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Abstract

OCR systems for printed documents typically require
large numbers of font styles and character models to work
well. When given an unseen font, performance degrades
even in the absence of noise. In this paper, we perform
OCR in an unsupervised fashion without using any charac-
ter models by using a cryptogram decoding algorithm. We
present results on real and artificial OCR data.

1. Introduction and Related Work

Most OCR systems for machine print text need large
collections of font styles and canonical character represen-
tations, whereby the recognition process involves template
matching for the input character images. Such systems are
font dependent and suffer in accuracy when given docu-
ments printed in novel font styles. An alternative approach
we examine here groups together similar characters in the
document and solves a cryptogram to assign labels to clus-
ters of characters. This method does not require any char-
acter models, so it is able to handle arbitrary font styles. It
can take advantage of patterns such as regularities in image
distortions that are particular to each document. In addi-
tion, the cryptogram decoding procedure is well-suited for
performing OCR on images compressed using token-based
methods such as Djvu, Silx, and DigiPaper.

Treating OCR as a cryptogram decoding problem dates
back at least to papers by Nagy [11] and Casey [2] in 1986.
There continues to be research done to improve the perfor-
mance of approaches that use no character models.

In [3], Ho and Nagy develop an unsupervised OCR sys-
tem that performs character clustering followed by lexicon-
based decoding. Their decoding procedure iteratively ap-
plies a set of modules to progressively build up assignments
based on comparing the “v/p” ratio against manually set
thresholds. One major difference between this work and
[3] is our use of probabilistic reasoning instead of prede-

fined ratio thresholds. In [8], Lee presents a more uni-
fied approach to decode substitution ciphers by using Hid-
den Markov Models and the expectation maximization al-
gorithm. That work uses n-gram statistics as model priors,
whereas ours uses entire word patterns. Breuel [1] intro-
duced a supervised OCR system that is font independent,
but it does not take advantage of token-based image com-
pression.

2 The Model

We take binary images of machine printed text as in-
puts. Within an image, each ink blot (i.e., connected com-
ponent) is identified and an effort is made to identify char-
acters composed of multiple ink blots, such as those with
accent symbols and the lettersi andj. An object defined
in this manner can correspond to (1) exactly one character
or punctuation mark, (2) part of a character that is broken
into several pieces due to noise, or (3) multiple characters
such as the ligaturesfi andffl. These objects are next
clustered using greedy agglomerative clustering, so that the
input document is represented by a string of cluster assign-
ments in place of the actual characters. By examining the
patterns of repetitions of cluster IDs and comparing them
to patterns of dictionary words, we can decode the mapping
between cluster IDs and characters in the output alphabet.
In the rest of this section, we describe each step in detail.

2.1 Character Clustering

Two straightforward measures of distance between two
binary imagesA andB are the Hamming distance and the
Hausdorff distance. TheHamming distanceis simply the
number of pixels on whichA andB differ. It is fast and easy
to calculate, but it is not robust to noise or minor variations
in stroke thickness.Hausdorff distance[9] defined as

h(A,B) = max
a∈A

min
b∈B

d(a,b),



whered is any metric, such as the Euclidean distance. If
the Hausdorff distance fromA to B is δ, then for every point
a∈ A, there is a point inB within distanceδ.

To reduce the effects of noisy pixels on the distance,
we “soften” the Hausdorff distance such thathp(A,B) = δ
means that for at leastp percent of the pointsa∈ A, there is
a point inB within distanceδ. To make the Hausdorff mea-
sure symmetric, we take the mean ofhp(A,B) andhp(B,A).
In our experiments, we use this average withp = 95.

The Hausdorff measure is more robust than the Ham-
ming measure, but is expensive to compute for theO(n2)
pairwise distances, wheren is the number of images. We
take advantage of the speed of the Hamming distance and
the robustness of Hausdorff distance by using the canopy
method devised by McCallum et al [10]. First, the Ham-
ming distance is computed for all pairs of images, and two
distance thresholdsT1 andT2 are specified, whereT1 > T2.
Next, we go through the list of images in any order and
remove one image from the list to serve as the seed of a
new canopy. All images in the list within distanceT1 of
the seed image are placed into the new canopy, and all im-
ages within distanceT2 are removed from the list. This pro-
cess is repeated until the list is empty. The more expen-
sive Hausdorff measure is then used for pairwise distances
within each canopy.

After all pairwise distances have been computed, the im-
ages are partitioned using hierarchical agglomerative clus-
tering. Inter-cluster similarity is computed by the group av-
erage. I.e., the distance between clustersG1 andG2 is given
by d(G1,G2) = 1

|G1|·|G2|
∑A∈G1 ∑B∈G2

h(A,B). To choose the
final number of clusters, we use the elbow criterion de-
scribed in the experiments section.

2.2 Character Decoding

Consider the following word encoding:

α β γ γ β γ γ β δ δ β,

where each Greek letter corresponds to an English alpha-
bet letter. Given that the string stands for an English word,
which word is it? After some thought, it should be clear that
it is the word “Mississippi,” since no other English word has
that particular pattern of letters.

For each word represented as a string of cluster assign-
ments, we compute itsnumerization stringby going from
left to right, assigning 1 to the first cluster ID, 2 to the sec-
ond distinct cluster ID, 3 to the third distinct cluster ID, etc.
For the above string, suppose the cluster assignments are

7 3 20 20 3 20 20 3 17 17 3,

then its corresponding numerization string is

1 2 3 3 2 3 3 2 4 4 2.

By computing the numerization strings for every docu-
ment and dictionary word, we identify code words in the
document that map to a unique dictionary word or are
shared by a small number dictionary words. In this way,
an initial mapping between cluster IDs and output charac-
ters can be made.

Formally, letE = (e1,e2, ...,en) be the sequence of words
encoded by cluster assignments,C = {ci} be the set of clus-
ter IDs, andΣ = {α j} be the alphabet of the target language.
Our goal is to compute the set of assignments that maxi-
mizesP({ci = α j}|E). By considering one mapping at a
time, we write

P(ci = α j |E) =
P(E|ci = α j)P(ci = α j)

P(E)

∝ P(E|ci = α j)P(ci = α j)

∝ P(e1,e2, ...,en|ci = α j)

≈
n

∏
k=1

P(ek|ci = α j)

=
n

∏
k=1

P(ci = α j |ek)P(ek)

P(ci = α j)

∝
n

∏
k=1

P(ci = α j |ek),

where we have applied the naive Bayes assumption, used
Bayes’ rule, and assumed a uniform prior forP(ci = α j).

The quantityP(ci = α j |ek) is calculated by normalizing
the count of the number of times cluster IDci maps to output
letter α j among the dictionary words that have the same
numerization string asek. We used Laplace smoothing with
λ = 0.001 to avoid zero probabilities.

Once P(ci = α j |E) has been calculated for every
ci and α j , each clusterci is mapped to character
argmaxα j P(ci = α j |E). Not all assignments will be correct
at this point, because of words whose numerization strings
don’t have much discriminating power. We solve this prob-
lem by using the set of mappings of which we are confident
to infer the less confident ones.

2.3 Confidence Estimation

An intuitive way to measure the confidence of an as-
signment forci is to look at how peaky the distribution
P(ci = ·|E) is. Entropyquantifies this measure. For every
cluster IDci , the entropy of its assignment is

H(ci) =− ∑
α j∈Σ

P(ci = α j |E) log(P(ci = α j |E)).

Sorting the entropies in ascending order gives a list of
ci ’s whose assignments are in decreasing confidence. Re-
call that each code wordek is associated with a list of dic-
tionary wordsDk that have the same numerization string.



In general, some dictionary words inDk are incompatible
with the mode ofP(ci = ·|E). Our refinement strategy is
to iterate theci ’s as sorted by entropy, assume the map-
ping of ci = argmaxα j P(ci = α j |E) to be true, and for each
code word that containsci , remove from its list of dictionary
words those words that are incompatible with the assumed
assignment. After each iteration, the assignment probabili-
ties and entropies of unprocessedci ’s are recomputed using
the reduced lists of words.

2.4 Ligatures and Partial Mappings

The decoding procedure described above assumes each
cluster ID maps to one output character. However, some
clusters contain ligatures and partial characters. To (par-
tially) deal with over-segmentation, prior to the decoding
steps described above, we count the number of of times
each subsequence of cluster IDs appears in the document.
Next, the subsequences that contain onlyci ’s that appear in
no other subsequences are replaced by a single new cluster
ID. To correct mapping errors that persist after the decod-
ing step, we use a refinement strategy based on string-edit
distances. The output alphabet is conceptually modified to
Σ′ = Σ∗, the set of strings made of zero or more letters from
Σ.

We begin with an example. Suppose we are given the
partially decoded words

?ost
fri?tens
enou?

where? denotes the same cluster ID that needs to be deci-
phered. Recall that each cluster maps to an element ofΣ′,
not necessarily to a single character. The first word alone
does not give much information, since it can becost, post,
and almost, among others. From the second and third
words, it becomes clear that the question mark stands for
the lettersgh. Essentially, this puzzle is solved by a knowl-
edge of the English lexicon and a mental search for words
that are most similar to those partial decodings.

The first step in this strategy is to identify the setC̃⊂C
of clusters that are candidates for correction. Our initial
definition of C̃ is the set of cluster IDs appearingonly in
non-dictionary words, but this criterion misses those clus-
ters appearing in decoded words that happen to be in the
dictionary by accident. Instead, we defineC̃ to be the set of
clusters that occur more frequently in non-dictionary words
than in dictionary words, where frequency is measured by
the normalized character count.

For every decoded wordwi that contains an element of
C̃, we find the dictionary word that is closest to it in edit
distance and tally the edit operations that involve elements
of C̃. If wi happens to be in the dictionary, we count the

identity mappings that involve elements ofC̃. To avoid
having to calculate the edit distance ofwi to every dictio-
nary word, we prune the list of dictionary words by com-

puting the ratior(wi ,d j) =
comm(wi ,d j )

max(|wi |,|d j |)
for every dictio-

nary wordd j , wherecomm(wi ,d j) is the number of (non-
unique) character trigramswi andd j have in common [6].
Let d(wi) = argmaxd j∈Dr(wi ,d j), which can be found ef-
ficiently by using an inverted index of character trigrams.
Next, only the string edit operations betweenwi andd(wi)
need to be tallied. In the case that multiple dictionary words
share the same maximum ratio withwi , the edit operations
of wi are ignored, because in our experience, using such
words skews the edit counts toward commonly occurring
letters such ase. After the edit counts have been tabulated,
each cluster ID inC̃ is re-mapped to the string it most fre-
quently edits to.

3 Experiments and Analysis

We performed experiments on artificial and real
data. We used the Spell Checker Oriented Word Lists
(http://wordlist.sourceforge.net/), which contains 10,683
words, as a lexicon.

Artificially generated data provides a sanity check for the
performance of the decoding algorithm under optimal in-
put conditions and allows us to examine the robustness of
the algorithm by varying the amount of noise present. We
use two types of artificial data in our experiments, one to
simulate perfect character segmentation and clustering, and
another to more closely resemble conditions of real-world
image data.

The best-case scenario for the decoding algorithm is
when (1) there is a bijective mapping between clusters and
the output alphabetΣ, and (2) the alphabet of the lexicon
used by the decoder equalsΣ. To simulate this condition, we
clean data from the Reuters corpus by removing all numer-
als and punctuation marks, and lowercasing all remaining
letters. The three hundred files with the most words after
preprocessing selected, and the ASCII codes of the text is
given to the decoder. The number of words in these files
range from 452 to 1046. Table 2 shows the performance
of the algorithm, and Table 1 lists some correctly decoded
words that are not in the dictionary. Most errors involve
mislabeling the lettersj andz, which make up 0.18% and
0.07% of the characters, respectively. In comparison, the
letter e, which comprises 9.6% of the characters, was re-
called 100% of the time.

Leetspeak (or Leet) is a form of slang used in Internet
chat rooms and forums that involves the substitution of let-
ters by similar looking numerals (e.g.,3 for e), punctuation
marks (e.g.,|-| for h), or similar sounding letters (e.g.,ph
for f). In addition, letter substitutions may vary from one
word to the next, so that the letters may be written as$



aegean aluvic
bernoulli dlr
exxon fluoroscan
multilaterally zinn

Table 1. Some correctly deciphered non-
dictionary words from the ASCII code data.

ASCII Leetspeak
character accuracy 99.80 99.65
word accuracy 98.84 98.06

Table 2. Decoding performance on 300 news
stories encoded in ASCII and Leetspeak.

in one word and5 in the next. As an example, the word
Leetspeak itself may be written as!337$p34k. An exam-
ple sentence in the Reuters story translated to Leetspeak is

g01d !$ ex|oect3d t0 [0n7!nve i7z ri$e
7#!$ y3@2 due t0 r3new3d !nphl@t!0n@2y
|orezzur3z ez9eci4l1y in t#e uz

(gold is expected to continue its rise this year due to re-
newed inflationary pressures especially in the us).

Understanding Leetspeak requires resolving some of the
same issues as the character recognition task. More than
one character in Leetspeak can be used to represent the
same alphabet letter, which mirrors the problem of split
clusters. Multiple Leet characters can be used to represent
the same alphabet letter, and this mirrors the problem of
over-segmentation of character images.

To generate Leetspeak data to test our decoding algo-
rithm, we defined the substitutions such that no two original
letters share any characters in their mappings. This is done
only as a simplification of the problem, since Leetspeak can
be much more complex than what is presented here. We
ran the decoding algorithm on the same 300 Reuters stories
encoded in Leet, and Table 2 gives the character and word
accuracies. The decoding performance on Leet is just as
good as on the ASCII data with similar types of errors, so
our algorithm seems to be robust to multiple representations
of the same character and split characters.

We evaluated our program on two sets of document im-
ages. The first one consists of 201 Reuters news stories
preprocessed in the manner described above and then ren-
dered in unusual font styles (see Figure 1). These images
are clean but do contain ligatures. The second set of images
comes from the OCR data set of the Information Science
Research Institute at UNLV [12], which includes manually-
keyed ground truths and segmentations of pages into text
zones. From a collection of Department of Energy reports

Figure 1. Samples of unusual fonts used to
create document images of Reuters stories.

in the UNLV data set that were scanned as bi-tonal images
at 300 dpi, we selected 314 text zones that are primarily text
(excluding zones that contain tables or math formulas) for
recognition.

Many of the images are slanted, where lines of text are
not parallel to the top and bottom edges of the image. Al-
though clustering can deal with slanted character images,
rectification makes it easier to determine the reading order
and inter-word spacing needed for decryption. Our recti-
fication algorithm is based on an entropy measure of ink
distributions. For each horizontal line of pixels in the im-
age, we count the number of pixels occupied by ink, so that
a projection profile of the image obtained as in [7] and [5].
We simply search for the rotation, in 1◦ increments, that
minimizes the projected entropy.

After rectification, the image is despeckled by removing
isolated single-pixel ink blots. Each connected component
is extracted and resized to fit within a 60 x 60 pixel image
centered at its centroid. To cluster the images, pairwise dis-
tances are computed by shifting one of the images around a
3 x 3 window and taking the smallest Hausdorff distance.

Our decoding algorithm relies on accurate segmentation
of the sequences of cluster IDs into word units, so a princi-
pled method is needed to identify word demarcations. Fig-
ure 2 shows a typical histogram for horizontal spacing be-
tween adjacent connected components on an image, where
the left hump corresponds to spaces within a word, and the
right hump spaces between two words. We model such his-
tograms as mixtures of two Poisson distributions, one for
intra-word spaces and another for inter-word spaces. The
model is optimized by gradient ascent to find a thresholdc
above which a horizontal spacing constitutes a word break.

Formally, the probability of a particular spacingsi is de-
fined by
P(si |c,λ1,λ2)
= P(si ∈ P1|c)P1(si |λ1)+P(si ∈ P2|c)P2(si |λ2)
= P(si ∈ P1|c)P1(si |λ1)+(1−P(si ∈ P1|c))P2(si |λ2)
= I(si > c)P1(si |λ1)+(1− I(si > c))P2(si |λ2),
whereI is the indicator function, andPj ( j = 1,2) are Pois-
son distributions:
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Figure 2. A typical histogram of horizontal
spaces in an image. The x-axis is the gap
size in pixels, and the y-axis is the count. The
solid and dashed curves are the two Poisson
distributions fitted by gradient ascent, and
the vertical line indicates the threshold c.

Pj(si |λ j) =
e−λ j λsi

j
si !

.

Given the list of spaces(s1, ...,sN), the objective function
is simply defined by the likelihood of the data:

Ω(c,λ1,λ2) =
N

∏
i=1

P(si |c,λ1,λ2).

The goal is to find the parametersθ = (c,λ1,λ2) that
maximizeΩ. One technique for doing so is gradient ascent,
whereθ is initialized to a random pointθ0, and at iteration
t +1 it is updated byθt+1← θt +ρ∇θΩ(θt), whereρ is the
learning rate and∇θΩ is the gradient ofΩ. The learning
rateρ is adapted using the bold driver algorithm, and the
search continues until the objective function does not im-
prove much from the previous iteration.

The indicator function is discontinuous so is not ev-
erywhere differentiable, thus complicating the optimization
routine. We avoid this problem by approximatingI by a
shifted sigmoid function:I(si > c)≈ 1

1+ec−si
.

To choose the final number of clusters, we use the “elbow
criterion” heurstic: In each step of agglomerative clustering,
the distance between the two clusters to merge is plotted,
giving a curve that resembles the exponential function. The
number of clusters to form is then be derived from a point
c where the slope of the curve begins increasing faster than
some threshold valueτ. In our experiments,τ is manually
set to 0.005.

Figure 3 shows the histograms of character accuracies
on the Reuters and UNLV test images. On the UNLV im-
ages, the mean accuracy of word demarcations, averaged
over the number of images, is 95.44%. Although this figure
initially looks promising, images with very low accuracies
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Figure 3. Histograms of character accura-
cies. (a) For 201 Reuters stories rendered in
unusual fonts. Averaged over the number of
images, mean accuracy is 88.09%. (b) For
314 Dept. of Energy documents. Averaged
over the number of images, mean accuracy
is 73.78%. Limiting evaluation to lowercase
characters gives a mean accuracy of 78.85%.

are caused by unrecoverable errors in word segmentation.
Our decoding algorithm also misses all digits, punctuation
marks, and uppercase letters.

One shortcoming of our unsupervised approach, similar
to the results presented in [3], is its inability to recognize
numerals, punctuation marks, and uppercase letters. Using
image-to-character classifiers to identify these special char-
acters beforehand proves beneficial, as discussed in [4]. To
this end, we plan to combine the scores from cryptogram de-
coding with outputs from a robust maximum-entropy char-
acter classifier used by Weinman and Learned-Miller [13].

We have presented an unsupervised OCR system using
character clustering with canopies and a cryptogram de-
coding algorithm based on numerization strings. Its per-
formance was evaluated on artificial and real data. Under
ideal input conditions, where both character segmentation
and clustering are correct, our decoding algorithm can cor-
rectly decode almost all words, even those absent from the
lexicon. Although not sufficient alone, our decoding ap-
proach, when augmented with appearance models, can im-
prove recognition performance in a complete OCR system.
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