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Abstract fined ratio thresholds. In [8], Lee presents a more uni-
fied approach to decode substitution ciphers by using Hid-
OCR systems for printed documents typically require den Markov Models and the expectation maximization al-
large numbers of font styles and character models to work gorithm. That work uses n-gram statistics as model priors,
well. When given an unseen font, performance degradeswvhereas ours uses entire word patterns. Breuel [1] intro-
even in the absence of noise. In this paper, we performduced a supervised OCR system that is font independent,
OCR in an unsupervised fashion without using any charac- but it does not take advantage of token-based image com-
ter models by using a cryptogram decoding algorithm. We pression.
present results on real and artificial OCR data.

2 TheModd

1. Introduction and Related Work We take binary images of machine printed text as in-

i ) puts. Within an image, each ink blot (i.e., connected com-

Most OCR systems for machine print text need large ponent) is identified and an effort is made to identify char-
collections of font styles and canonical character represe gters composed of multiple ink blots, such as those with
tationg, whereby .the recognition process involves tereplat 5.cent symbols and the lettérsandj . An object defined
matching for the input character images. Such systems argy, this manner can correspond to (1) exactly one character
font dependent and suffer in accuracy when given docu- o hynctuation mark, (2) part of a character that is broken
ments printed in novel font styles. An alternative approach i several pieces due to noise, or (3) multiple characters
we examine here groups together similar characters in theg;,cp as the ligatureli andffl. These objects are next
document and solves a cryptogram to assign labels to clusgystered using greedy agglomerative clustering, so teat t
ters of characters. This method does not require any charjn,t document is represented by a string of cluster assign-
acter models, so it is able to handle arbitrary font styles. | 1 ants in place of the actual characters. By examining the
can take advantage of patterns such as regularities in imag%atterns of repetitions of cluster IDs and comparing them
distortions that are particular to each document. In addi- patterns of dictionary words, we can decode the mapping
tion, the cryptogram decoding procedure is well-suited for peween cluster IDs and characters in the output alphabet.

performing OCR on images compressed using token-baseqp, the rest of this section, we describe each step in detail.
methods such as Djvu, Silx, and DigiPaper.

Treating OCR as a cryptogram decoding problem dates2 1
back at least to papers by Nagy [11] and Casey [2] in 1986. "
There continues to be research done to improve the perfor-
mance of approaches that use no character models.

In [3], Ho and Nagy develop an unsupervised OCR sys-

tem that performs character clustering followed by lexicon : . ) )

based decoding. Their decoding procedure iteratively ap-nUmber of pixels on whicl andB differ. Itis fast and easy
plies a set of modules to progressively build up assignmentst© calculate, but it is not robust to noise or minor variaion
based on comparing the “v/p” ratio against manually set in stroke thicknesgHausdorff distanc¢9] defined as
thresholds. One major difference between this work and )

[3] is our use of probabilistic reasoning instead of prede- h(A,B) = maxmind(a,b),

Character Clustering

Two straightforward measures of distance between two
binary imagesA andB are the Hamming distance and the
Hausdorff distance. Thelamming distancés simply the



whered is any metric, such as the Euclidean distance. If By computing the numerization strings for every docu-
the Hausdorff distance fromto B is &, then for every point  ment and dictionary word, we identify code words in the
a € A, there is a point irB within distanced. document that map to a unique dictionary word or are

To reduce the effects of noisy pixels on the distance, shared by a small number dictionary words. In this way,
we “soften” the Hausdorff distance such tig(A,B) = o an initial mapping between cluster IDs and output charac-
means that for at leagtpercent of the pointa € A, there is ters can be made.

a point inB within distanced. To make the Hausdorff mea- Formally, letE = (ey, &, ..., &) be the sequence of words

sure symmetric, we take the mearhgfA, B) andhy(B,A). encoded by cluster assignmer@s= {c; } be the set of clus-

In our experiments, we use this average with 95. ter IDs, and® = {0} be the alphabet of the target language.
The Hausdorff measure is more robust than the Ham-Our goal is to compute the set of assignments that maxi-

ming measure, but is expensive to compute for @je?) mizesP({c; = aj}|E). By considering one mapping at a

pairwise distances, whereis the number of images. We time, we write

take advantage of the speed of the Hamming distance and P(E|c, = aj)P(c = a;)

the robustness of Hausdorff distance by using the canopy P(ci = aj|E) = P(JE) J

method devised by McCallum et al [10]. First, the Ham-

ming distance is computed for all pairs of images, and two OP(E|ci = aj)P(ci = aj)

distance thresholdf, andT, are specified, wherg > T». OP(ey, e,....,en|c = aj)

Next, we go through the list of images in any order and n

remove one image from the list to serve as the seed of a ~ [1P(edci =aj)

new canopy. All images in the list within distande of k=1

the seed image are placed into the new canopy, and all im- _ lﬂl P(ci = ajle)P(ex)

ages within distanc&, are removed from the list. This pro- Kl P(ci =aj)

cess is repeated until the list is empty. The more expen- n

sive Hausdorff measure is then used for pairwise distances 07 Pl = ajle),

within each canopy. k=1

After all pairwise distances have been computed, the im-where we have applied the naive Bayes assumption, used
ages are partitioned using hierarchical agglomerative-clu Bayes' rule, and assumed a uniform prior Ric; = a;).
tering. Inter-cluster similarity is computed by the growp a The quantityP(c; = aj|e&) is calculated by normalizing
erage. l.e., the distance between clus&randG; is given the count of the number of times cluster¢Dmaps to output
byd(G1,Gz) = Wl\Gz\ ¥ AcG, Y Bea, N(A,B). To choose the Ietterqj among _the dictionary words that have t_he same
final number of clusters, we use the elbow criterion de- numerization string as,. We used Laplace smoothing with

scribed in the experiments section. A = 0.001 to avoid zero probabilities.
Once P(ci = aj|E) has been calculated for every
2.2 Character Decoding ¢ and aj, each clusterci is mapped to character
argma P(ci = aj|E). Not all assignments will be correct
Consider the following word encoding: at this point, because of words whose numerization strings
don't have much discriminating power. We solve this prob-
aByyByyBodB, lem by using the set of mappings of which we are confident

where each Greek letter corresponds to an English alpha—tO infer the less confident ones.

bet letter. Given that the string stands for an English word, . .
which word is it? After some thought, it should be clear that 2.3 Confidence Estimation

it is the word “Mississippi,” since no other English word has An intuitive way to measure the confidence of an as-

that particular pattern of letters. : . signment forg; is to look at how peaky the distribution
For each word represented as a string of cluster assign-

ments, we compute ilsumerization strindyy going from P(ci = -|E) is. Entropyquantifies this measure. For every
left to right, assigning 1 to the first cluster ID, 2 to the sec- cluster IDG;, the entropy of its assignment is
ond distinct cluster ID, 3 to the third distinct cluster IDce
For the above string, suppose the cluster assignments are H(c)=— z P(ci = aj|E)log(P(c = o |E)).
ajes

73202032020317173, Sorting the entropies in ascending order gives a list of

call that each code wore, is associated with a list of dic-
12332332442, tionary wordsDy that have the same numerization string.



In general, some dictionary words By are incompatible  identity mappings that involve elements 6f To avoid
with the mode ofP(ci = -|E). Our refinement strategy is having to calculate the edit distancewsfto every dictio-
to iterate thec;'s as sorted by entropy, assume the map- nary word, we prune the list of dictionary words by com-
ping of ci = argmax,; P(ci = oj|E) to be true, and for each  puting the ratior (wi,d;) = % for every dictio-
code word that contairg, remove from its I|st.ofd|ct|onary nary wordd;, wherecomniw;, d;) is jthe number of (non-
wor_ds those words that are |r_100mpat|bleIW|th the as.sum.edunique) character trigrams; andd; have in common [6].
assignment. After each iteration, the assignment probabil

i d entropi p ' ted usi Letd(w;) = argma>gj€Dr(Wi,d,-), which can be found ef-
I€S and entropies of UNProcessye are recomputed using ficiently by using an inverted index of character trigrams.
the reduced lists of words.

Next, only the string edit operations betwegnandd(w;)
need to be tallied. In the case that multiple dictionary vgord
share the same maximum ratio with, the edit operations

) ) of w; are ignored, because in our experience, using such
The decoding procedure described above assumes eacfjorgs skews the edit counts toward commonly occurring

cluster ID maps to one output character. However, some|gers such as. After the edit counts have been tabulated,
clusters contain ligatures and partial characters. To-(par g5ch cluster ID ir€ is re-mapped to the string it most fre-
tially) deal with over-segmentation, prior to the decoding quently edits to.

steps described above, we count the number of of times

each subsequence of cluster IDs appears in the document; : :
Next, the subsequences that contain anilythat appear in b Experiments and Analysis
no other subsequences are replaced by a single new cluster We performed experiments on artificial and real
ID. To correct mapping errors that persist after the decod- ata. We used the Spell Checker Oriented Word Lists
ing step, we use a refinement strategy based on string-edi?http'_//Wordlist sourceforge.net/), which contains GHB
distances. The output alphabet is conceptually modified to ) ' ' '

Y’ = ¥*, the set of strings made of zero or more letters from words, as a lexicon.
s oo 9 Artificially generated data provides a sanity check for the

We begin with an example. Suppose we are given theperformance of the decoding algorithm under optimal in-
artially decoded words ' put conditions and allows us to examine the robustness of
P y the algorithm by varying the amount of noise present. We

2.4 Ligatures and Partial Mappings

20st use two types of artificial data in our experiments, one to

fri2tens simulate perfect character segmentation and clusten, a

enou? another to more closely resemble conditions of real-world
image data.

where? denotes the same cluster ID that needs to be deci- The best-case scenario for the decoding algorithm is
phered. Recall that each cluster maps to an elemebt,of when (1) there is a bijective mapping between clusters and
not necessarily to a single character. The first word alonethe output alphabeX, and (2) the alphabet of the lexicon
does not give much information, since it candost , post , used by the decoder equalsTo simulate this condition, we
and al nost, among others. From the second and third clean data from the Reuters corpus by removing all numer-
words, it becomes clear that the question mark stands forals and punctuation marks, and lowercasing all remaining
the lettergh. Essentially, this puzzle is solved by a knowl- letters. The three hundred files with the most words after
edge of the English lexicon and a mental search for wordspreprocessing selected, and the ASCII codes of the text is
that are most similar to those partial decodings. given to the decoder. The number of words in these files
The first step in this strategy is to identify the et C range from 452 to 1046. Table 2 shows the performance
of clusters that are candidates for correction. Our initial of the algorithm, and Table 1 lists some correctly decoded
definition of € is the set of cluster IDs appearimgly in words that are not in the dictionary. Most errors involve
non-dictionary words, but this criterion misses those-clus mislabeling the letterg andz, which make up 0.18% and
ters appearing in decoded words that happen to be in thed.07% of the characters, respectively. In comparison, the
dictionary by accident. Instead, we defifi¢o be the set of  lettere, which comprises 9.6% of the characters, was re-
clusters that occur more frequently in non-dictionary veord called 100% of the time.
than in dictionary words, where frequency is measured by Leetspeak (or Leet) is a form of slang used in Internet
the normalized character count. chat rooms and forums that involves the substitution of let-
For every decoded worg; that contains an element of ters by similar looking numerals (e.§.for e), punctuation
C, we find the dictionary word that is closest to it in edit marks (e.g.J- | for h), or similar sounding letters (e.qph
distance and tally the edit operations that involve elesent for f). In addition, letter substitutions may vary from one
of €. If w; happens to be in the dictionary, we count the word to the next, so that the lettermay be written a$




aegean aluvic
bernoulli dir

exxon fluoroscal
multilaterally ~ zinn

Table 1. Some correctly deciphered non-
dictionary words from the ASCII code data.

ASCIl Leetspeak|
character accuracy 99.80 99.65
word accuracy 98.84 98.06

Table 2. Decoding performance on 300 news
stories encoded in ASCII and Leetspeak.

in one word andb in the next. As an example, the word
Leet speak itself may be written as3373p34k. An exam-

the quich brewn fex jumps ever the lazy deg

the guick brown for jumps over the lasn dog

the qytcl‘ b1Owa 1Oy Wwmps Cyeithe Vazy Q‘Oq

the quick brown fox jumps over the lzy dog

Ty qujes prowy fx Jaggpy ey jjje fazy g

the quick_brown fox jumps over the lazy dog

b queicit browo Pose junps ower chis laey dog

Figure 1. Samples of unusual fonts used to
create document images of Reuters stories.

in the UNLV data set that were scanned as bi-tonal images
at 300 dpi, we selected 314 text zones that are primarily text
(excluding zones that contain tables or math formulas) for
recognition.

Many of the images are slanted, where lines of text are
not parallel to the top and bottom edges of the image. Al-

ple sentence in the Reuters story translated to Leetspeak isthough clustering can deal with slanted character images,

g01d '$ ex|oect3d t0 [On7!nve i7z ri$e
7#!'$ y3@ due t0 r3newdd !nphl @! On@y
| orezzur3z ez9eci4lly in t#e uz

(gold is expected to continue its rise this year due to re-
newed inflationary pressures especially in the us).

Understanding Leetspeak requires resolving some of the
same issues as the character recognition task. More tha
one character in Leetspeak can be used to represent th

same alphabet letter, which mirrors the problem of split

clusters. Multiple Leet characters can be used to represen
the same alphabet letter, and this mirrors the problem of

over-segmentation of character images.

To generate Leetspeak data to test our decoding algo

rithm, we defined the substitutions such that no two original
letters share any characters in their mappings. This is don

only as a simplification of the problem, since Leetspeak can

rectification makes it easier to determine the reading order
and inter-word spacing needed for decryption. Our recti-
fication algorithm is based on an entropy measure of ink
distributions. For each horizontal line of pixels in the im-
age, we count the number of pixels occupied by ink, so that
a projection profile of the image obtained as in [7] and [5].
We simply search for the rotation, irf Increments, that
minimizes the projected entropy.

e After rectification, the image is despeckled by removing
Isolated single-pixel ink blots. Each connected component
'{s extracted and resized to fit within a 60 x 60 pixel image
centered at its centroid. To cluster the images, pairwise di
tances are computed by shifting one of the images around a
3 x 3 window and taking the smallest Hausdorff distance.

Our decoding algorithm relies on accurate segmentation

n

Pf the sequences of cluster IDs into word units, so a princi-

pled method is needed to identify word demarcations. Fig-

be much more complex than what is presented here. We!'® 2 shows a typical histogram for horizontal spacing be-

ran the decoding algorithm on the same 300 Reuters storie

encoded in Leet, and Table 2 gives the character and wor

Jween adjacent connected components on an image, where
4he left hump corresponds to spaces within a word, and the

accuracies. The decoding performance on Leet is just adi9ht hump spaces between two words. We model such his-

good as on the ASCII data with similar types of errors, so
our algorithm seems to be robust to multiple representsition
of the same character and split characters.

We evaluated our program on two sets of document im-

tograms as mixtures of two Poisson distributions, one for
intra-word spaces and another for inter-word spaces. The
model is optimized by gradient ascent to find a thresiwold

above which a horizontal spacing constitutes a word break.

ages. The first one consists of 201 Reuters news stories Formally, the probability of a particular spacisgs de-
preprocessed in the manner described above and then rerfined by

dered in unusual font styles (see Figure 1). These imaged(s|C,A1,A2)

are clean but do contain ligatures. The second set of images= P(s € P1[C)Pi(S|A1) +P(s € P2[C)P2(s]A2)

comes from the OCR data set of the Information Science = P(s € P1|C)P1(s|A1) + (1 —P(s € P1[c))Pa(s[A2)

Research Institute at UNLV [12], which includes manually-

= (s > ¢)Pi(s[A1) + (1= 1(s > ¢))Pa(s[A2),

keyed ground truths and segmentations of pages into textvherel is the indicator function, anB; (j = 1,2) are Pois-
zones. From a collection of Department of Energy reports son distributions:
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Figure 2. A typical histogram of horizontal
spaces in an image. The x-axis is the gap
size in pixels, and the y-axis is the count. The
solid and dashed curves are the two Poisson
distributions fitted by gradient ascent, and
the vertical line indicates the threshold C.

e )\?

Pi(slAj) = =51

Given the list of spacesy, ..., Sn), the objective function
is simply defined by the likelihood of the data:

N
Q(C,)\l,)\z) = .l_lP(S ‘C,)\L)\Z)-
1=

The goal is to find the parameteis= (c,A1,A») that
maximizeQ. One technique for doing so is gradient ascent,
wheref is initialized to a random poirfly, and at iteration
t+1itis updated by ;1 — 6; +p0eQ(6;), wherep is the
learning rate andlpQ is the gradient of. The learning
rate p is adapted using the bold driver algorithm, and the
search continues until the objective function does not im-
prove much from the previous iteration.

The indicator function is discontinuous so is not ev-
erywhere differentiable, thus complicating the optimizat
routine. We avoid this problem by approximatihdy a
shifted sigmoid functionl (s > ¢) ~ -

To choose the final number of clusters, we use the “elbow
criterion” heurstic: In each step of agglomerative clusigr
the distance between the two clusters to merge is plotted
giving a curve that resembles the exponential function. The
number of clusters to form is then be derived from a point

c where the slope of the curve begins increasing faster than

some threshold value In our experimentst is manually
set to 0.005.

Figure 3 shows the histograms of character accuracies [4]

on the Reuters and UNLV test images. On the UNLV im-

ages, the mean accuracy of word demarcations, averaged [s]

over the number of images, is 95.44%. Although this figure
initially looks promising, images with very low accuracies

(@) (b)

Figure 3. Histograms of character accura-
cies. (a) For 201 Reuters stories rendered in
unusual fonts. Averaged over the number of
images, mean accuracy is 88.09%. (b) For
314 Dept. of Energy documents. Averaged
over the number of images, mean accuracy
is 73.78%. Limiting evaluation to lowercase
characters gives a mean accuracy of 78.85%.

are caused by unrecoverable errors in word segmentation.
Our decoding algorithm also misses all digits, punctuation
marks, and uppercase letters.

One shortcoming of our unsupervised approach, similar
to the results presented in [3], is its inability to recogniz
numerals, punctuation marks, and uppercase letters. Using
image-to-character classifiers to identify these spebiait-c
acters beforehand proves beneficial, as discussed in [4]. To
this end, we plan to combine the scores from cryptogram de-
coding with outputs from a robust maximum-entropy char-
acter classifier used by Weinman and Learned-Miller [13].

We have presented an unsupervised OCR system using
character clustering with canopies and a cryptogram de-
coding algorithm based on numerization strings. Its per-
formance was evaluated on artificial and real data. Under
ideal input conditions, where both character segmentation
and clustering are correct, our decoding algorithm can cor-
rectly decode almost all words, even those absent from the
lexicon. Although not sufficient alone, our decoding ap-
proach, when augmented with appearance models, can im-
prove recognition performance in a complete OCR system.
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