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ABSTRACT
It is difficult to apply machine learning to new domains be-
cause often we lack labeled problem instances. In this pa-
per, we provide a solution to this problem that leverages
domain knowledge in the form of affinities between input
features and classes. For example, in a baseball vs. hockey
text classification problem, even without any labeled data,
we know that the presence of the word puck is a strong indi-
cator of hockey. We refer to this type of domain knowledge
as a labeled feature. In this paper, we propose a method for
training discriminative probabilistic models with labeled fea-
tures and unlabeled instances. Unlike previous approaches
that use labeled features to create labeled pseudo-instances,
we use labeled features directly to constrain the model’s
predictions on unlabeled instances. We express these soft
constraints using generalized expectation (GE) criteria —
terms in a parameter estimation objective function that ex-
press preferences on values of a model expectation. In this
paper we train multinomial logistic regression models us-
ing GE criteria, but the method we develop is applicable
to other discriminative probabilistic models. The complete
objective function also includes a Gaussian prior on param-
eters, which encourages generalization by spreading param-
eter weight to unlabeled features. Experimental results on
text classification data sets show that this method outper-
forms heuristic approaches to training classifiers with labeled
features. Experiments with human annotators show that it
is more beneficial to spend limited annotation time labeling
features rather than labeling instances. For example, after
only one minute of labeling features, we can achieve 80% ac-
curacy on the ibm vs. mac text classification problem using
GE-FL, whereas ten minutes labeling documents results in
an accuracy of only 77%
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1. INTRODUCTION
Supervised machine learning methods require costly la-

beled problem instances, and this limits the applicability
of learning to new domains. Semi-supervised learning meth-
ods [21], which aim to leverage available unlabeled instances,
are an appealing solution for reducing labeling effort. How-
ever, despite recent interest in this problem, real applica-
tions of semi-supervised learning remain rare. Reasons for
this may include the time and space complexity and reliance
on sensitive hyperparameters of semi-supervised methods.
Additionally, many methods make strong assumptions that
may hold in small, synthetic data sets, but tend to be vio-
lated in real-world data.

Instead, we want a simple, robust method that facilitates
training models for new domains and requires minimal anno-
tation effort. One potential solution involves incorporating
existing domain knowledge into learning. There has been
much recent interest in this idea [20, 19, 9, 15, 17, 7]. In this
paper, we propose a discriminative semi-supervised learn-
ing method that incorporates into training one particular
type of domain knowledge: affinities between features and
classes. For example, in a baseball vs. hockey text classi-
fication problem, even without any labeled data, we know
that the presence of the word puck is a strong indicator of
hockey. We refer to this type of domain knowledge as a
labeled feature. Unlike previous heuristic approaches that
use labeled features for feature selection or to create labeled
pseudo-instances [6, 14, 17, 19, 20], we use labeled features
directly to constrain the model’s predictions on unlabeled
instances. We specify these soft-constraints using general-
ized expectation (GE) criteria.

A GE criterion [16] is a term in a parameter estimation
objective function that express preferences on values of a
model expectation. GE is similar to the method of mo-
ments for parameter estimation, but allows us to express ar-
bitrary scalar preferences on expectations of arbitrary func-
tions, rather than requiring equality between sample and
model moments. We also note three important differences
from traditional training objective functions for undirected
graphical models. (1) A one-to-one relationship between



GE terms and model factors is not required. For example,
a GE term may score expectations on sets of variables that
form a subset of parameterized model factors, or on sets of
variables larger than model factors. (2) Model expectations
in different GE terms can be conditioned on different data
sets. (3) The score function can be arbitrary. Examples of
possible score functions include the distance to some target
expectation or a smooth hinge-loss.

In this paper, we use leverage property (3) to specify an
objective function that penalizes parameter settings if the
resulting model predictions do not conform to prior expecta-
tions. We use property (1) to express constraints only on the
subsets of variables for which prior information is available.
Specifically, for each labeled feature, there is a correspond-
ing GE term that scores the model’s predicted class distribu-
tion conditioned on the presence of that feature. The score
function penalizes these distributions according to their KL-
divergence from reference distributions estimated using the
labeled features. We derive a specific objective function for
a multinomial logistic regression classifier, but the idea is
applicable to other discriminative probabilistic models. We
refer to this method as Generalized Expectation with Fea-
ture Labels, or GE-FL.

We evaluate GE-FL on six text classification data sets.
First, we show that GE-FL outperforms several baseline
methods that use labeled features. Next, we compare with
three previous methods that incorporate labeled features
into learning [19, 20, 17], and show that GE-FL attains
comparable or better performance despite using no labeled
documents. Finally, we conduct human annotation experi-
ments in which we compare the performance over time of (a)
a system that trains a classifier with labeled features using
GE-FL and (b) a system that uses semi-supervised train-
ing with labeled documents. The results show that given
limited annotation time, it is more beneficial to spend that
time labeling features rather than labeling instances. For
example, after only one minute of labeling features, we can
achieve 80% accuracy on the ibm vs. mac text classification
problem using GE-FL, whereas ten minutes labeling doc-
uments results in an accuracy of only 77%. Given equal
labeling time, the accuracy difference is often much more
pronounced, with absolute accuracy improvements as high
as 40%. In our experiments, labeling features is on aver-
age 3.7 times faster than labeling documents, a result that
supports similar findings in previous work [18].

2. RELATED WORK
The methods described in this paper are semi-supervised [21].

However, the supervision comes in the form of labeled fea-
tures, or more generally arbitrary expectations from domain
knowledge, rather than labeled instances. We suggest that
this approach is beneficial because it avoids some of the
common assumptions of semi-supervised learning methods.
For example, unlike discriminative semi-supervised learning
methods such as Transductive Support Vector Machines [12]
and Entropy Regularization [8], we do not assume low-density
regions between classes.

There has been much recent interest in incorporating do-
main knowledge into learning, including several methods
that use labels or relevance judgments on features. Nearly
all of these methods convert labeled features into labeled
instances, and apply a standard learning algorithm. Liu,
et al. [14] use human annotators to label features that are

highly predictive of unsupervised instance clustering assign-
ments. The unlabeled instances are soft-labeled according to
their cosine similarity with pseudo instances that only con-
tain labeled features, and this soft-labeled data is used as an
initialization point for the expectation maximization (EM)
algorithm. Schapire, Rochery, and Gupta [19] use hand-
crafted rules based on relevant features to label instances,
and modify AdaBoost to choose weak learners that both fit
the labeled training data and the soft-labeled data. Wu and
Srihari [20] use labeled features to assign labels and confi-
dence scores to unlabeled instances, which are then used in
conjunction with labeled data during training. We compare
with the methods of Schapire, Rochery, and Gupta [19] and
Wu and Srihari [20] in Sections 5.2 and 5.3, respectively.
Dayanik, et al. [4] propose several methods that use labeled
features to specify prior distributions on the parameters of
a logistic regression model.

There is also recent work in the natural language pro-
cessing community with similar goals. Chang, Ratinov, and
Roth [2] propose an EM-like algorithm that incorporates
prior constraints into semi-supervised training of structured
output models. In the E-step, the inference procedure pro-
duces an N-best list of outputs ranked according to the sum
of the output’s score under the model and a penalty term for
violated constraints. In the M-step, the N-best list is used to
re-estimate the model parameters. Haghighi and Klein [9]
use prototypes, which are analogous to what we refer to as
labeled features, to learn log-linear models for structured
output spaces. The prototypes are used to hypothesize ad-
ditional soft prototypes for features that are syntactically
similar. All prototypes are then used as features during
maximum likelihood training on limited labeled data.

Other types of domain knowledge have also been incorpo-
rated into learning. Jin and Liu [11] and Mann and McCal-
lum [15] provide methods for incorporating prior informa-
tion about the class distribution into discriminative training.
Huang and Mitchell [10] propose a new generative clustering
model and provide methods for the user to exert influence
over the learned clusters. For example, the user can specify
that a feature indicates a cluster, an instance belongs to a
cluster, or that a cluster should be deleted.

Many of the above methods convert domain knowledge
into labeled instances. In this paper, we take an alternative
approach in which domain knowledge is used to constrain
model predictions. Graça, Ganchev, and Taskar [7] pro-
vide a related method that incorporates prior constraints
into the EM algorithm. Specifically, the E-step is modified
so that the expectation over output variables is the clos-
est distribution (in terms of KL-divergence) to the model
prediction that respects a specified set of constraints. In
the M-step, the model parameters are re-estimated using
this modified expectation. We note several differences be-
tween this method and GE-FL. First, the constraints in con-
strained EM are per-instance, whereas in this paper we use
global constraints over entire data sets. Next, Graça et al.
use a generative model, whereas here we use direct maxi-
mization in a discriminative model. Finally, Graça et al.
put constraints only on the output variables, whereas here
the constraints additionally consider input variables.

Work in active learning is also relevant. In active learning,
the learner can choose the particular instances to be labeled.
In pool-based active learning [3], the learner has access to a
set of unlabeled instances, and can choose the instance that



has the highest expected utility according to some metric. A
standard pool-based active learning method is uncertainty
sampling [13], in which the instance chosen is the one for
which the model predictions are most uncertain. Although
in theory this method is problematic because it ignores the
distribution over instances [5], in practice it often works well,
and is easy to implement. We use uncertainty sampling as
a baseline in our user experiments.

Some recent work has addressed active learning by label-
ing features. Raghavan, Madani, and Jones [18] interleave
feedback on instances and features in an algorithm called
tandem learning. They show that incorporating feedback on
features can significantly accelerate active learning. Exper-
iments also demonstrate that humans can provide accurate
information about features, and that it takes five times as
long to label instances as to label features. Raghavan and
Allan [17] provide additional methods for training SVMs
with labeled features, including scaling the parameters of la-
beled features, creating specially-weighted pseudo-instances
containing only labeled features, and soft-labeling unlabeled
instances. We compare with tandem learning in Section 5.4.
Godbole et al. [6] describe software for interactive classifi-
cation that uses both feature and instance active learning.
Similarly to Raghavan and Allan [17], Godbole et al. incor-
porate information about features into training by creating
pseudo-instances containing only labeled features.

3. GENERALIZED EXPECTATION
CRITERIA

In this section, we describe Generalized Expectation crite-
ria and derive the specific objective function we use to train
classifiers with labeled features. Section 4 describes the pro-
cess of obtaining labeled features and converting them into
specific constraints.

A generalized expectation (GE) criterion is a term in a
parameter estimation objective function that assigns scores
to values of a model expectation [16]. In this paper we use
GE in conjunction with discriminative probabilistic models.
Given a score function S, an empirical distribution p̃, a func-
tion f , and a conditional model distribution p parameterized
by θ, the value of a GE criterion is

S(Ep̃(X)[Epθ(Y |X)[f(X, Y )]]).

One specific type of score function S is some measure of
distance between the model expectation and a reference ex-
pectation. Given some distance function ∆(·, ·), a reference

expectation f̂ , an empirical distribution p̃, a function f , and
a conditional model distribution p, this criterion is

∆(f̂ , Ep̃(X)[Epθ(Y |X)[f(X, Y )]]).

In this paper, x is a vector of input feature counts, y is
a discrete class label, and pθ(y|x) is a conditionally trained
Markov random field with a single output variable and ob-
servation variables that are conditionally independent given
this output. The probability of output y conditioned on
input x is given by

pθ(y|x) =
exp(

P
i θyixi)

Z(x)
,

where Z(x) is a normalizer that assures
P

y pθ(y|x) = 1. In
the literature, this model is often referred to as multinomial
logistic regression or a maximum entropy classifier.

We use GE terms in which p̃ is the distribution of unla-
beled data U , and we compute the expectation of fk(x, y) =
~I(y)I(xk > 0), an indicator of the presence of feature k in x
times an indicator vector with 1 at the index corresponding
to label y and zeros elsewhere. Therefore, EU [Epθ(y|x)[fk(x, y)]]
is a vector in which the ith value is the expected number of
instances that contain feature k and have label yi. If we
additionally add a normalizing constant into fk, fk(x, y) =
1

Ck

~I(y)I(xk > 0), where Ck =
P

x∈U I(xk > 0), the expec-

tation is the predicted label distribution on the set of in-
stances that contain feature k, p̃θ(y|xk >0). We use the KL
divergence for ∆(·, ·). A single term is thenX

y

p̂(y|xk >0) log
p̂(y|xk >0)

p̃θ(y|xk >0)
, (1)

where p̂(y|xk > 0) are reference distributions obtained us-
ing domain knowledge. The estimation of reference distri-
butions is discussed in Section 4. The combined objective
function is composed of a GE term for each labeled feature
k ∈ K, and a zero-mean σ2-variance Gaussian prior on pa-
rameters.

O = −
X
k∈K

D(p̂(y|xk >0))||p̃θ(y|xk >0)) −
X

j

θ2
j

2σ2

We use L-BFGS, a quasi-Newton optimization method, to
estimate model parameters. The gradient of Equation 1 with
respect to the model parameter for feature j and label y′,
θy′j , is:

∂

∂θy′j
D(p̂(y|xk >0)||p̃θ(y|xk >0))

= − ∂

∂θy′j

X
y

p̂(y|xk >0) log p̃θ(y|xk >0)

= − 1

Ck

X
y

p̂(y|xk >0)

p̃θ(y|xk >0)

X
x∈U

I(xk >0)
∂

∂θy′j
pθ(y|x)

= − 1

Ck

X
y

p̂(y|xk >0)

p̃θ(y|xk >0)

X
x∈U

I(xk >0)

„
I(y=y′)pθ(y|x)xj − pθ(y|x)pθ(y

′|x)xj

«
= − 1

Ck

X
y

p̂(y|xk >0)

p̃θ(y|xk >0)

X
x∈U

pθ(y|x)I(xk >0)

„
I(y=y′)xj − pθ(y

′|x)xj

«
Above, we observe that the degree to which the gradient of a
parameter for an unlabeled feature j and label y′ is affected
by a GE-FL term for labeled feature k depends on how often
j and k co-occur in an instance.

Because we only expect to have prior knowledge for a
subset of features, there will be more parameters in the
model than constraints in the objective functions. Conse-
quently, we expect the optimization problem to be under-
constrained, meaning that there will be many optimal pa-
rameter settings. Therefore, in practice we use GE in con-
junction with other objective functions that help to choose
among these possible models.

The Gaussian prior on parameters addresses this prob-
lem by preferring parameter settings with many small values
over settings with a few large values. This encourages the



model to have non-zero values on parameters for unlabeled
features that co-occur often with a labeled feature. That
is, if the word goal occurs often in documents with puck,
increasing the weight of goal can help to satisfy the con-
straint that the model should predict hockey conditioned on
the presence of puck. The Gaussian prior prefers this set-
ting, in which puck and goal both have moderate weights,
to the setting in which puck has high weight and goal has
zero weight, since it penalizes the square of the parameter
values. We use this term in all experiments in this paper
with σ = 1. Other terms that could help choose amongst
possible models include standard conditional log-likelihood
on labeled instances and agreement objective functions that
encourage model predictions to be consistent when using
different subsets of features.

4. LABELING FEATURES
In this section, we describe methods for selecting candi-

date features for labeling, obtaining labels for these features,
and estimating the reference expectations needed for the KL
divergence from target objective function.

4.1 Candidate Feature Selection
Oracle-features: Ideally, a selected feature should be

both highly predictive of some class, and occur often enough
to have a large impact. In practice we will not be able
to determine whether a feature is predictive if we have no
labeled instances. However, in order to obtain an upper
bound on feature selection methods, we assume there exists
an oracle that can reveal the label of each unlabeled instance.
We then select features according to their predictive power
as measured by the mutual information of the feature with
the class label.

LDA-features: Another potential feature selection method
would select features randomly only according to their fre-
quency. The problem with this method is that it tends to
select common, non-predictive features, such as stopwords
in text classification. Instead we run unsupervised feature
clustering and select the most prominent features in each
cluster. In this paper we cluster unlabeled data with latent
Dirichlet allocation (LDA) [1], a widely used topic model.
For each LDA topic ti, we sort features xk by p(xk|ti) and
choose the top f features. There is no guarantee that the
candidate features selected by this heuristic are relevant to
the learning task of interest. However, in practice this per-
forms much better than selecting candidate features by fre-
quency.

For experiments in this paper, we choose the top 25L fea-
tures according to these metrics, where L is the number of
classes.

4.2 Obtaining Feature Labels
We first discuss the labeling process. When shown a can-

didate feature, the labeler can choose to accept the labeling
request or discard the feature. The labeler only labels fea-
tures that are accepted. Note that this process is different
from traditional instance labeling because labeling requests
may be refused. For example, if presented with the word
“the”, the labeler will likely discard it because it does not
have strong affinity with any one particular label.

Oracle-labeler: For some experiments we use feature la-
bels provided by an oracle rather than a human. To decide
whether to accept a feature, the oracle is able to reveal the

labels of the unlabeled instances in order to simulate hu-
man background knowledge of the relevance of the feature.
Using the instance labels, the oracle computes the mutual
information of the feature with the class label, and accepts
if this mutual information is above a threshold α. In this
paper, α is the mean of the mutual information scores of the
top M most predictive features, where M = 100L, or 100
times the total number of labels. Note that a feature can
be labeled with more than one class. If accepted, the oracle
labels a feature with the class with which the feature occurs
most often, and any other class that occurs with the feature
at least half as often. We note that because M is typically
small relative to the total number of input features, the ora-
cle is somewhat conservative in the features it accepts. This
simulates a scenario in which the user only knows about the
most prominent and important features.

The second method for obtaining feature labels is to ask
real annotators. We explore this approach in Section 6. For
the experiments in Sections 5.2 and 5.3, we use labeled fea-
tures provided in prior work.

4.3 Reference Distribution Estimation
Target or reference expectations are required by the KL

divergence calculation. We present two methods for esti-
mating reference expectations. We note that we could al-
ternatively allow the users to specify the reference distribu-
tions directly during the labeling process. We choose not
to do this because it is not clear that users can provide ac-
curate estimates of these distributions. However, we could
instead have the labeler specify a degree of association be-
tween a label and feature in terms of discrete categories such
as strongly indicative. We plan to explore such approaches in
future work, but note that the results in this paper seem to
indicate that precise estimates of the reference distributions
are not required to achieve good performance.

Schapire-distributions: As proposed by Schapire, et
al. [19], we use a simple heuristic in which a majority of
the probability mass for a feature is distributed uniformly
among its associated classes(s), and the remaining proba-
bility mass is distributed uniformly among the other non-
associated classes. Define qmaj as the probability for the
associated classes. Then, if there are n associated classes
out of L total classes, each associated class has probabil-
ity p̂(y|xk > 0) = qmaj/n and each non-associated class has
probability p̂(y|xk >0) = (1− qmaj)/(L−n). For the exper-
iments in this paper, we use qmaj = 0.9.

Feature-voted-distributions: Alternatively, we use the
labeled features to vote on labels for the unlabeled instances.
For each feature xk in an instance x, it contributes a vote
for each of its labels. We then normalize the vote totals to
get a distribution over labels for each instance. With this
soft-labeled data, we can estimate the reference distributions
directly.

5. EXPERIMENTS
We evaluate the effectiveness of GE-FL on six text clas-

sification data sets. For all data sets, instances correspond
to documents and features are word counts. For the tasks
in which a single instance can be assigned multiple labels,
we split the task into L one vs. all binary learning tasks,
where L is the number of labels. For other data sets, we use
multi-class classification. We describe the data sets below.



• reuters21578:1 A standard text categorization data
set in which task is to assign categories to news arti-
cles. We use the ModApte split and evaluate on the
top 10 most frequent classes, as in [20] (9603 training
instances, 3299 testing instances).

• 20 newsgroups2 The task is to classify messages ac-
cording to the newsgroup to which they were posted.
We use both the entire data set (20 classes, 20,000
instances) and binary subsets (2,000 instances).

• movie3 The Polarity v2.0 data set, in which the task
is to classify the sentiment of movie reviews as positive
or negative (2,000 instances).

• sraa2 The task is to classify messages about real and
model automobiles and aviation with the appropriate
newsgroup (4 classes, 73,218 instances).

• webkb4 The task is to classify university webpages as
student, course, faculty, or project (4,199 instances).

• industry sector2 The task is to classify webpages
according to a hierarchy of industrial sectors (4,582
instances). We use binary subsets, and the top level
categories (7 classes).

For data sets without a standard test/train split, we ran-
domly split the data such that 75% is used as training data,
and the remaining 25% is reserved for testing. For the exper-
iments in sections 5.1, 5.2, and 5.4 we use 10 such random
splits and report the mean of the results. For experiments
that do not use labeled instances we simulate unlabeled data
by hiding labels of all instances. Experiments with GE-FL
never include labeled instances.

5.1 Comparison with Baselines
We first compare GE-FL with several baseline methods,

described below. For these experiments, we use the oracle-
labeler.

• feature voting: Use the feature labels to vote on the
classification.

• feature labeling: Use the feature labels to vote on
labels for the unlabeled instances and train a super-
vised model on this data. We leave instances without
labeled features unlabeled, and use hard class assign-
ments, which provided significantly better results in
our experiments.

• labeled only: Use GE to match reference distribu-
tions estimated from the labeled features, but disallow
the use of unlabeled features.

We run experiments comparing the above baselines with GE-
FL and provide the results in Tables 1 and 2. Datasets
med-space, ibm-mac, and baseball-hockey are subsets
of the 20 newsgroups data set; healthcare-financial is
a subset of the industry sector data set. The parenthe-
sized number with each data set indicates the mean num-
ber of features labeled by the oracle labeler. The results
presented in Table 1 are obtained using oracle-features and
Schapire-distributions. This simulates a scenario in which
there is a domain expert who can suggest and label relevant

1http://kdd.ics.uci.edu/
2http://www.cs.umass.edu/~mccallum/code-data.html
3http://www.cs.cornell.edu/People/pabo/
movie-review-data/
4http://www.cs.cmu.edu/~webkb

features. We also run experiments using LDA-features and
Schapire-distributions, which simulates a scenario in which
some candidate features are presented to the labeler. The
results are presented in Table 2. GE-FL attains the highest
macro-F1 in 7 of the 9 data sets using oracle-features, and
7 of 9 using lda-features. Results marked with a * indicate
that GE-FL performs significantly better under a two-tailed
paired t-test with p = 0.05.

We motivated GE-FL in terms of bootstrapping mod-
els for new domains, so we also perform experiments to
determine the effectiveness of GE-FL in relation to semi-
supervised training with labeled documents. To do this, we
use entropy regularization [8], a discriminative semi-supervised
learning method that aims to minimize the uncertainty of
predictions on unlabeled data. This method introduces a
tuning parameter λ that controls the weight of the regu-
larizer relative to the data likelihood. We set λ = 0.2, a
value that provided the best mean results across all data
sets, and perform training with a deterministic annealing
procedure. We report the number of instances at which the
performance of GE-FL and the instance learning method are
statistically indistinguishable. Raghavan, et al. [18] perform
a thorough user study in which they conclude that it is five
times faster to label a feature than to label a document. We
use this result to present estimated speed-ups using GE-FL
over entropy regularization. We note that in the computa-
tion of this estimated speed-up, we consider the number of
features presented to the labeler, including those that are
discarded. Since we expect discarding a feature to be faster
than labeling a feature, the estimates in Table 2 are likely
conservative.

Each of the baselines demonstrates an important point
about GE-FL. Feature voting uses the domain knowl-
edge only, whereas GE-FL uses this information to constrain
model predictions on unlabeled data, and in the process
learns about co-occurring features without labels. Labeled
only demonstrates the importance of incorporating these
co-occurring features without labels. Finally, feature la-
beling is equivalent to using the labeled features to infer
constraints on all features, whereas GE-FL only specifies
constraints on features that are known to be relevant.

5.2 Comparison with Schapire, Rochery,
and Gupta [2002]

In this experiment, we compare GE-FL with boosting
with prior knowledge [19]. Boosting with prior knowledge
aims to maximize the conditional log likelihood of both la-
beled instances and instances classified using a hand-crafted
model. The hand-crafted model classifies instances using
the product of label probabilities for features, which are esti-
mated from labeled features using the Schapire-distributions
heuristic. Schapire et al. provide 138 labeled features for the
20 newsgroups data set. For comparison, we use the same
feature labels and use the Schapire-distributions heuristic to
estimate reference distributions. We note that the experi-
ments in [19] use n-gram features, whereas we use only uni-
gram features. Comparing using the domain knowledge only,
GE-FL gives approximately a 15% absolute error reduction
from 64% error ([19] Figure 3) to 49% error. Furthermore,
the boosting method requires the domain knowledge and be-
tween 400 and 800 labeled documents for boosting with prior
knowledge to match the accuracy of GE-FL, which uses no
labeled documents.

http://kdd.ics.uci.edu/
http://www.cs.umass.edu/~mccallum/code-data.html
http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cmu.edu/~webkb


Learing with Labeled Features Labeled Instances Required
data set feat. voting feat. label labeled only GE-FL sup. + ER est. speed-up
movie (43.7 of 50) 0.763* 0.766* 0.772* 0.797 150 15.0
sraa (97.5 of 100) 0.630* 0.596* 0.585* 0.651 160 8.0
webkb (88.8 of 100) 0.496* 0.477* 0.745* 0.774 70 3.5
med-space (50.0 of 50) 0.907* 0.932* 0.930* 0.952 90 9.0
ibm-mac (43.7 of 50) 0.853 0.864 0.861 0.855 110 11.0
baseball-hockey (50 of 50) 0.925* 0.927* 0.939* 0.954 200 20.0
20 newsgroups (494.4 of 500) 0.554* 0.560* 0.643* 0.704 650 6.5
financial-healthcare (50 of 50) 0.653 0.443* 0.539* 0.583 50 5.0
sector.top (163.9 of 175) 0.664* 0.657* 0.719* 0.730 140 4.0

Table 1: On the left, macro-averaged F1 for methods that use feature labels. Candidate features are selected
using oracle-features. A * indicates that GE-FL performs significantly better using a two-tailed paired t-test,
p = 0.05. On the right, the number of labeled instances at which semi-supervised training becomes statistically
indistinguishable from GE-FL, and the estimated speed-up if labeling a feature is 5 times faster than labeling
a document.

Learing with Labeled Features Labeled Instances Required
data set feat. voting feat. label labeled only GE-FL sup. + ER est. speed-up
movie (4.6 of 50) 0.616 0.608 0.607* 0.623 20 2.0
sraa (29.5 of 100) 0.577 0.526* 0.520* 0.559 80 4.0
webkb (17.5 of 100) 0.514* 0.513* 0.593* 0.615 20 1.0
med-space (14.3 of 50) 0.857* 0.862* 0.867* 0.927 40 4.0
ibm-mac (10.4 of 50) 0.740* 0.817 0.762* 0.817 50 5.0
baseball-hockey (10.8 of 50) 0.779* 0.840* 0.853* 0.915 40 4.0
20 newsgroups (269.6 of 500) 0.493* 0.514* 0.585* 0.667 300 3.0
financial-healthcare (9.4 of 50) 0.552* 0.456* 0.595 0.588 50 5.0
sector.top (50.7 of 175) 0.538* 0.534* 0.544* 0.596 60 1.7

Table 2: Same as above, but candidate features are selected using lda-features.

5.3 Comparison with Wu and Srihari [2004]
Next, we compare GE-FL with a method for leverag-

ing labeled features using Weighted Margin Support Vector
Machines (WMSVMs) [20]. Wu and Srihari provide a few
features associated with each of the top 10 most frequent
classes in the ModApte split of the Reuters21578 data
set. With WMSVMs, a macro-average break-even-point of
around 0.53 is obtained using only this domain knowledge,
and a macro-average break-even-point of around 0.60 is ob-
tained using domain knowledge and 16 labeled examples
([20] Figure 3). Using the same domain knowledge, feature-
voted-distributions, and no labeled documents, GE-FL at-
tains a break-even-point of 0.630.

5.4 Comparison with Raghavan [2007]
We also provide an informal comparison with tandem learn-

ing [17], an active learning algorithm that incorporates feed-
back on instances and features into learning with Support
Vector Machines. We call the comparison informal because
tandem learning is quite different from GE-FL. Importantly,
GE-FL uses neither active learning nor labeled documents.
In the referenced experiments, tandem learning uses a total
of 12 labeled documents, and shows at most 100 features
to the annotator. Both features and instances are actively
selected to reduce uncertainty. Conversely, we use a static
list of features, chosen before learning begins using unsu-
pervised clustering. We compare performance on the 20
newsgroups data set. We use a one vs. all setup for better
comparison. Raghavan et al. report macro-F1 of 0.354 ([17]
Table 3). With 100 candidate features selected using lda-

features, reference distributions estimated using association-
voted-distributions, and the oracle-labeler, we attain macro-
F1 of 0.477, averaged over 10 random splits of the data.
This result is encouraging because it suggests that combin-
ing GE-FL with active feature learning could produce even
better results.

6. USER EXPERIMENTS
Finally, we conduct annotation experiments in which we

time three users as they label 100 documents and 100 fea-
tures for binary classification tasks. The candidate features
are selected using lda-features. The features are presented
one at a time, and the user can choose a single label for
the feature or choose to discard the feature. After the users
finish labeling features, they label documents, again with
the option to choose a label for the document or to ignore
the document if it appears ambiguous. We prefer this or-
dering (labeling features followed by documents) in order to
give maximum benefit to the traditional document labeling
method. We choose documents to present to the user with
uncertainty sampling: after each instance is labeled, the in-
stance with the most uncertain classification under the cur-
rent model is selected next for labeling. We do this to ensure
that the instances chosen for labeling are beneficial. The list
of candidate features is static.

First, we are interested in the accuracy of the human an-
notators. Table 3 shows the labeling precision and recall
for different annotators. For feature labeling, performance
is measured using the oracle labeler as ground truth; for
document labeling, performance is measured using the true



doc. labeling feat. labeling
user + dataset prec rec prec rec
1 ibm-mac 0.90 0.58 0.80 1.00
1 med-space 0.95 0.86 0.73 1.00
1 baseball-hockey 0.98 0.84 0.52 0.92
2 ibm-mac 0.92 0.37 0.50 0.80
2 med-space 0.98 0.80 0.52 0.96
2 baseball-hockey 0.96 0.71 0.41 1.00
3 ibm-mac 0.91 0.75 0.86 1.00
3 med-space 0.99 0.75 0.67 1.00
3 baseball-hockey 0.96 0.83 0.54 1.00
Overall mean 0.95 0.72 0.62 0.96

Table 3: User labeling performance with respect to
the oracle.

med: blood, cancer, care, disease, doctor, doctors,
drugs, health, medical, medicine, pain, patients, vita-
min, yeast
space: earth, launch, mars, mission, moon, nasa, or-
bit, planet, satellite, shuttle, sky, space, universe
ibm: hp, dos, ibm
mac: apple, mac
baseball: ball, baseball, braves, cubs, hit, hitter, jays,
pitching, runs
hockey: flyers, goal, hockey, leafs, nhl, period, shots

Table 4: Features that all three users labeled.

labels. The labelers provided precise labels for documents,
but also discarded many documents. Conversely, the label-
ers were able to correctly label most features that the oracle
considers relevant, but often also labeled other features. In-
spection of these other features indicates that they are in
fact moderately relevant. We defined the oracle to be con-
servative when labeling features, only choosing features that
are almost certainly relevant. These results indicate that we
may be able to allow the oracle to be less discerning in fu-
ture work and perhaps further increase accuracy. User 2 had
the most trouble selecting and labeling features. We suspect
that this indicates insufficient familiarity with the learning
tasks. This suggests that future experiments should involve
an opportunity to look through the data before annotation.
However, it does not seem unreasonable to assume that the
annotators are familiar with the task they are trying to solve.

Figure 1 shows the accuracy of two trained systems over
time. The first uses the labeled features and unlabeled in-
stances with GE-FL. Reference distributions are estimated
using Schapire-distributions with qmaj = 0.9. The second
uses entropy regularization (ER) [8] (in this experiment we
use direct maximization and weighting parameter γ = 0.01)
with the labeled and unlabeled instances. Annotating fea-
tures yields large accuracy improvements for the same amount
of time. On average across all experiments, labeling features
is 3.7 times faster than labeling documents, and the models
trained with GE-FL have 1.0% higher final accuracy. Note
that the point at which the GE-FL curve changes from a
dotted line into dots indicates the point at which the user
had processed all 100 features.

When the annotator is accurate, the results with feature
labeling can be quite striking. For example, consider the re-
sults of User 1 for the ibm vs. mac classification task. The

accuracy of the GE-FL system after 30 seconds of feature la-
beling is better than the accuracy of the ER system after 12
minutes of document labeling, a 24x speed-up. As another
example, User 3 achieves accuracy of 90% on the baseball
vs. hockey task after 90 seconds with the GE-FL system,
at which point the ER system accuracy is around 50%.

Notice that the ER system gives erratic performance, with
large accuracy jumps in consecutive 30 second intervals.
This reinforces our earlier assertions about the brittleness
of current semi-supervised methods.

7. CONCLUSION AND FUTURE WORK
In this paper, we have contributed GE-FL, a method for

learning discriminative probabilistic models from labeled fea-
tures and unlabeled documents. In experiments on text clas-
sification data sets this method outperforms heuristic meth-
ods that leverage labeled features. A preliminary user study
supports the claim made in previous work [18] that it is much
faster to label a feature than an instance. Consequently, GE-
FL can provide dramatic decreases in the amount of time
needed to train a classifier for a new domain.

In ongoing research, we are applying GE to models for
structured output spaces and to the problems of active learn-
ing and domain adaptation. We are also interested in in-
corporating domain knowledge from ontologies and existing
resources, and encoding task-specific structural constraints
on the learning problem.
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User 3: ibm-mac, med-space, baseball-hockey
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Figure 1: Accuracy vs. time for the GE-FL and ER systems. In most cases, GE-FL gives better accuracy
given the same amount of annotation time.

[8] Y. Grandvalet and Y. Bengio. Semi-supervised
learning by entropy minimization. In NIPS, 2004.

[9] A. Haghighi and D. Klein. Prototype-driver learning
for sequence models. In NAACL, 2006.

[10] Y. Huang and T. M. Mitchell. Text clustering with
extended user feedback. In SIGIR, pages 413–420,
2006.

[11] R. Jin and Y. Liu. A framework for incorporating
class priors into discriminative classification. In
PAKDD, 2005.

[12] T. Joachims. Transductive inference for text
classification using support vector machines. In ICML,
1999.

[13] D. Lewis and J. Catlett. Heterogeneous uncertainty
sampling for supervised learning. In ICML, 1994.

[14] B. Liu, X. Li, W. Lee, and P. Yu. Text classification
by labeling words. In AAAI, 2004.

[15] G. Mann and A. McCallum. Simple, robust, scalable
semi-supervised learning via expectation
regularization. In ICML, 2007.

[16] A. McCallum, G. Mann, and G. Druck. Generalized
expectation criteria. Technical Report 2007-62,

University of Massachusetts, Amherst, 2007.

[17] H. Raghavan and J. Allan. An interactive algorithm
for asking and incorporating feature feedback into
support vector machines. In SIGIR, pages 79–86, 2007.

[18] H. Raghavan, O. Madani, and R. Jones. Active
learning with feedback on features and instances.
Journal of Machine Learning Research, 7:1655–1686,
2006.

[19] R. Schapire, M. Rochery, M. Rahim, and N. Gupta.
Incorporating prior knowledge into boosting. In
ICML, 2002.

[20] X. Wu and R. K. Srihari. Incorporating prior
knowledge with weighted margin support vector
machines. In SIGKDD, 2004.

[21] X. Zhu. Semi-supervised learning literature survey.
Technical Report 1530, Computer Sciences, University
of Wisconsin-Madison, 2005.


	Introduction
	Related Work
	Generalized Expectation Criteria
	Labeling Features
	Candidate Feature Selection
	Obtaining Feature Labels
	Reference Distribution Estimation

	Experiments
	Comparison with Baselines
	Comparison with Schapire, Rochery, and Gupta [2002]
	Comparison with Wu and Srihari [2004]
	Comparison with Raghavan [2007]

	User Experiments
	Conclusion and Future Work
	Acknowledgments
	References

