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Abstract

Conditional random fields (CRFs) for sequence modeling lsaveral
advantages over joint models such as HMMs, including thétalbd
relax strong independence assumptions made in those maadelghe
ability to incorporate arbitrary overlapping featurese\®ous work has
focused on linear-chain CRFs, which correspond to finigesnhachines,
and have efficient exact inference algorithms. Often, heneve wish
to label sequence data in multiple interacting ways—fomgxa, per-
forming part-of-speech tagging and noun phrase segmentsiinulta-
neously, increasing joint accuracy by sharing informatietween them.
We presendlynamic conditional random fields (DCRFghich are CRFs
in which each time slice has a set of state variables and edgaks-
tributed state representation as in dynamic Bayesian mkswxeand pa-
rameters are tied across slices. (They could also be caileditoonally-
trained Dynamic Markov Networkys Since exact inference can be in-
tractable in these models, we perform approximate inferersing the
tree-based reparameterization framework (TRP). We alseept em-
pirical results comparing DCRFs with linear-chain CRFs @tural-
language data.

1 Introduction

The problem of labeling and segmenting sequences of olismrgaarises in many dif-
ferent areas, including bioinformatics, music modelingnputational linguistics, speech
recognition, and information extraction. Probabilistittié state automata, such as hidden
Markov models (HMMs), have been popular for such sequerditey tasks. Finite-state
Conditional Random Fields (CRFs) [4] are another sequeromiehthat offers several ad-
vantages over HMMs, relaxing the strong dependence asgumphade in those models
and allowing rich sets of overlapping features.

Many sequence-processing problems are solved by chainiogid subtasks. The tra-
ditional language understanding task, for example, isndft@ken into parsing, semantic
understanding, and contextual and discourse analysiafdmaation extraction, one often
performs part-of-speech tagging and then shallow parsingre-processing steps before
the main extraction task. In such an approach, howeversearly in processing nearly



always cascade through the chain, causing errors in thediiput.

In this paper, we address this problem by representing thépheulabel sequences in a
single graphical model, explicitly modeling limited depedies between them. We intro-
duceDynamic CRFswhich are CRFs that repeat structure and parameters ogquasce.
For example, the factorial structure in Figure 3 models ddpacies between cotemporal
labels, allowing information to flow between the subtaskisath directions.

DCRFs are named aft®ynamic Bayesian Networks (DBNg], directed sequence mod-
els for which there is a large body of literature addresseyesentation, learning, and
inference (see [7]). Particular classes of DBNs, such astfiat HMMs, have also been
extensively studied [12, 8, 3]. Previous work with CRFs hasduthe linear-chain struc-
ture, depicted in Figure 1, in which a first-order Markov asption is made among labels.
DCRFs combine the modeling advantages of the distribuidigm state in DBNs with the
rich feature sets allowed in conditional models.

First, we briefly describe the general framework of CRFs. nThee describe DCRFs,
including how to do approximate inference and parametenasibn. Finally, we compare
DCRFs to combinations of linear-chain CRFs on a task thatlies both part-of-speech
tagging and noun-phrase segmentation.

2 CRFs

Conditional Random Field&CRFs) [4] are undirected graphical models that encode a con
ditional probability distribution using a given set of faets. CRFs are defined as follows.
Let G be an undirected model over sets of random variapteslx. Typically,y = {y:}
andx = {x;} fort = 1,...,T, so thaty is a labeling of an observed sequence If

C = {{y.,xc}} is the set of cliques ig, then CRFs define the conditional probability of
a state sequence given the observed sequence as:

polyl) = 75 [T @l M
eC

where® is a potential function and'(x) = >__ [[.cc ®(ye, xc) is normalization factor
over all state sequences of lengthWe assume the potentials factorize according to a set
of features{ fi }, which are given and fixed, so that

T
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The model parameters are a set of real weights{ ), }, one weight for each feature.

Previous applications have used tmear-chain CRF in which a first-order Markov as-
sumption is made on the hidden variables. The graphical hfod#his is shown in Fig-
ure 1. In this case, the cliques of the conditional modellaabdes and edges, so that there
are feature functiong (v:—1, y:, X, t) for each label transition ang (y., x, t) for each la-
bel. Feature functions can be arbitrary. For example, aifedtnctionfy (y.—1, v+, x, t)

on a pair of variable$y;_1, y:) could be a binary test that has value 1 if and only;if,
has the labelddjectivé, y, has the labelgroper nouri, andz; begins with a capital letter.

Linear-chain CRFs correspond to finite state machines, andoe roughly understood
as conditionally-trained hidden Markov models (HMMs). Jhiass of CRFs is also a

INote that in general, the set of labels may be different froenset of states of the FSM, in that
multiple states can correspond to the same label. In peadtiowever, it is usually assumed that
the set of states and labels are the same, or given the seqaktiee labels, the set of states are
unambiguously known.
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Figure 1: Graphical representation of linear-chain CRFs.

globally-normalized extension thlaximum Entropy Markov Model$] that avoids the
label bias problem [4].

3 Dynamic CRFs

3.1 Model Representation

A dynamic CRF is one that has repetitive structure and patemiever time. More specif-
ically, we define 2-CRFto be a two-timeslice undirected graph, with set of featuref
tions { f} and corresponding weigh{s\;}. Given an instance, we unroll the 2-CRF
to get a full undirected model, in the same way as DBNs. Theesseh of features and
weights is used at each time slices, so that the parametstisdiacross the network. Then
the conditional probability of a label sequencés given by:

plylx) = % exp (Z D> ALk (Y (ki X, t)) ®)
t k

DCRFs generalize not only linear-chain CRFs, but more caraf@d structures as well. In
this paper, we use factorial DCRF, which has two linear chains of labels, with labels at
the same time step joined. Figure 3) is an example of an @t édictorial DCRF.

3.2 Inferencein DCRFs

Inference in an unrolled DCRF can be done using any inferafgi@ithm for undirected
models. Because exact inference can be expensive in coD@&Es, we use approx-
imate methods. Here we describe approximate inferencey ustée-reparameterization
(TRP) [11]. TRP is based on the fact that any exact algoritbrnoptimal inference on
trees actually computes marginal distributions for pafnsedghboring nodes. For an undi-
rected graphical model over variablesthis results in an alternative parameterization of
the distribution (Figure 2(a)) as:

1 Psi(xs,
p(x) = 7 H Vs (s) H VYst(Ts,21) = p(x) = H Ps(zs) H m
seV (s,t)EE seV (s,t)EE
(4)

Figure 2(b) shows the reparameterized4ree

Here we summarize the TRP algorithm as a sequence of up®itess T"*! on the
graphU with the edge sef, whereT represents the set of marginal probabilities main-
tained by TRP consisting of single-node margirfBls™ (z,,) and pairwise joint distribu-
tion T (z,, z,); andn denotes the iteration number:

2This figure is adopted from [11].
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Figure 2: (a) A simple tree-structured graphical model dadriginal parameterization;
(b) Alternative parameterization in terms of marginal dittions.

1. Initialization: for every node: and every pair of node&:, v), initialize T° by
TO = kb, andT?, = kb, With k being a normalization factor. (Other initial-
izations are also possible.)

2. TRP updates: fori =1,2,..., do:

¢ Select some spanning tr@é € T with edge set?, whereY = {7} is a set
of spanning tress.

e Use any exact algorithm, such as belief propagation, to coenpxact
marginalg’(z) on7". For all (u,v) € £, set

TZH (zu) = pi (Tu)-
pi(xm xu)
P wu)pt ()

e SetTif! = Ti, forall (u,v) € £/&" (i.e., all the edges not included in
the spanning tre@").

When selecting spanning tre#s= {7}, the only constraint is that the treesThcover
the edge set of the original grafgth

3.3 Parameter Estimation in DCRFs

The parameter estimation problem is to find a set of paraséter {\;} given training

dataD = {z®, 1Y . This is accomplished using standard convex optimizateh-

nigues, similar to other maximum-entropy models [4, 1]. Blepecifically, we optimize
the conditional log-likelihood

= logps(y™ | x™). (5)

The derivative of this is

M sz Dx01) =SSN ey |37 filye xt) (6)
ity

Although this seems to require summing over all possiblellabquences, if we observe
that each feature function depends only on a single cliqeeget

a/\k szk Yt )y X ZZZZPG Ye | X fk(ycaxtl))v (7)

i t ceC ye



Confidence in the pound is widely expected
POS NN IN DT NN VBZ RB VBN
collapsed| NouN OTHER OTHER NOUN VERB RBP VERB
Phrases | B-NP B-PP B-NP I-NP B-VP I-VP I-VP
NP B @) B I @) O @)

Table 1: Example documentwith POS and NP labels, beforeféartallapsing the labels.

wherey. ranges over assignments to the cligue

This loss function is convex, and can be optimized by any remolb techniques. In the
results below, we use L-BFGS, which has previously outperéal other optimization al-
gorithms for linear-chain CRFs [9, 5].

Note that this optimization requires computing marginalqabilities for every training
instance at every iteration of the optimizer. In the expenits reported here, it was typical
to need to compute marginals in 32000 different models. Tritensifies the need for
efficient inference.

4 Experiments

We used factorial DCRFs to do both part-of-speech taggidg@aun-phrase segmentation
on data from the CoNLL 2002 shared task dat&.s@able 1 shows example data. We
considered each sentence to be a training instance, wilesirords as tokens. The training
dataD; contained 209 sentences. Table 2 shows some of the featangsadl.

There were three NP labels: begin-phrase, inside-phraskpther. The original data
contained 45 different POS labels. To reduce the infereinoe, twe collapsed the POS
labels fromd5 to 5 as follows:

Collapse all different types of nouns into one label D\W.
Collapse all different types of verbs into one labalRA.
Collapse all different types of adjectives into one lalbab
Collapse all different types of adverbs into one labePR
e Collapse the remaining POS labels into one labeher.

We present two experiments: one comparing factorial DCRls imear-chain models,
and one comparing different inference algorithms in faat@@RFs.

4.1 Comparison to linear-chain CRFs

We compared three models: a factorial DCRF, a cascaded G &near-chain CRF.
The factorial DCRF used the graph structure in Figure 3, wWithupper chain modeling
part-of-speech (POS) process and the lower chain modeadag-phrase (NP) process. The
vertical edges are added to capture the dependencies beR@®and NP labels.

We used L-BFGS to learn the parameters of the DCRF. Compthimgradient requires
computing the marginals over vertices and edges of the ledrDICRF at different portions
in time. We used the TRP approximation to compute these malgyi

Each TRP iteration selects a random spanning tree from #ghgral model unrolled over
the current training instance. To ensure that all the edfteeagraph will be covered by the

3Seehttp://lcg-www.uia.ac.be/ erikt/research/np-chunkin g.html



word (collapsed: years, year-spans, fractions, numhers, .
contains-dash "-”
contains-dash-based "-based”
capitalized

all-caps

single-capital-letter
mixed-capitalization

contains-digits (and other symbols)

Table 2: Some of the features used in these experiments.
pos )@@~
v @@ @t
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Figure 3: Factorial DCRF model for POS and NP tagging probl(@op process): Part-of-
Speech (POS); (Bottom process): Noun-Phrase (NP).

set of spanning trees used in TRP updates, we included egiat-tiesigned trees among
the random spanning trees. o

Next, we trained two cascaded linear-chain CRFs, where &fe @edicted the POS la-
bels, and then the other CRF predicted the NP labels, uss®®@S predictions as input
features. More specifically, we trained a POS-tagger (whvieltall CRF;,¢) using a train-
ing setD, that had36 instances labeled by their POS tags. We then used the |earoeel
and substituted the POS labels of the original trainingxeby the labels predicted by the
learned model (i.e., CRJ;) over the data irD;, and generated the new training €&t.
Note thatDs has exactly the same data (featurespef and the same NP labels, but could
have have different POS labels. Usifyg, we trained a new CRF model (which we call
CRFjgp) for predicting the NP labels, using the POS labels as affeatu

Finally, we trained a best-case linear-chain CRF (which ale@RF, ) for predicting NP

labels using the true POS labels along with the base feanmasTable 2. Of course, it is
unrealistic to assume that the true POS labels are provideekver, this model is intended
to give an upper bound on how much POS knowledge can help pbrase segmentation.

In the cascaded model CRfFand the best case model CRF we used POS labels as

features, however CF{I; uses the POS labels predicted @R F},,s Whereas CREP uses
the correct POS labels as originally provided with the frairsetD; .

Table 3 compares the performance of these models. We mdeamaeracy on POS labels,
on NP labels, and also joint accuracy on (POS, NP) pairs. Tgpede the joint accuracy
for CRF:;p on the test set, we used the predicted POS tags from,;RiRd the predicted

NP tags using CR}L:p. To compute the joint accuracy for CRfFwe used the true POS tags
of the test set together with the predicted NP tags on thesétsising CRE,,.

The factorial DCRF outperform the cascaded Cﬂ‘BI-Tn joint accuracy and POS accuracy,
however, but had lower NP accuracy. We conjecture that tsedhere are more POS labels
than NP labels, L-BFGS is forced to minimize the error acROS with more weight. The
best-case model CRF outperforms the other models in every category. The perioca
of 100% for POS labels is because this model was provided with tru® RBels.



CRF}, | DCRF | CRF;,
NP Accuracy | 0.9084 | 0.8611| 0.9249
POS Accuracy| 0.7722 | 0.8203 1.0

Joint Accuracy| 0.7197 | 0.7728| 0.9249

Table 3: Comparison of performance of CRFs and DCRFs

Algorithm Overall F1 | Training time (hr)| LBFGS iterations
TRP 0.6740 5.342 87
Loopy 0.6756 14.728 81
Junction Tree|| 0.6675 8.614 83

Table 4: Comparison of inference algorithms for 2-chairiddal CRF on CoNLL 2002
data set. Overall F1 is the average of the F1 measure ovgpal of NP and POS labels.
LBFGS iterations gives the number of iterations of the LBF§s&dient descent.

4.2 Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and esiopainy marginal computations
during training, effective inference is critical to effinigraining with many labels and large
data sets. We compared the performance and running timee# tifferent propagation
algorithms: TRP, loopy belief propagation, and junctiaetr

We ran TRP with random spanning trees, stopping after 2atiters whether the algorithm
had converged or not. Loopy belief propagation was run afitiharginal probabilities had
converged to withirl0—4, which usually took between 10 and 15 iterations of syncbusn
updates. Exact inference using junction tree was feasdxtalse we used collapsed tags
and only two chains. In this experiment, we used 410 traimstances, a superset of the
training set of the previous section. POS tags were colthpsébefore. All experiments
were run on an Intel Xeon 2.8 GHz machine with 3 GB RAM. We measperformance
on a test set and total training time. The training timesudela few non-inference tasks
such as computing the gradient; however, the running tindeminated by the time used
by inference.

The results are shown in Table 4. In overall F1 on a test setjrtference algorithms
perform very similarly. For some reason, junction tree hadightly lower F-measure
on this test set; in other experiments, exact inference hdsslightly higher F-measure.
However, TRP trains much faster, using only 62% of the timedee by junction tree.
Synchronous loopy belief propagation performed very sfawi this data set. Using a less
strict stopping criterion might allow it to run faster withiiosacrificing performance on the
tagging task.

Although these results need to be replicated in other dégatbey suggest that TRP isa a
good choice for training this kind of model.

5 Conclusions

Dynamic CRFs are conditionally-trained sequence moddls rgpetitive graphical struc-
ture and tied parameters. Inference in DCRFs can be doneefficusing approximate
methods, and training can be done within the maximum-egth@mework. Because of
their factorized state, we can use DCRFs do several lab&sig at once, sharing infor-
mation between themx. On a joint noun-phrase segmentapiar-bf-speech tagging task,
a factorial DCRF does better on joint accuracy than lindeirt CRFs, but apparently this



happens at the expense of NP accuracy. More work is needéaiiong DCRFs where
accuracy on certain labels is more important than others.
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