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Abstract

Markov logic is a highly expressive language recently introduced to
specify the connectivity of a Markov network using first-order logic. While
Markov logic is capable of constructing arbitrary first-order formulae over
the data, the complexity of these formulae is often limited in practice be-
cause of the size and connectivity of the resulting network. In this paper,
we present approximate inference and training methods that incremen-
tally instantiate portions of the network as needed to enable first-order
existential and universal quantifiers in Markov logic networks. When ap-
plied to the problem of object identification, this approach results in a
conditional probabilistic model that can reason about objects, combining
the expressivity of recently introduced BLOG models with the predictive
power of conditional training. We validate our algorithms on the tasks of
citation matching and author disambiguation.

1 Introduction

Markov logic networks (MLNs) combine the probabilistic semantics of graphical
models with the expressivity of first-order logic to model relational dependencies
Richardson and Domingos (2004). They provide a method to instantiate Markov
networks from a set of constants and first-order formulae.

While MLNs have the power to specify Markov networks with complex,
finely-tuned dependencies, the difficulty of instantiating these networks grows
with the complexity of the formulae. In particular, expressions with first-order
quantifiers can lead to networks that are too large to instantiate, making in-
ference intractable. Because of this, existing applications of MLNs have not
exploited the full richness of expressions available in first-order logic.
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For example, consider the database of researchers described in Richardson
and Domingos (2004), where predicates include Professor(person), Student(person),
AdvisedBy(person, person), and Published(author, paper). First-order for-
mulae include statements such as “students are not professors” and “each stu-
dent has at most one advisor.” Consider instead statements such as “all the
students of an advisor publish papers with similar words in the title” or “this
subset of students belong to the same lab.” To instantiate an MLN with such
predicates requires existential and universal quantifiers, resulting in either a
densely connected network, or a network with prohibitively many nodes. (In
the latter example, it may be necessary to ground the predicate for each element
of the powerset of students.)

In this paper, we present approximate inference and training methods that
incrementally instantiate portions of the network as needed to enable such first-
order quantifiers in MLNs.

We apply MLNs to the prevalent problem of object identification (also known
as record linkage, deduplication, identity uncertainty, and coreference resolu-
tion). Object identification is the task of determining whether a set of constants
(mentions) refer to the same object (entity). Successful object identification en-
ables vision systems to track objects, database systems to deduplicate redundant
records, and text processing systems to resolve disparate mentions of people, or-
ganizations, and locations. We present results on citation matching and author
disambiguation that validate the use of complex first-order formulae in MLNs.

Although Richardson and Domingos (2004) also apply MLNs to object iden-
tification, their approach only considers predicates at the mention level. By
creating first-order predicates over objects, our system reasons at the entity
level, providing both the expressive power of the generative BLOG model in
Milch et al. (2005) as well as the predictive power of discriminative models
McCallum and Wellner (2003).

2 Related Work

MLNs were designed to subsume various previously proposed statistical rela-
tional models. Probabilistic relational models Friedman et al. (1999) combine
descriptive logic with directed graphical models, but are restricted to acyclic
graphs. Relational Markov networks Taskar et al. (2002) use SQL queries to
specify the structure of undirected graphical models. Since first-order logic sub-
sumes SQL, MLNs can be viewed as more expressive than relational Markov
networks, although existing applications of MLNs have not fully utilized this
increased expressivity. Other approaches combining logic programming and
log-linear models include stochastic logic programs Cussens (2003) and MAC-
CENTDehaspe (1997), although MLNs can be shown to represent both of these.

Viewed as a method to avoid grounding predicates, this paper is similar
to recent work in lifted inference Poole (2003), although that work focuses on
directed graphical models.

Most relevant to this work are the recent relational models of identity uncer-
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tainty Milch et al. (2005); McCallum and Wellner (2003); Parag and Domingos
(2004). McCallum and Wellner (2003) present experiments using a conditional
random field that factorizes into a product of pairwise decisions about mention
pairs (Model 3). These pairwise decisions are made collectively using relational
inference; however, as pointed out in Milch et al. (2004), there are shortcom-
ings to this model that stem from the fact that it does not capture features
of objects, only of mention pairs. For example, aggregate features such as “a
researcher is unlikely to publish in more than 2 different fields” or “a person
is unlikely to be referred to by three different names” cannot be captured by
solely examining pairs of mentions. Additionally, decomposing an object into a
set of mention pairs results in “double-counting” of attributes, which can skew
reasoning about a single object Milch et al. (2004). Similar problems apply to
the model in Parag and Domingos (2004).

Milch et al. (2005) address these issues by constructing a generative proba-
bilistic model over possible worlds called BLOG, where all realizations of objects
(their number, attributes, and observed mentions) are sampled from a gener-
ative process. While BLOG model provides attractive semantics for reasoning
about unknown objects, the transition to generatively trained models sacrifices
some of the attractive properties of the discriminative model in McCallum and
Wellner (2003) and Parag and Domingos (2004), such as the ability to easily
incorporate many overlapping features of the observed mentions. In contrast,
generative models are constrained either to assume the independence of these
features or to explicitly model their interactions.

Object identification can also be seen as an instance of supervised clustering.
Daumé III and Marcu (2004) present a Bayesian supervised clustering algorithm
that uses a Dirichlet process to model the number of clusters. As a generative
model, it has similar advantages and disadvantages as Milch et al. (2005).

In this paper, we present a discriminatively trained, conditional model of
identity uncertainty that incorporates the attractive properties of McCallum
and Wellner (2003) and Milch et al. (2005), resulting in a discriminative model
to reason about objects.

3 Markov logic networks

Let F = {Fi} be a set of first order formulae with corresponding real-valued
weights w = {wi}. Given a set of constants C = {ci}, define ni(x) to be the
number of true groundings of Fi realized in a setting of the world given by x. A
Markov logic network (MLN) Richardson and Domingos (2004) defines a joint
probability distribution over possible worlds x. In this paper, we will work with
discriminative MLNs Singla and Domingos (2005), for which we have a set of
evidence atoms x and a set of query atoms y. Using normalizing constant Zx,
the conditional distribution is given by
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P (Y = y|X = x) =
1

Zx
exp

|Fy|∑
i=1

wini(x, y)

 (1)

where Fy ⊆ F is the set of clauses for which at least one grounding contains
a query atom. Note that now the MLN specifies the structure of a condi-
tional Markov network (also known as a conditional random field Lafferty et al.
(2001)).

From Equation 1, the formulae Fy specify the structure of the corresponding
Markov network as follows: Each grounding of a predicate specified in Fy has a
corresponding node in the Markov network; and an edge connects two nodes in
the network if and only if their corresponding predicates co-occur in a grounding
of a formula Fy. Thus, the complexity of the formulae in Fy will determine the
complexity of the resulting Markov network, and thus the complexity of infer-
ence. When Fy contains complex first-order quantifiers, the resulting Markov
network may contain a prohibitively large number of nodes,

To address this problem, we present an algorithm that incrementally builds
the structure of the network while performing inference. This algorithm itera-
tively grounds predicates during inference as needed so as to model existential
and universal quantifiers while maintaining tractability. Below, we describe
this method in more detail for a specific class of first-order quantified formulae
applied to task of object identification.

3.1 Identity uncertainty

Typically, MLNs make a unique names assumption, requiring that different
constants refer to different objects. This simplifies the network structure at the
risk of weak or fallacious predictions (e.g., Alive(a) ∧ Dead(b) is erroneous if a
and b are the same object).

Richardson and Domingos (2004) address this concern by creating the pred-
icate Equals(x, y) between each pair of constants x, y. While this retains the
coherence of the model, the restriction to pairwise predicates can be a draw-
back if there exist informative features over sets of constants. In particular,
by only capturing features of pairs of constants, this solution cannot model the
compatibility of object attributes, only of mention attributes (Section 2).

Instead, we desire a conditional model that allows predicates to be defined
over a set of coreferent constants.

One approach to this would be to introduce constants that represent objects,
and connect them to their mentions by predicates such as IsMentionOf(x, y). In
addition to computational issues, this approach also somewhat problematically
requires choosing the number of objects. (See Richardson and Domingos (2004)
for a brief discussion.)

Instead, we propose creating a set of object predicates over sets of constants,
such that a setting of these predicates implicitly determines the number of
objects. Let d = {di} be a subset of constants. Then the object predicate
AreEqual(d) is true if and only if all di ∈ d refer to the same object. Since each
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AreEqual(a,b) AreEqual(a,c) AreEqual(b,c)

AreEqual(a,b,c)

Figure 1: An example of the network instantiated by an MLN with three con-
stants and the object predicate AreEqual, instantiated for all possible subsets
with size ≥ 2.

subset of constants corresponds to a candidate object, a (consistent) setting
of all the AreEqual predicates results in a solution to the object identification
problem. The number of objects is chosen based on the optimal groundings of
each of these object predicates, and therefore does not require a prior over the
number of objects. However, a posterior over the number of objects could be
modeled discriminatively in an MLN Richardson and Domingos (2004).

This formulation allows us to create evidence predicates over objects. For
example, NumberFirstNames(d) returns the number of different first names used
to refer to the object with mentions d. In this way, we can model aggregate
features of an object, capturing the compatibility among its attributes.

Naively implemented, such an approach would require enumerating all sub-
sets of constants, ultimately resulting in an unwieldy network. In this paper, we
provide algorithms to perform approximate inference and parameter estimation
by incrementally instantiating these predicates as needed.

3.2 Object predicates

Object predicates are n-ary predicates that take as arguments an arbitrary
number of constants. These constants represent a candidate object over which
we will compute features.

Let IC = {1 . . . N} be the set of indices into the set of constants C, with
powerset P(IC). For a given C, there are therefore |P(IC)| possible groundings
of the AreEqual query predicates. We can similarly define evidence predicates
over subsets of constants.

The form of the MLN defined by these predicates is the same given by Equa-
tion 1. However, by using n-ary predicates, we have increased the complexity
of calculating ni(x, y), since we must search over all subsets of |C| to calculate
the number of times each predicate holds for setting y.

An equivalent way to state the problem is that using n-ary predicates results
in a Markov network with one node for each grounding of the predicate. Since
in the general case there is one grounding for each subset of C, the size of the
corresponding Markov network will be exponential in |C|. See Figure 1 for an
example instantiation of an MLN with three constants (a, b, c) and one AreEqual
predicate.
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Richardson and Domingos (2004) suggest approximating ni(x, y) using sam-
pling. Because it is prohibitive to even generate the network with these quan-
tified formulae, standard sampling methods seem unsuitable. Instead, we em-
ploy a deterministic approach which incrementally creates groundings for n-ary
predicates, iteratively growing the number of nodes in the Markov network as
needed. This is an attractive alternative to traditional sampling, since it instan-
tiates structures based on how likely they are to contain true predicates.

3.3 Inference

Inference seeks the solution to y∗ = argmaxy P (Y = y|X = x) where y∗ is
the setting of all the query predicates Fy (e.g. AreEqual) with the maximal
conditional density.

Whereas in many highly connected models the computational bottleneck is in
computing the normalizer Zx; here, we cannot even instantiate the graph, much
less calculate Zx. For this reason, we cannot employ traditional approximate
inference techniques such as loopy belief propagation or Gibbs sampling.

Instead, we employ an incremental inference technique which iteratively fixes
predicate values to their MAP estimate given the setting of the other predicates.
Based on this setting, the set of Fy predicates is expanded. This can be thought
of as a breadth-first search through the instantiations of predicates Fy, and is
also related to the Metropolis–Hastings method used in Pasula et al. (2003).

At step t of the inference algorithm, let F t ⊆ Fy be the set of object pred-
icates representing a partial solution to the object identification task for con-
stants C, and let the setting of F t be specified by yt.

At step t, we can calculate an unnormalized score for the current setting yt

given the evidence predicates specified by x as follows:

S(yt, x) = exp

|F t|∑
i=0

wini(x, yt)


Define setting yt

d to differ from yt only by the fact that F (d) = 0 in yt and
F (d) = 1 in yt

d; that is, yt
d merges the constants specified by d. At step t, the

algorithm exhaustively solves d∗ = argmaxd S(yt
d, x) and sets the corresponding

grounded predicate F (d∗) to 1.
Based on this solution, the set of groundings of F t is expanded to F t+1 as

follows: Let F̂ t(·) be the set of grounded predicates that have been set to 1 thus
far. Then F̂ t(·) induces a clustering of |C| — e.g., if F (a, b) = 1 ∧ F (c, d) = 1,
then the predicted clusters are (a, b) and (c, d). Based on this clustering, consider
merging all possible pairs of clusters. Each of the merges under consideration
has a corresponding predicate, e.g. F (a, b, c, d). Then, F t+1 contains the union
of these new predicates and those in F t.

The algorithm terminates when there is no F (d) that can be set to 1 and
improve the score function, i.e. maxd S(yt

d, x) ≤ S(yt, x).
In this way, the final setting of Fy is a local maximum of the score func-

tion. As in other search algorithms, we can employ look-ahead to reduce the
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greediness of the search (i.e., consider multiple merges simultaneously). This
approximation is similar to recent work on correlational clustering Bansal et al.
(2004).

3.3.1 Pruning

The space required for the above algorithm scales Ω(|x|2), since in the initial-
ization step we must ground a predicate for each pair of constants. We can
use the canopy method of McCallum et al. (2000), which thresholds a “cheap”
similarity metric to prune necessary comparisons. This pruning can be done
at subsequent stages of inference to restrict which predicates variables will be
introduced.

Additionally, we must ensure that predicate settings at time t do not contra-
dict settings at t− 1 (e.g. if F t(a, b, c) = 1, then F t+1(a, b) = 1). The inference
algorithm fixes such predicates to maintain consistency and prunes them from
the search space.

3.4 Parameter estimation

Given a dataset D of mentions annotated with their referent objects, we would
like to estimate the value of w that maximizes the likelihood of D. That is
w∗ = argmaxw Pw(y|x).

When the data are few, we can explicitly instantiate all F (d) predicates,
setting their corresponding nodes to the values implied by D. The likelihood is
given by Equation 1, where the normalizer is Zx =

∑
y′ exp

(∑|F ′
y|

i=1 wini(x, y′)
)
.

Although this sum over y′ to calculate Zx is exponential in |y|, many incon-
sistent settings can be pruned as discussed in Section 3.3.1.

However, in general instantiating the entire set of predicates denoted by y
and calculating Zx is infeasible. Existing methods for MLN parameter estima-
tion include pseudo-likelihood and voted perceptron Richardson and Domingos
(2004); Singla and Domingos (2005). We instead follow the recent success in
piecewise training for complex undirected graphical models Sutton and McCal-
lum (2005) by making the following two approximations. First, we avoid cal-
culating the global normalizer Zx by calculating local normalizers, which only
sum over the two values for each predicate grounded in the training data. We
therefore maximize the sum of local probabilities for each query predicate given
the evidence predicates. Gradient descent is performed on the resulting convex
likelihood function using L-BFGS, a second-order approximation method Liu
and Nocedal (1989).

Secondly, since all predicates cannot be instantiated, we sample a subset
FS ∈ F and maximize the likelihood of this subset. The sampling is not strictly
uniform, but is instead obtained by collecting the predicates created while per-
forming object identification using a weak method (e.g. string comparisons).
This both ensures that predicates of many different arities will be sampled, and
also generates the type of predicates likely to be seen during inference.
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Objects Pairs
pr re f1 pr re f1

constraint 85.8 79.1 82.3 63.0 98.0 76.7
reinforce 97.0 90.0 93.4 65.6 98.2 78.7

face 93.4 84.8 88.9 74.2 94.7 83.2
reason 97.4 69.3 81.0 76.4 95.5 84.9

Table 1: Precision, recall, and F1 performance for Citeseer data.

Objects Pairs
pr re f1 pr re f1

miller d 73.9 29.3 41.9 44.6 1.0 61.7
li w 39.4 47.9 43.2 22.1 1.0 36.2

smith b 61.2 70.1 65.4 14.5 1.0 25.4

Table 2: Precision, recall, and F1 performance on Author data.

4 Experiments

We perform experiments on two object identification tasks: citation match-
ing and author disambiguation. Citation matching is the task of determining
whether two research paper citation strings refer to the same paper. We use
the Citeseer corpus Lawrence et al. (1999), containing approximately 1500 cita-
tions, 900 of which are unique. The citations were manually labeled with cluster
identifiers, and the strings were segmented into fields such as author, title, etc.

Using first-order logic, we create a number of object predicates such as
AllTitlesMatch, AllAuthorsMatch, AllJournalsMatch, etc., as well as their
existential counterparts, ThereExistsATitleMatch, etc. We also include count
templates, which indicate the number of these matches in a cluster.

Additionally, we add edit distance templates, which calculate approximate
matches1 between title fields, etc., for each citation in a cluster. Aggregate
features are used for these, such as “there exists a pair of citations in this
cluster which have titles that are less than 30% similar” and “the minimum edit
distance between titles in a cluster is greater than 50%.” Table compares the
performance of our model (Objects) with a model that only considers pairwise
predicates of the same features (Pairs).

Author disambiguation is the task of deciding whether two strings refer
to the same author. To increase the task complexity, we collected citations
from the Web containing different authors with matching last names and first
initials. Thus, simply performing a string match on the author’s name would
not be sufficient in many cases. We collected 400 citations referring to 56 unique
authors.

We generated object predicates similar to those used for citation matching.
1We use the Secondstring package, found at http://secondstring.sourceforge.net
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Additionally, we included features indicating the overlap of tokens from the ti-
tles and indicating whether there exists a pair of authors in this cluster that
have different middle names. This last feature exemplifies the sort of reasoning
enabled by object predicates: For example, consider a pairwise predicate that
indicates whether two authors have the same middle name. Very often, middle
name information is unavailable, so the name “Miller, A.” may have high simi-
larity to both “Miller, A. B.” and “Miller, A. C.”. However, it is unlikely that
the same person has two different middle names, and our model learns a weight
for this feature. Table 2 demonstrates the potential of this method.

The results show that Objects obtains consistent improvement in precision,
while Pairs generally has higher recall. Overall, Objects achieves superior F1
scores on 5 of the 7 datasets. These results suggest the potential advantages of
using complex first-order quantifiers in MLNs.

5 Conclusions and Future Work

We have demonstrated an algorithm that enables practical inference in MLNs
containing first-order existential and universal quantifiers, and have demon-
strated the advantages of this approach on two real-world datasets. Future
work will investigate efficient ways to improve the approximations made during
inference, as well as to discriminatively model the true number of objects.

6 Acknowledgments

Thanks to Pallika Kanani for helpful discussions. This work was supported in
part by the Center for Intelligent Information Retrieval, in part by U.S. Gov-
ernment contract #NBCH040171 through a subcontract with BBNT Solutions
LLC, in part by The Central Intelligence Agency, the National Security Agency
and National Science Foundation under NSF grant #IIS-0326249, and in part
by the Defense Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Division, under contract
number NBCHD030010. Any opinions, findings and conclusions or recommen-
dations expressed in this material are the author(s)’ and do not necessarily
reflect those of the sponsor.

References

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Ma-
chine Learining, 56:89–113, 2004.

J. Cussens. Individuals, relations and structures in probabilistic models. In Pro-
ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
pages 126–133, Acapulco, Mexico, 2003.

9
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