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Abstract

It is difficult to apply machine learning to many real-world tasks because
there are no existing labeled instances. In one solution to this problem, a
human expert provides instance labels that are used in traditional super-
vised or semi-supervised training. Instead, we want a solution that allows
us to leverage existing resources other than complete labeled instances. We
propose the use of generalized expectation (GE) criteria [8] to achieve this
goal. A GE criterion is a term in a training objective function that assigns
a score to values of a model expectation. In this paper, the expectations
are model predicted class distributions conditioned on the presence of se-
lected features, and the score function is the Kullback-Leibler divergence
from reference distributions that are estimated using existing resources. We
apply this method to the problem of named-entity-recognition, leveraging
available lexicons. Using no conventionally labeled instances, we learn a
sliding-window multinomial logistic regression model that obtains an F1
score of 0.692 on the CoNLL 2003 data. To attain the same accuracy a
supervised classifier requires 4,000 labeled instances.

1 Introduction

Generalized expectation (GE) criteria [8] are terms in a training objective function that
assign scores to values of a model expectation. GE resembles the method of moments,
but allows us to express arbitrary scalar preferences on expectations of arbitrary functions,
rather than requiring equality between sample and model moments. We also note three
important differences from traditional training objective functions for factor graphs. First,
there need not be a one-to-one relationship between GE terms and model factors. For
example, GE allows expectations on sets of variables that form a subset of model factors,
or on sets of variables larger than model factors. Next, model expectations for different GE
terms can be conditioned on different data sets. Finally, the reference expectation (or more
generally, score function) can come from any source, including other tasks or human prior
knowledge.

GE provides a method for incorporating prior knowledge into model training. We argue
that this approach, in which we communicate with the model by specifying preferences on
model expectations, is more intuitive and potentially more robust than incorporating prior
knowledge with prior distributions over parameters.

In this paper, we leverage known associations between features and classes. The expectations
are model predicted class distributions conditioned on the presence of selected features, and
the score function is the Kullback-Leibler divergence from reference distributions that are



estimated using existing resources. Combining these GE terms with a prior on parameters
encourages the use of co-occurrence patterns in unlabeled data to learn parameters for
features for which we lack prior information.

We apply this method to the task of named-entity-recognition (NER), leveraging existing
lexicons, for example lists of universities, organizations, and people. Assuming we have
a mapping between lexicons and associated labels, we can estimate reference probability
distributions of NER label conditioned on the presence of lexicon features. We use these
distributions in a GE objective to train a sliding window multinomial logistic regression
classifier. The training procedure requires no labeled sequences.

We provide a discussion of related work (including [10, 1, 3, 9, 4, 5]) elsewhere [2, 6, 8].

2 Generalized Expectation Criterion

A generalized expectation (GE) criterion objective function term assigns scores to values
of a model expectation [8]. In many cases this score function is some measure of distance
between a model expectation and a reference expectation. Specifically, given some distance
function ∆(·, ·), a reference expectation f̂ , an empirical distribution p̃, a function f , and a
conditional model distribution p, the objective function is:

∆(f̂ , Ep̃(X)[Ep(Y |X;θ)[f(X, Y )]]).

Here, we explore a special case of GE, similar to the approach of Mann and McCallum
[6] and Druck, Mann, and McCallum [2]. More specifically, we use GE in conjunction
with multinomial logistic regression models; ∆(·, ·) is the KL divergence; p̃ is unlabeled
data; and the expectations are distributions over class conditioned on a specific binary
feature, p̃(y|xk = 1; θ), where y is a class label and the feature is indexed by k. We define
p̃(y|xk = 1; θ) as:

p̃(y|xk = 1; θ) =
1

|Ck|
∑
x∈Ck

p(y|x; θ),

where Ck = {x : p̃(x) > 0, xk = 1}, the set of all unlabeled instances that contain the
feature indexed by k. We discuss the estimation of reference distributions p̂(y|xk = 1) in
the next section. A single GE objective function term is then:

DKL(p̂(y|xk = 1)||p̃(y|xk = 1; θ)) =
∑

y

p̂(y|xk = 1) log
p̂(y|xk = 1)

p̃(y|xk = 1; θ)
.

We combine multiple GE terms to obtain the complete objective function:

O = −
∑
k∈K

DKL(p̂(y|xk = 1)||p̃(y|xk = 1; θ))−
∑

j θ2
j

2σ2
, (1)

where K is the subset of features with a GE term. Because there are more parameters in
the model than corresponding GE terms in the objective function, the optimization problem
is under-constrained. Therefore, we expect there will be many optimal parameter settings.
The Gaussian prior addresses this problem by preferring parameter settings with many small
values over settings with a few large values. This encourages non-zero parameter values for
features that do not have corresponding GE terms, but often co-occur with features with
corresponding GE terms. The optimization of Equation 1 is discussed elsewhere [6, 2].

3 Leveraging Existing Resources with GE

To train a model with Equation 1, we need reference distributions p̂(y|xk = 1). In some
scenarios, there exist resources other than conventionally labeled instances that can be used
to estimate these distributions. In natural language processing tasks like named-entity
recognition, for example, it is common to use readily-available lexicons, or word lists, as
features. We often hypothesize associations between these lexicons and labels in the target



task independent of any labeled data. For example, we expect a list of cities to be a good
indicator of the location label.

We suggest a simple estimation method for converting such lexicon-label associations into
distributions over labels conditioned on the presence of label features. For each lexicon
feature xk in an unlabeled instance x, it contributes a vote for each of its associated labels.
The instance is assigned the label with the most votes. This results in a labeling of the
unlabeled data, and we can compute the distribution p̂(y|xk = 1) directly.

4 Named-Entity Recognition Experiments

precision recall f1
Association Voting 0.697 0.500 0.582
Logistic Regression w/ GE 0.725 0.662 0.692

Table 1: Named-entity recognition results.

LABEL=ORG LABEL=LOC
POS-TAG=NNPS WORD=europe
WORD=qantas WORD=london
WORD=nasdaq WORD=america

WORD=barcelona WORD=in@-1
WORD=university WORD=asia

WORD=ford WORD=africa
WORD=perth WORD=america@1
WORD=sydney WORD=uk

WORD=university@1 WORD=paris
WORD=commonwealth WORD=south

WORD=rugby WORD=united
WORD=airways@1 WORD=states@1
WORD=league@1 WORD=bank@-2
POS-TAG=)@-1 WORD=[DATE]@1
WORD=)@-1 POS-TAG=POS@1

Table 2: The most predictive non-lexicon features for the organization and location labels
according to the parameters of a multinomial logistic regression classifier trained with GE.

We evaluate GE training with lexicons on the CoNLL 2003 named-entity recognition data.
We formulate the NER problem as a sliding-window classification task. That is, each
timestep is an instance, and for each timestep we also include features in a window of
±3 timesteps. In addition to the word tokens themselves, we include features indicating
part-of-speech tags, capitalization, and lexicon matches. More detail on the feature repre-
sentation is available elsewhere [7]. Note that since we are using a classifier that does not
model sequential dependencies, the accuracy cannot be directly compared with linear chain
CRFs (for which we are also working on applying GE).

We maximize the objective function Equation 1 with reference distributions estimated using
the heuristic described in Section 3. In total, we use 31 lexicons gathered from the web.
The model expectations are conditioned on 50,000 unlabeled sentences from the CoNLL
2003 unlabeled data. The results are in Table 1. The model trained with GE achieves an
F1 score of 0.692 on the test set (testb). To attain the same accuracy supervised training
requires 800 labeled instances of each label type (for a total of 4,000 instances).

We compare against a baseline method that uses directly the association voting method
described in Section 3, and GE gives a 26% reduction in F1 error. This comparison illustrates
that GE leverages the co-occurrence patterns in unlabeled data during training to learn
parameters for non-lexicon features. In Table 2 we show some high-weight parameters for
non-lexicon features. Inspection of these features shows that we would indeed expect them
to be strong indicators of the label.
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