders
so the user can read them by category? In either scenario, the importance of the issue
of ranking should not be neglected. Our experimental results provide a baseline for the
foldering scheme that involves ranking: we plot foldering accuracy as a function of the test
set coverage (see Section 6.1).

3.6 Other design choices

Other design choices include:

• Hierarchical vs. flat foldering. The hierarchy of email folders can potentially
be exploited to provide a flexible evaluation criterion. For example, the penalty for
classifying a message into an incorrect folder can be less if the correct folder is “nearby
in the hierarchy”. We believe however that users may have high expectations of
finding messages on a given topic in a single folder—without having to hunt in nearby

3. http://minorthird.sourceforge.net
4. Ratio of correctly classified instances to the total number of instances in the test set.

6

folders. To meet these expectations, we flattened the folder hierarchies of the datasets
we use. For example, if a particular user has two top-level folders each containing two
subfolders, we generate a flat structure of six folders (two of them corresponding to
the top-level folders and the remaining four corresponding to their subfolders).

• Personal vs. corporative email. Email foldering can potentially be applied to a
dataset that consists of email directories of a number of users, or alternatively to an
email directory of one user only. In practice, due to security and privacy reasons,
a software system is unlikely to have access to email directories of different users.
Furthermore, this is unclear how to conjoin the foldering schema of multiple users. In
our experiments we deal with email of each individual user separately.

We notice that the majority of email directories in both datasets are extremely small,
which makes it difficult to do performance comparisons that are of statistical signif-
icant value. Therefore, from each of the two datasets we select seven users with the
largest email directories.

4. Classification procedure

We test three standard classifiers on the email foldering task: Maximum Entropy, Naive
Bayes, and Support Vector Machine (SVM). We also present wide-margin Winnow—a vari-
ant of the Winnow classifier that demonstrates very promising results on this task. We
implement Maximum Entropy, Naive Bayes and Winnow classifiers as a part of the Mal-
let5 software system, and we use the SVMlight package6 by Thorsten Joachims for our
Support Vector Machine classifier.

4.1 Maximum Entropy

The Maximum Entropy approach models the class-conditional distribution with the most
uniform one that satisfies constraints given by the training set. Pietra et al. (1997) show
that the unique distribution that both satisfies the constraints in the training data and has
the maximum entropy belongs to the exponential family, having the form:

p(cj |di) =
1
Zd

exp

(∑

k

λkfk(di, cj)

)
, (1)

where Zd is the normalization factor that depends on the document, fk is a feature, and
λk is the weight or relevance of the feature. When training a maximum entropy classifier,
the goal is to find the weights λi that give good performance on the training data. The
likelihood function is convex, so the λi parameters can be estimated by a gradient-climbing
algorithm. In our experiments, we use a quasi-Newton method called BFGS (Byrd et al.,
1996).

The maximum entropy classifier finds the maximum likelihood parameters λi, so it
suffers from overfitting when the size of the training data is small (such as when a new
folder is created) or when data is sparse (which is in general true for the text domain

5. http://mallet.cs.umass.edu
6. http://svmlight.joachims.org

7

(Nigam et al., 1999)). To alleviate this problem, we specify a prior distribution for the
values of each λi and perform choose the λi via maximum a posteriori estimation. We use
the common Gaussian distribution with a diagonal covariance matrix as the prior. We also
apply the independence assumption and set the variance to 1.0 for all the λi’s:

p(Λ) =
∏

i

1√
2π

exp
(−λ2

i

2

)
. (2)

4.2 Naive Bayes

The Naive Bayes classifier is commonly used to provide a baseline in text categorization.
While applying Bayes rule, a document di is assigned to category cj0 if

j0 = arg max
j=1,...,m

P (cj |di, θ) = arg max
j=1,...,m

P (cj |θ)P (di|cj , θ). (3)

The likelihoods P (di|cj , θ) are computed using the (naive) independence assumption P (di|cj , θ) =∏|di|
k=1 P (wk|cj , θ), where w1, ..., w|di| are words of the document di. The parameters θ are

estimated from the training set, usually using a multinomial or a multiple Bernoulli model.
For more details, we refer the reader to McCallum and Nigam (1998) and Rennie (2001).
In our experiments we use the multinomial model with Laplace smoothing (adding one to
the count of each word in each class), a common practice for text categorization.

4.3 Support Vector Machine

The Support Vector Machine (Boser et al., 1992) is a highly popular vector-space classifi-
cation method broadly used for text categorization (see, e.g., Joachims, 2002). SVMs are
usually considered in a framework of binary classification. In multiclass settings, the clas-
sification problem is usually decomposed to multiple binary subproblems by observing one
class vs. all the others. The goal of the two-class SVM is to induce a maximum-margin
hyperplane that separates training instances from the two classes: document d is assigned
a label y = {−1, 1} if

y = sign

(
l∑

i=1

vi〈d, di〉+ b

)
, (4)

where the slope of the separating hyperplane 〈w, di〉+b is represented as a linear combination
w =

∑l
i=1 vidi of support vectors {di|i = 1, . . . , l} that lie on the margin. Parameters vi

are learned on the training set using a quadratic programming algorithm. The dot product
〈d, di〉 can be generalized to basically any function of the input feature space, such as
arbitrarily high dimensional polynomials that induce feature conjunctions. The strength
of SVMs is its ability to compute such distance measures efficiently, via what is called the
kernel trick.

We use a simple linear kernel (which has proved its effectiveness on the text classification
task) and specify SVM parameters c (trade-off between training error and margin) and j
(cost-factor, by which training errors on positive examples outweigh errors on negative
examples). We fix c = 0.01 (chosen based on general past experience, see Bekkerman et al.
(2003)), and choose j among the integers 1-5 on a validation set for each training/test split.

8

4.4 Wide-Margin Winnow

Winnow (Littlestone, 1988) belongs to the family of on-line learning algorithms, which
means that it attempts to minimize the number of incorrect guesses during training as
training examples are presented to it one at a time. It has several important theoretical
properties, including the ability to easily handle domains with sparse data and high di-
mensionality, such as text classification (Blum, 1996). Winnow is similar to a perceptron
(Rosenblatt, 1958) in that it attempts to construct a linear separator (i.e., a weight vector)
for each class. In fact, Winnow is guaranteed to find a linear separator if it exists. It
differs from the perceptron by doing multiplicative updates instead of additive updates of
the weight vectors during training.

The multi-class implementation of the Winnow algorithm we present here (called Wide-
Margin Winnow) is derived from Avrim Blum’s implementation at WhizBang! Labs. It
contains flavors of the linear-max Winnow in Mesterharm (2003) and the the θ-range two-
class version of Winnow in Dagan et al. (1997). Our version differs from those algorithms
in its update rules, its feature set used7, and its set of tunable parameters, which we now
describe. Let c be the number of classes, m the size of the feature space, and n the
number of training examples. We keep (m + 1)-dimensional weight vectors w1, ..., wc, each
initialized to contain all 1’s. Given a new example (x, y), Winnow guesses its label to be
j = arg maxi=1,...,c{wi·x}. It performs t passes through the training set, adjusting the weight
vectors when it guesses incorrectly (i.e., j 6= y). We adjust the weight vectors by increasing
wy and decreasing wj at those coordinates where x has non-zero feature values. The amount
by which we adjust the weights depends on how many passes we have made through the
training data: during the p-th pass, we increase weight wi,f by setting wi,f ← wi,f (1 + εαp)
or decrease it by setting wi,f ← wi,f (1− εαp) (one can think of α as the cooling rate).

In addition, as an attempt to disambiguate all training examples, we use the following
heuristic to keep wide margins between classes: instead of only adjusting weight vectors
after an incorrect guess during training, we also adjust the weights when it “barely” gets
the correct answer (i.e., when j = y but the ratio between the largest and second largest
dot products is below δ. One final detail is that when we compute dot products, the vector
x is augmented with an additional (m + 1)-st “feature” whose value is always set to 1.0.
This is used to make Winnow classify test examples as the largest class seen during training
time in the degenerate case when there are no relevant features (i.e., when every feature is
present or absent 50% of the time regardless of the true class label). In our experiments,
we set t = 5, ε = 0.5, α = 0.5, and δ = 0.5. The pseudo-code of our implementation of
Winnow is presented as Algorithm 1.

5. Datasets

We present results on two datasets: Enron and SRI. In this section we describe these two
datasets and provide some basic statistics on their content.

7. We treat features as binary: if a feature has a non-zero value, we treat it as having the value 1.

9

Input: {(xk, yk)|k = 1, ..., n} is training set
ε is weight adjustment rate
α is the cooling rate
δ is the confidence measure

Output: w1, ..., wc are (m + 1)-dimensional weight vectors for each category
Initialize vectors w1, ..., wc to all 1’s
for p ← 1 to t do

for k ← 1 to n do
j ← argmaxi=1,...,c{wi · xk}
j′ ← argsecondmaxi=1,...,c{wi · xk}
if j 6= y then

wy,f ← wy,f (1 + εαp) at those coordinates f where xk is non-zero
wj,f ← wj,f (1− εαp) at those coordinates f where xk is non-zero

else if wy · xk < δwj′ · xk then
wy,f ← wy,f (1 + εαp) at those coordinates f where xk is non-zero
wj′,f ← wj,f (1− εαp) at those coordinates f where xk is non-zero

end if
end for

end for
Given an unseen example x, guess its label to be argmaxi=1,...,cwi · x

Algorithm 1: The Wide-Margin Winnow algorithm

5.1 Enron Email Dataset

The archived email from many of the senior management of Enron Corporation was subpoe-
naed, and is now in the public record. The dataset is provided by SRI after major clean-up
and removal of attachments. The dataset version we use was released on February 3, 2004.

Although the size of the dataset is large, many users’ folders are sparsely populated. We
use the email directories of seven former Enron employees that are especially large: beck-s,
farmer-d, kaminski-v, kitchen-l, lokay-m, sanders-r and williams-w3. Each of these users
has several thousand messages, with beck-s having more than one hundred folders.

We remove the non-topical folders “all documents”, “calendar”, “contacts”, “deleted items”,
“discussion threads”, “inbox”, “notes inbox”, “sent”, “sent items” and “ sent mail”. We
then flatten all the folder hierarchies and remove all the folders that contain fewer than
three messages. We also remove the X-folder field in the message headers that actually
contains the class label. Table 1 shows statistics on the seven resulting datasets.

5.2 SRI Email Dataset

From the February 2, 2004 snapshot of the SRI CALO directories, we select seven users with
the largest number of messages: acheyer, bmark, disrael, mgervasio, mgondek, rperrault,
and vchaudri. As in the preprocessing step of the Enron datasets, standard non-topical
folders (“Inbox”, “Drafts”, “Sent” and “Trash”) are ignored, the folder hierarchy is flat-
tened, and folders that contain fewer than three messages are removed. Table 2 contains
statistics on the resulting datasets.

10

Table 1: Statistics on Enron datasets—after removing non-topical and small folders.
User Number Number Size of Size of Size of Size of

of of smallest largest smallest largest
folders messages folder folder message message

(messages) (messages) (words) (words)

beck-s 101 1971 3 166 45 2620
farmer-d 25 3672 5 1192 43 3507

kaminski-v 41 4477 3 547 44 7885
kitchen-l 47 4015 5 715 47 46296
lokay-m 11 2489 6 1159 45 4456
sanders-r 30 1188 4 420 55 19331

williams-w3 18 2769 3 1398 49 2287

Table 2: Statistics on SRI datasets—after removing non-topical and small folders.
User Number Number Size of Size of Size of Size of

of of smallest largest smallest largest
folders messages folder folder message message

(messages) (messages) (words) (words)

acheyer 38 664 3 72 233 26682
bmark 15 268 4 32 228 26682
disrael 13 244 3 47 260 5947

mgervasio 15 777 6 116 214 17606
mgondek 14 297 3 94 214 26682
rperrault 38 751 3 197 252 26682
vchaudhri 10 558 8 205 292 26454

6. Results and Discussion

We apply Maximum Entropy (MaxEnt), Naive Bayes (NB), Support Vector Machine (SVM),
and Winnow classifiers to each of the Enron and SRI datasets. We use the time-based train-
ing/test splits described in Section 3.3.

6.1 Experimental Setup

We report on two types of experiments:

• Timeline. We calculate the accuracy for each training/test split and plot the accu-
racy curve over the number of training messages in the splits. If a test set contains
messages of a newly created folder, so that no messages of this folder have been seen
in the training data, then such test messages are ignored in the accuracy calculation.

• Coverage. Accuracy is plotted over the percentage of test set coverage. This result is
averaged over all the training/test set splits: for each split, after performing the actual
classification, we first sort all the test messages according to a classification score8 and
then threshold the sorted list so that the first 10%, 20%, . . . , 100% of messages are
chosen. We then calculate the accuracy at each of the ten thresholds and average the

8. To compute the score, we use the probability of a message belonging to the folder for MaxEnt and Naive
Bayes. For SVM, we use the (euclidian) distance to the classification hyperplane. For Winnow, we use
the dot products between the examples and the learned weight vector of each class.

11

accuracies at each threshold over all training/test set splits. We present the mean
accuracy and standard error at each threshold.

6.2 Results

Results on the seven Enron datasets are reported as the accuracy over the timeline in
Figure 1 where the X-axis is the training set size. Figure 2 shows the accuracy-coverage
curves, averaged over all the training/test set splits where the X-axis is the test set coverage.
Error bars represent the standard error of the mean. Figure 3 and Figure 4 are analogous
graphs for the SRI dataset. Table 3 summarizes the final results.

To assess statistical significance of the results, for each pair of classifiers we performed
the paired-t test on accuracies obtained from all the training/test splits. We present in
Table 4 the classifier rankings for each dataset.

Table 3: Final results on SRI and Enron datasets – accuracies averaged over all the train-
ing/test splits, with the standard error of the mean. Depending on the level of
complexity and homogeneity of each test set, the classification performance can
significantly vary, causing relatively large standard errors for the averaged results.

Enron user MaxEnt Naive Bayes SVM Wide-margin Winnow

beck-s 55.8± 2.2 32.0± 1.9 56.4± 2.1 49.9± 1.9
farmer-d 76.6± 1.3 64.8± 1.7 77.5± 1.3 74.6± 1.3

kaminski-v 55.7± 1.5 46.1± 1.9 57.4± 1.6 51.6± 1.5
kitchen-l 58.4± 1.6 35.6± 2.5 59.1± 1.5 54.6± 1.7
lokay-m 83.6± 0.9 75.0± 1.2 82.7± 1.0 81.8± 0.9
sanders-r 71.6± 4.5 56.8± 6.2 73.0± 4.3 72.1± 4.4

williams-w3 94.4± 2.3 92.2± 2.9 94.6± 2.1 94.5± 1.7

SRI user MaxEnt Naive Bayes SVM Wide-margin Winnow

acheyer 37.1± 2.2 27.0± 2.1 38.5± 2.5 37.0± 3.6
bmark 23.3± 8.2 13.5± 2.8 24.3± 7.1 23.9± 4.2
disrael 36.5± 5.5 36.5± 5.4 40.7± 5.9 41.4± 7.0

mgervasio 42.2± 5.1 31.3± 5.0 43.5± 4.5 50.3± 5.2
mgondek 75.2± 4.0 55.8± 6.2 75.2± 3.7 74.9± 5.1
rperrault 66.4± 4.1 49.8± 3.7 68.1± 3.5 62.7± 4.0
vchaudhri 61.1± 3.3 58.7± 4.7 58.6± 3.0 62.7± 3.5

6.3 Discussion

From Table 4, we see that MaxEnt, SVM and Winnow perform similarly on all the SRI
datasets. On the Enron datasets, SVM demonstrates the highest accuracies, followed by
MaxEnt, then wide-margin Winnow. Despite that, the kaminski-v dataset is the only
dataset on which the prevalence of SVM over all the other classifiers is statistically sig-
nificant.9 In three cases (users disrael, mgervasio and vchaudhri of the SRI collection),
wide-margin Winnow outperforms SVM—by notable 7% in the case of mgervasio, but the

9. Notably, the kaminski-v dataset is the largest one among all the fourteen datasets discussed in this paper.

12

Table 4: Results of performing paired-t tests on final results of SRI and Enron datasets
ranking the accuracies averaged over all the training/test splits for Naive Bayes
(NB), MaxEnt (ME), SVM, and wide-margin Winnow (WW). Each row ranks the
classifiers from worst to best, with ∼, <, and ¿ denoting P > 0.05, 0.01 < P
≤ 0.05, and P ≤ 0.01. All ∼ notations of are transitive except for the lokay-m
dataset, where MaxEnt outperforms wide-margin Winnow with 0.01 < P ≤ 0.05.

Enron user Comparison of classifiers

beck-s NB ¿ WW ¿ ME ∼ SVM
farmer-d NB ¿ WW < ME < SVM

kaminski-v NB ¿ WW ¿ ME ¿ SVM
kitchen-l NB ¿ WW ¿ ME ∼ SVM
lokay-m NB ¿ WW ∼ SVM ∼ ME
sanders-r NB ¿ ME ∼ WW ∼ SVM

williams-w3 NB ¿ ME ∼ WW ∼ SVM

SRI user Comparison of classifiers

acheyer NB ¿ WW ∼ ME ∼ SVM
bmark NB ∼ ME ∼ WW ∼ SVM
disrael NB ∼ ME ∼ SVM ∼ WW

mgervasio NB < ME ∼ SVM ∼ WW
mgondek NB < WW ∼ ME ∼ SVM
rperrault NB ¿ WW ∼ ME ∼ SVM
vchaudhri NB ∼ SVM ∼ ME ∼ WW

difference is not statistically significant. On the lokay-m dataset, MaxEnt shows the best
performance, but again the difference is not statistically significant.

In eleven out of the fourteen cases, the Naive Bayes classifier is significantly inferior to
the other three classifiers. It is widely believed that Naive Bayes is not the optimal solution
for text categorization (see, e.g., (Dumais et al., 1998)). However, the performance of Naive
Bayes could likely be improved by applying feature selection and/or a more sophisticated
smoothing method than Laplace.

The experimental results presented support the following observations:

• Accuracies are higher on datasets that have one or two dominant folders. As it can be
seen from Tables 1 and 2, in some cases the size of the largest folder is up to one half
of the entire dataset size (see, e.g., statistics on lokay-m and vchaudhri). Obviously,
this facilitates the classification process.

• Newly created folders adversely affects the classification accuracy. When a new folder
is created, it is represented in the training set by just a few instances. Obviously, they
do not capture the essence of the folder, so test instances of this class are likely to be
misclassified.

Generally speaking, the timeline curves show unstable, spiky behavior. One might
expect the classification performance improve when the training set size increases, but this
rarely happens in practice. It can be explained by the observation that email is usually

13

related to other recently received email, rather than to email received long ago. Thus, old
email in the training set probably does not affect the classification procedure.

The classification results are surprisingly low. They show the real complexity of the
task of categorizing email, as opposed to the regular topical text classification. They are
obtained on the realistic time-based evaluation setup. If we applied random training/test
splits (method that is standard for the regular text classification), we would obtain much
higher results. For example, on the acheyer dataset we can obtain 65.8 ± 2.3% accuracy
using 4-fold cross validation, while on time-base splits we can only achieve 38.5± 2.5%.

6.3.1 Dataset phenomena

The williams-w3 dataset is a special, degenerative case of an email dataset. It basically
consists of only two large folders, named “bill williams iii” and “schedule crawler”, which
appear to be archives that contain various types of messages. The former folder contains
most of early messages, while the latter one contains almost all the later messages. Obvi-
ously, classification with one most probable class is an easy task, which explains why the
accuracies are so high. At the point of 1300 messages one archive is exchanged with another,
causing a serious drop in the performance.

We notice an interesting phenomenon in the sanders-r dataset. The performance of the
classifiers are significantly worse when the training sets are large (1000 and 1100 instances).
There are two different reasons for this drop: at point 1000 a new folder is created that dom-
inates in the test set, while at point 1100 an old folder that has been practically abandoned
for two years returns to focus again, probably with new, unrelated topics discussed.

We also notice that worse accuracy is sometimes paradoxically obtained at low coverage
rather than at higher coverage (see, e.g. coverage graphs of sanders-r and rperrault). Such
behavior is a result of creating new folders. When a new folder is created, in case of the
SVM for example, the classification hyperplane is not yet adjusted for the new class, so
the (misclassified) test messages of the new folder accidentally fall far from the hyperplane.
Classification of such messages accidentally becomes very confident, which implies that they
are taken into account at low coverage. When averaging over all the splits, these rare but
steep drops thus affect the overall accuracy and the standard error at low coverage. We
can conclude from the above that the considered classifiers generally are not robust to
non-stationary data.

One strange artifact of the Enron dataset is that, if a folder at some time point was
moved from one place to another in the foldering hierarchy, the dataset preserves both
versions of this folder. For instance, the significant drop in the foldering accuracy at point
500 in timeline of the beck-s dataset is primarily caused by this phenomenon: two folders
global/japan and japan appear to be the same folder that had been relocated.

6.3.2 Running time

When considering the running time of the three equally accurate classifiers (MaxEnt, SVM
and Winnow), we note that Winnow is by far the fastest classifier of the three. It takes no
more than 1.5 minutes to train even on largest training sets. SVM training time is more
than an order of magnitude slower (which still is not prohibitive), however, our model selec-
tion method requires classifier retraining (see Section 4), significantly slowing the process.

14

Training SVM can take up to half an hour, and it is almost independent of the size of
the training set. MaxEnt training is very time consuming, in some cases (such as kitchen-l
dataset) one MaxEnt classifier training takes two hours, and the training time is signifi-
cantly dependent on the training set size. The Naive Bayes classifier is the fastest of all the
classifiers we used, but, as has already been mentioned, its accuracy is significantly lower.
Note that in order to obtain the results presented in Figures 1-4, several classifiers were
trained (one classifier per each training/test set split).

6.3.3 Ablation experiments

To compare our version of the Winnow classifier to the one described in (Hurst and Nigam,
2003), we present the accuracies of the two versions in Table 5. As one can see from
the table, wide-margin Winnow outperforms regular Winnow by a large and statistically
significant margin. We note that most of the improvements come from simply iterating
through the data several times to stabilize the learned weight vector.

The only datasets for which wide-margin Winnow does not perform statistically signifi-
cantly better than regular Winnow are williams-w3 and bmark. The williams-w3 dataset is
a degenerate case, as described in Section 6.3.1, leading to extremely high accuracies on all
classifiers we trained. The bmark dataset is one of the smallest and the most problematic
dataset among the fourteen presented in this paper. All the four classifiers perform poorly
on this dataset (less than 25% averaged accuracy with high standard error), leading to
statistical insignificance in the difference between the results.

Table 5: Final results on SRI and Enron datasets comparing plain Winnow with wide-
margin Winnow. Each entry is the average accuracy ± the standard error. Results
at entries marked by †(‡) are statistically significantly better at the 0.05 (0.01) level
from a paired t test.

Enron user Winnow Wide-margin Winnow

beck-s 22.6± 2.6 49.9± 1.9‡
farmer-d 64.6± 2.2 74.6± 1.3‡

kaminski-v 30.9± 2.1 51.6± 1.5‡
kitchen-l 42.8± 2.9 54.6± 1.7‡
lokay-m 62.3± 3.2 81.8± 0.9‡
sanders-r 56.1± 7.3 72.1± 4.4†

williams-w3 94.8± 2.5 94.5± 1.7

SRI user Winnow Wide-margin Winnow

acheyer 22.2± 3.2 37.0± 3.6‡
bmark 18.2± 7.8 23.9± 4.2
disrael 13.6± 3.3 41.4± 7.0‡

mgervasio 33.5± 6.0 50.3± 5.2‡
mgondek 55.6± 7.2 74.9± 5.1†
rperrault 47.8± 5.9 62.7± 4.0‡
vchaudhri 48.8± 4.7 62.7± 3.5‡

15

7. Conclusion

Email foldering is a rich and interesting task. It differs from the standard (topical) text
classification in its highly subjective and non-monotonic foldering schema. Folders are
constantly being created and abandoned, becoming more active and less active, and even
their major common topics are changing over time. In addition, users tend to folder some
messages by sender, some by event, some by date and in many cases the logic behind a
certain foldering choice can be difficult to discern. Therefore, an email foldering system
should be adaptive to the working style of individual users.

The Enron Email dataset for the first time makes available a large real-world collection
for shared experimentation with email. In this paper we have proposed an easy and intuitive
framework for comparing email foldering results. Preprocessed datasets of the seven former
Enron employees are ready for download from http://www.cs.umass.edu/∼ronb.

Standard evaluation techniques based on random training/test set splits are not ap-
plicable to the foldering task, because of the time-dependent nature of the data. More
appropriate (but more complicated) methods are to be used for the evaluation. We have
proposed the step-incremental time-based split that provides a realistic evaluation setup
and allows us to examine the statistical significance of the foldering results.

We have applied four classifiers for the email foldering task: Maximum Entropy, Naive
Bayes, Support Vector Machine and Winnow. We have presented a new version of the
Winnow algorithm and provided detailed information about its implementation. When
comparing the four classification techniques on email foldering, we have shown that a fast
and simple-to-implement Winnow classifier performs not worse and even sometimes insignif-
icantly better than the more popular and more complex-to-implement SVM and MaxEnt
methods.

With respect to the problem difficulty, we note that the obtained foldering accuracies
are relatively low: in nine of fourteen cases they are below 70%. There is much room to
improve the baseline. Sophisticated methods should be applied to the email foldering task.
Interesting avenues for future investigation include relational methods (Getoor et al., 2001),
Topic Detection and Tracking (Allan, 2002) and feature induction techniques (Bekkerman
et al., 2003; McCallum, 2003).

Acknowledgements

We are grateful to Avrim Blum for providing implementation notes and many helpful details
of the Winnow algorithm. This work was supported in part by the Center for Intelligent In-
formation Retrieval, in part by the Defense Advanced Research Projects Agency (DARPA),
through the Department of the Interior, NBC, Acquisition Services Division, under contract
number NBCHD030010. and in part by AFRL under contract number F30602-01-2-0566.
The U.S. Government is authorized to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright notation hereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements either expressed or implied, of AFRL or the
U.S. Government.

16

References

J. Allan. Topic Detection and Tracking, Event-based Information Organization, chapter 1,
pages 1–16. Kluwer Academic Publishers, 2002.

R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs.
words for text categorization. Journal of Machine Learning Research, 3:1183–1208, 2003.

A. Blum. Online Algorithms: The State of the Art, chapter On-line Algorithms in Machine
Learning. Springer, 1996.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
Fifth Annual Workshop on Computational Learing Theory, pages 144–152, 1992.

R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices
and their use in limited memory methods. Technical Report NAM-03, Northwestern
University, 1996.

M. F. Caropreso, S. Matwin, and F. Sebastiani. A learner-independent evaluation of the
usefulness of statistical phrases for automated text categorization. In A. G. Chin, editor,
Text Databases and Document Management: Theory and Practice, pages 78–102. 2001.

P. Clark and T. Niblett. The cn2 induction algorithm. Machine Learning, 3(4):261–283,
1989.

W. W. Cohen. Learning rules that classify e-mail. In Proceedings of AAAI Spring Sympo-
sium on Machine Learning and Information Retrieval, 1996.

W. W. Cohen and S. Sarawagi. Combining semi-markov extraction: Exploiting dictionaries
in named entity extraction:. In Proceedings of SIGKDD’04, 10th ACM International
Conference on Knowledge Discovery and Data Mining, 2004.

I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization. In
Proceedings of EMNLP’97, 2nd Conference on Empirical Methods in Natural Language
Processing, pages 55–63, 1997.

J. Diederich, J. L. Kindermann, E. Leopold, and G. Paaß. Authorship attribution with
support vector machines. Applied Intelligence, 19(1/2):109–123, 2003.

H. Drucker, V. Vapnik, and D. Wu. Support vector machines for spam categorization. IEEE
Transactions on Neural Networks, 10(5):1048–1054, 1999.

S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proceedings of CIKM’98, 7th ACM Interna-
tional Conference on Information and Knowledge Management, pages 148–155, Bethesda,
US, 1998.

A. Finn, N. Kushmerick, and B. Smyth. Genre classification and domain transfer for
information filtering. In F. Crestani, M. Girolami, and C. J. van Rijsbergen, editors,
Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research,
pages 353–362, Glasgow, UK, 2002.

17

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of rela-
tional structure. In Proceedings of ICML’01, 18th International Conference on Machine
Learning, 2001.

E. Giacoletto and K. Aberer. Automatic expansion of manual email classifications based
on text analysis. In Proceedings of ODBASE’03, the 2nd International Conference on
Ontologies, Databases, and Applications of Semantics, pages 785–802, 2003.

M. F. Hurst and K. Nigam. Retrieving topical sentiments from online document collections.
In Proceedings of the 11th Conference on Document Recognition and Retrieval, pages 27–
34, 2003.

T. Joachims. Learning to Classify Text using Support Vector Machines. Kluwer Academic
Publishers, Dordrecht, NL, 2002.

S. Kiritchenko and S. Matwin. Email classification with co-training. In Proceedings of the
2001 Conference of the Centre for Advanced Studies on Collaborative Research, 2001.

J. Kleinberg. Bursty and hierarchical structure in streams. In Proceedings of SIGKDD’02,
8th ACM International Conference on Knowledge Discovery and Data Mining, 2002.

B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification research.
In Proceedings of ECML’04, 15th European Conference on Machine Learning, pages 217–
226, 2004.

M. Koppel, S. Argamon, and A. R. Shimoni. Automatically categorizing written texts by
author gender. Literary and Linguistic Computing, 17(4), 2003.

D. D. Lewis. Representation and learning in information retrieval. PhD thesis, Department
of Computer Science, University of Massachusetts, Amherst, US, 1992.

D. D. Lewis and K. A. Knowles. Threading electronic mail: a preliminary study. Information
Processing and Management, 33(2):209–217, 1997.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear threshold
algorithm. Machine Learning, 2(4):245–318, 1988.

A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings of
UAI’03, 19th Conference on Uncertainty in Artificial Intelligence, 2003.

A. McCallum and K. Nigam. A comparison of event models for naive bayes text clas-
sification. In Proceedings of AAAI-98 Workshop on Learning for Text Categorization,
1998.

C. Mesterharm. Using linear-threshold algorithms to combine multi-class sub-experts. In
Proceedings of ICML’03, 20th International Conference on Machine Learning, pages 544–
551, 2003.

K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classification.
In Proceedings of IJCAI’99, Workshop on Machine Learning for Information Filtering,
pages 61–67, 1999.

18

T. R. Payne and P. Edwards. Interface agents that learn: An investigation of learning issues
in a mail agent interface. Applied Artificial Intelligence, 11(1):1–32, 1997.

S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

J. Provost. Naive-bayes vs. rule-learning in classification of email. Technical Report AI-
TR-99-284, University of Texas at Austin, Artificial Intelligence Lab, 1999.

J. Rennie. ifile: An application of machine learning to e-mail filtering. In Proceedings of
KDD’2000 Workshop on Text Mining, 2000.

J. Rennie. Improving multi-class text classification with naive bayes. Master’s thesis,
Massachusetts Institute of Technology, 2001.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65(6):386–408, 1958.

R. Segal and J. Kephart. Incremental learning in swiftfile. In Proceedings of ICML-00, 17th
International Conference on Machine Learning, 2000.

Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categoriza-
tion. In D. H. Fisher, editor, Proceedings of ICML’97, 14th International Conference on
Machine Learning, pages 412–420, Nashville, US, 1997. Morgan Kaufmann Publishers,
San Francisco, US.

19

200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

beck−s

MaxEnt
NB
SVM
Winnow

500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

farmer−d

MaxEnt
NB
SVM
Winnow

500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

kaminski−v

MaxEnt
NB
SVM
Winnow

500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

kitchen−l

MaxEnt
NB
SVM
Winnow

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

lokay−m

MaxEnt
NB
SVM
Winnow

100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

sanders−r

MaxEnt
NB
SVM
Winnow

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

williams−w3

MaxEnt
NB
SVM
Winnow

Fig. 1. Timeline results on Enron datasets.
Interestingly, results on some datasets do actually
show a tendency of improvement over time. Such
dataset is kaminski-v, and such are to some extent
beck-s and sanders-r. The williams-w3 dataset
is a special case that is discussed in Section 6.3.1.
A sanders-r phenomenon is presented there as well.

Figure 1: Timeline results on Enron datasets

20

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

beck−s

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

farmer−d

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

kaminski−v

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

kitchen−l

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

lokay−m

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

sanders−r

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

williams−w3

MaxEnt
NB
SVM
Winnow

Fig. 2. Coverage results on Enron datasets.
On all datasets Naive Bayes performs significantly
worse than the other three classifiers. On kaminski-v
the difference between the results of any pair of
classifiers is statistically significant. In Section 6.3.1
we explain the problem with the SVM classifier at
low coverage of the beck-s dataset.

Figure 2: Coverage results on Enron datasets

21

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

acheyer

MaxEnt
NB
SVM
Winnow

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

bmark

MaxEnt
NB
SVM
Winnow

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

disrael

MaxEnt
NB
SVM
Winnow

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

mgervasio

MaxEnt
NB
SVM
Winnow

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

mgondek

MaxEnt
NB
SVM
Winnow

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

rperrault

MaxEnt
NB
SVM
Winnow

50 100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training set size

ac
cu

ra
cy

vchaudhri

MaxEnt
NB
SVM
Winnow

Fig. 3. Timeline results on SRI datasets.
Similar trends in MaxEnt and SVM behavior
are noticeable. Winnow behaves a little differently,
in some cases significantly better (e.g. point
400 in acheyer and point 350 in mgervasio), in
some cases worse (point 700 in mgervasio, point
200 in rperrault).

Figure 3: Timeline results on SRI datasets

22

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

acheyer

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

bmark

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

disrael

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

mgervasio

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

mgondek

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

rperrault

MaxEnt
NB
SVM
Winnow

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

coverage

ac
cu

ra
cy

vchaudhri

MaxEnt
NB
SVM
Winnow

Fig. 4. Coverage results on SRI datasets.
Naive Bayes shows extremely poor performance
at low coverage (see, e.g. acheyer and mgondek
graphs). However, it is only insignificantly inferior
to the other three classifiers at high coverage.
Winnow achieves notable 100± 0% accuracy
at 10% coverage of the mgondek dataset.

Figure 4: Timeline results on SRI datasets

23

